

The Black Art of Code Generation

aka
Some Assembly Required

by Walter Bright
https://x.com/WalterBright
NWCPP Jan 2025

Textbooks On

● Lexing 1,000
● Parsing 100
● Semantics 10
● Optimizing 1
● Code Generation 0

Gotta Rely On

● Articles
● Papers
● CPU Specification Documentation
● Dogged Persistence
● Godbolt.org
● Walter Bright

This Will Be About DMD's Code
Generator

● I know next to nothing about the Gnu or LLVM code
generators

● It is not derived from anybody else's code generator
● It started as an 8088 code generator, and survived

upgrades to 32 bits, 64 bits, and SIMD
● AFAIK it is a unique design
● BOOST licensed, so anyone can use it for any

purpose

Data Structures

Understanding the code generator's data
structures is key

Expressions

x = y + 3

Expression Tree Structure
struct elem {

 ubyte Eoper;
 tym_t Ety;
 eflags_t Eflags;
 ubyte Ecount;
 ubyte Ecomsub;

 union {
 constant
 variable
 E1,E2
 }
}

int horse(int x, int y) {
 return x = y + 3;
}

Compile with --b switch:

x(1) = (y(0) + 3L);
x(1);

Compile with --b --f:

el:0x1af1740 cnt=0 cs=0 , TYint 0x1af16d0 0x1af14a0
 el:0x1af16d0 cnt=0 cs=0 = TYint 0x1af14a0 0x1af1660
 el:0x1af14a0 cnt=0 cs=0 var TYint x
 el:0x1af1660 cnt=0 cs=0 + TYint 0x1af1580 0x1af15f0
 el:0x1af1580 cnt=0 cs=0 var TYint y
 el:0x1af15f0 cnt=0 cs=0 const TYint 3L
 el:0x1af14a0 cnt=0 cs=0 var TYint x

Block Structure

struct block {
 ubyte BC; // BCgoto/BCiftrue/BCret/BCretexp
 elem* Belem; // expression tree for this block
 list_t Bsucc; // next block(s) to execute
 block* Bnext; // next block in function
 code* Bcode; // generated code
}

int popCount(uint x) {
 int n = 0;
 while (x) {
 n += x & 1;
 x >>= 1;
 }
 return n;
}

 1: BCgoto
 n = 0;
 Bsucc: B2

 2: BCtrue
 x;
 Bsucc: B3 B5

 3: BCgoto
 n += (x & 1);
 Bsucc: B4

 4: BCgoto
 x >>>= 1;
 Bsucc: B2

 5: BCretexp
 n;

Code Structure

struct code {
 code* next;
 code_flags_t Iflags;
 uint Iop;
 uint Iea;
 FL IFL1;
 evc IEV1;
 FL IFL2;
 evc IEV2;
}

_D5test18popCountFkZi:
0000: 55 push RBP
0001: 48 8B EC mov RBP,RSP
0004: 48 83 EC 10 sub RSP,010h
0008: 89 7D F8 mov -8[RBP],EDI

000b: C7 45 F0 00 00 00 00 mov dword ptr -010h[RBP],0

0012: 83 7D F8 00 cmp dword ptr -8[RBP],0
0016: 74 10 je L28

0018: 8B 45 F8 mov EAX,-8[RBP]
001b: 25 01 00 00 00 and EAX,1
0020: 01 45 F0 add -010h[RBP],EAX

0023: D1 6D F8 shr dword ptr -8[RBP],1
0026: EB EA jmp short L12

0028: 8B 45 F0 mov EAX,-010h[RBP]

002b: C9 leave
002c: C3 ret

B1

B2

B3

B4

B5

Prolog

Epilog

cgelem.d local optimizations

Needs one less register

cgcs.d Common Subexpressions

Register Masks

● alias ulong regm_t;
● allregs : integer registers
● fpregs : floating point registers
● xmmregs : XMM registers
● mfuncreg : registers preserved by function
● msavereg : registers we'd like to save

EA – Effective Address

● offset
● base register + offset
● base + index * scale + offset

Entry Point – dout.writefunc()

● Sets up symbol table (a simple array of
symbols)

● Optionally runs the intermediate code optimizer
● Calls codgen() the code generator
● Shuts down data structures
● Emits debug infor for function
● Saves result for possible inlining

