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Textbooks On

● Lexing 1,000
● Parsing 100
● Semantics 10
● Optimizing 1
● Code Generation 0



  



  

Gotta Rely On

● Articles
● Papers
● CPU Specification Documentation
● Dogged Persistence
● Godbolt.org
● Walter Bright



  

This Will Be About DMD's Code 
Generator

● I know next to nothing about the Gnu or LLVM code 
generators

● It is not derived from anybody else's code generator
● It started as an 8088 code generator, and survived 

upgrades to 32 bits, 64 bits, and SIMD
● AFAIK it is a unique design
● BOOST licensed, so anyone can use it for any 

purpose



  

Data Structures

Understanding the code generator's data 
structures is key



  

Expressions

x = y + 3



  

Expression Tree Structure
struct elem  {

  ubyte Eoper;
  tym_t Ety;
  eflags_t Eflags;
  ubyte Ecount;
  ubyte Ecomsub;
  
  union  {
    constant
    variable
    E1,E2
  }
}



  

int horse(int x, int y) {
    return x = y + 3;
}

Compile with --b switch:

x(1) =  (y(0) +  3L );
x(1);

Compile with --b --f:

el:0x1af1740 cnt=0 cs=0 , TYint 0x1af16d0 0x1af14a0
 el:0x1af16d0 cnt=0 cs=0 = TYint 0x1af14a0 0x1af1660
  el:0x1af14a0 cnt=0 cs=0 var TYint  x
  el:0x1af1660 cnt=0 cs=0 + TYint 0x1af1580 0x1af15f0
   el:0x1af1580 cnt=0 cs=0 var TYint  y
   el:0x1af15f0 cnt=0 cs=0 const TYint 3L
 el:0x1af14a0 cnt=0 cs=0 var TYint  x



  

Block Structure

struct block {
  ubyte BC;        // BCgoto/BCiftrue/BCret/BCretexp
  elem* Belem;  // expression tree for this block
  list_t Bsucc;    // next block(s) to execute
  block* Bnext;  // next block in function
  code* Bcode;  // generated code
}



  

int popCount(uint x) {
    int n = 0;
    while (x) {
        n += x & 1;
        x >>= 1;
    }
    return n;
}

 1: BCgoto
        n =  0;
        Bsucc: B2

 2: BCtrue
        x;
        Bsucc: B3 B5

 3: BCgoto
        n +=  (x & 1);
        Bsucc: B4

 4: BCgoto
        x >>>=  1;
        Bsucc: B2

 5: BCretexp
        n;



  

Code Structure

struct code {
  code* next;
  code_flags_t Iflags;
  uint Iop;
  uint Iea;
  FL IFL1;
  evc IEV1;
  FL IFL2;   
  evc IEV2;
}



  

_D5test18popCountFkZi:
0000: 55                    push  RBP
0001: 48 8B EC              mov   RBP,RSP  
0004: 48 83 EC 10           sub   RSP,010h
0008: 89 7D F8              mov   -8[RBP],EDI
 
000b: C7 45 F0 00 00 00 00  mov   dword ptr -010h[RBP],0

0012: 83 7D F8 00           cmp   dword ptr -8[RBP],0
0016: 74 10                 je    L28

0018: 8B 45 F8              mov   EAX,-8[RBP]
001b: 25 01 00 00 00        and   EAX,1
0020: 01 45 F0              add   -010h[RBP],EAX

0023: D1 6D F8              shr   dword ptr -8[RBP],1
0026: EB EA                 jmp short L12

0028: 8B 45 F0              mov   EAX,-010h[RBP]

002b: C9                    leave
002c: C3                    ret

B1

B2

B3

B4

B5

Prolog

Epilog



  

cgelem.d local optimizations

Needs one less register



  

cgcs.d Common Subexpressions



  

Register Masks

● alias ulong regm_t;
● allregs : integer registers
● fpregs : floating point registers
● xmmregs : XMM registers
● mfuncreg : registers preserved by function
● msavereg : registers we'd like to save



  

EA – Effective Address

● offset
● base register + offset
● base + index * scale + offset



  

Entry Point – dout.writefunc()

● Sets up symbol table (a simple array of 
symbols)

● Optionally runs the intermediate code optimizer
● Calls codgen() the code generator
● Shuts down data structures
● Emits debug infor for function
● Saves result for possible inlining



  