Code Generator

● Sets the stage
● If optimized

– Do the following in a loop
● Generates code in depth-first order
● Allocate unused registers to variables

– Until no more registers can be allocated

● Else
– Loops through block list generating code in that order

Code generator 2

● Compute locations of local variables
● Generate function prolog
● Generate function epilog
● Assign addresses in generated code
● Pinhole optimizations
● Optimize jumps
● Generate switch tables
● Emit generated code

One Function per Operator

// jump table
private immutable nothrow void function
 (ref CGstate, ref CodeBuilder,elem *,
 Ref regm_t)[OPMAX] cdxxx =
[
 OPunde: &cderr,
 OPadd: &cdorth,
 OPmul: &cdmul,
 OPand: &cdorth,
 OPmin: &cdorth,
 OPnot: &cdnot,
 OPcom: &cdcom,
 OPcond: &cdcond,
 ...
];

elem nodes are one of:

● Rvalue
– Constant

– Result of an elem node

– Address of an lvalue

– Common subexpression
● Create it
● Reuse it

● Lvalue
– Variable

– Indirection

void cdcom(ref CGstate cg, ref CodeBuilder cdb,
 elem *e,ref regm_t pretregs)
{
 if (pretregs == 0) {
 codelem(cgstate,cdb,e.E1,pretregs,false);
 return;
 }
 tym_t tym = tybasic(e.Ety);
 int sz = _tysize[tym];
 uint rex = (I64 && sz == 8) ? REX_W : 0;
 regm_t possregs = (sz == 1) ? BYTEREGS
 : cgstate.allregs;
 regm_t retregs = pretregs & possregs;
 if (retregs == 0)
 retregs = possregs;
 codelem(cgstate,cdb,e.E1,retregs,false);
 getregs(cdb,retregs); // retregs are destroyed

 const reg = (sz <= REGSIZE)
 ? findreg(retregs)
 : findregmsw(retregs);
 const op = (sz == 1) ? 0xF6 : 0xF7;
 genregs(cdb,op,2,reg); // NOT reg

 code_orrex(cdb.last(), rex);
 if (I64 && sz == 1 && reg >= 4)
 code_orrex(cdb.last(), REX);

 if (sz == 2 * REGSIZE) {
 const reg2 = findreglsw(retregs);
 genregs(cdb,op,2,reg2); // NOT reg+1
 }

 fixresult(cdb,e,retregs,pretregs);
}

Register Allocator cgreg.d

● Optimizer computes “live range” of each variable,
which is a bit vector of the basic blocks, with a bit
set for each block a variable is live in

● Code generator sets a bit for each register used in
each block

● A variable is mapped to a register if that register is
not used in any of the blocks the variable is live in

● This is done in a loop until no more variables can
be enregistered

Finishing Things up

● Write code bytes to buffer
● Write fixups
● Write object code to file

– elfobj.d

– machobj.d

– mscoffobj.d

– cgobj.d (for Win32 OMF, obsolete)

What's a Fixup?

● Addresses of symbols cannot be resolved until
the program is linked

● A fixup record that has the following:
– Location of the fixup

– Name of the symbol

– Offset from that symbol

– Relative or absolute

– Tend to be confusing and very poorly documented

Inherent Limitations of This Code
Generator

● Byte registers AH, BH, CH, DH, etc., are not
independent registers

● Bit mask of 64 bits means no more registers
can fit in them
– (64 registers ought to be enough for anyone!)

● Cannot have loops inside of expression tree
– Limits inlining possibilities

● x87 is a giant kludge

Why Is Code Gen So Complicated?

● 8 bit microprocessors had ~40 instructions
● AArch64 had over 2000 instructions each with

variations
● Processor variations as CPUs progress
● Endless ways to put instructions together
● x87 has its own wacky way of doing things that

doesn't fit

Loading a Const Into a Variable

● MOV EA, const
● MOV EA, register

– Is the right value coincidentally already in a reg?

– Is the constant a common subexpression in a reg?

– Is this faster?
● MOV register, const then MOV EA, register

● Multiple instructions needed?
● EA in a register?
● Affect on the flags?

A Code Generator is Never Finished

● Always new ideas on generating code appear
● CPUs constantly change

– Optimal code sequences change

● Code generator author will never be
unemployed!

But This Presentation is Finished!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