Code Generator

● Sets the stage
● If optimized

– Do the following in a loop
● Generates code in depth-first order
● Allocate unused registers to variables

– Until no more registers can be allocated

● Else
– Loops through block list generating code in that order



  

Code generator 2

● Compute locations of local variables
● Generate function prolog
● Generate function epilog
● Assign addresses in generated code
● Pinhole optimizations
● Optimize jumps
● Generate switch tables
● Emit generated code



  

One Function per Operator

// jump table
private immutable nothrow void function
 (ref CGstate, ref CodeBuilder,elem *,
  Ref regm_t)[OPMAX] cdxxx =
[
    OPunde:    &cderr,
    OPadd:     &cdorth,
    OPmul:     &cdmul,
    OPand:     &cdorth,
    OPmin:     &cdorth,
    OPnot:     &cdnot,
    OPcom:     &cdcom,
    OPcond:    &cdcond,
    ...
];



  

elem nodes are one of:

● Rvalue
– Constant

– Result of an elem node

– Address of an lvalue

– Common subexpression
● Create it
● Reuse it

● Lvalue
– Variable

– Indirection



  

void cdcom(ref CGstate cg, ref CodeBuilder cdb,
    elem *e,ref regm_t pretregs)
{
  if (pretregs == 0) {
      codelem(cgstate,cdb,e.E1,pretregs,false);
      return;
  }
  tym_t tym = tybasic(e.Ety);
  int sz = _tysize[tym];
  uint rex = (I64 && sz == 8) ? REX_W : 0;
  regm_t possregs = (sz == 1) ? BYTEREGS
                              : cgstate.allregs;
  regm_t retregs = pretregs & possregs;
  if (retregs == 0)
      retregs = possregs;
  codelem(cgstate,cdb,e.E1,retregs,false);
  getregs(cdb,retregs); // retregs are destroyed



  

  const reg = (sz <= REGSIZE)
        ? findreg(retregs)
        : findregmsw(retregs);
  const op = (sz == 1) ? 0xF6 : 0xF7;
  genregs(cdb,op,2,reg);     // NOT reg

  code_orrex(cdb.last(), rex);
  if (I64 && sz == 1 && reg >= 4)
      code_orrex(cdb.last(), REX);

  if (sz == 2 * REGSIZE) {
      const reg2 = findreglsw(retregs);
      genregs(cdb,op,2,reg2);  // NOT reg+1
  }

  fixresult(cdb,e,retregs,pretregs);
}



  

Register Allocator cgreg.d

● Optimizer computes “live range” of each variable, 
which is a bit vector of the basic blocks, with a bit 
set for each block a variable is live in

● Code generator sets a bit for each register used in 
each block

● A variable is mapped to a register if that register is 
not used in any of the blocks the variable is live in

● This is done in a loop until no more variables can 
be enregistered



  

Finishing Things up

● Write code bytes to buffer
● Write fixups
● Write object code to file

– elfobj.d

– machobj.d

– mscoffobj.d

– cgobj.d (for Win32 OMF, obsolete)



  

What's a Fixup?

● Addresses of symbols cannot be resolved until 
the program is linked

● A fixup record that has the following:
– Location of the fixup

– Name of the symbol

– Offset from that symbol

– Relative or absolute

– Tend to be confusing and very poorly documented



  

Inherent Limitations of This Code 
Generator

● Byte registers AH, BH, CH, DH, etc., are not 
independent registers

● Bit mask of 64 bits means no more registers 
can fit in them
– (64 registers ought to be enough for anyone!)

● Cannot have loops inside of expression tree
– Limits inlining possibilities

● x87 is a giant kludge



  

Why Is Code Gen So Complicated?

● 8 bit microprocessors had ~40 instructions
● AArch64 had over 2000 instructions each with 

variations
● Processor variations as CPUs progress
● Endless ways to put instructions together
● x87 has its own wacky way of doing things that 

doesn't fit



  



  

Loading a Const Into a Variable

● MOV EA, const
● MOV EA, register

– Is the right value coincidentally already in a reg?

– Is the constant a common subexpression in a reg?

– Is this faster?
● MOV register,  const then MOV EA, register

● Multiple instructions needed?
● EA in a register?
● Affect on the flags?



  

A Code Generator is Never Finished

● Always new ideas on generating code appear
● CPUs constantly change

– Optimal code sequences change

● Code generator author will never be 
unemployed!



  

But This Presentation is Finished!
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