Component based or monolithic
development for large C and
C++ projects: Why not both?

Diego Rodriguez-Losada
20-Nov-2025

\\ft Northwest (++ Users’ Group

= g CONN2
\

]Frog \ C/C++ Package Manager

&, pET CONAN
lFrog C/C++ Package Manager

Free and open source, MIT
C and C++: static, shared, headers, linkage
Universal, any OS, any build system
Binary management with customizable binary model
Extremely extensible and powerful, enterprise ready
- Audit, SBOMs...
Fully maintained by JFrog, 10 people team full time maintainers
Free JFrog Artifactory CE
Used in production by thousands of organizations, from startups to ~15% of
Fortune500

conhan.io —
ogithub.com/conan-io/conan

http://conan.io
http://github.com/conan-io/conan

Outline

- Introduction: monorepo vs components

- Challenges of component based development

- Continuous Integration at scale

- Simultaneous development of multiple packages
- Conclusions

- QA

RIGHT WAY

Right Way Right Way

Component based Monorepo based
paradigm paradigm

Seen by component
based
developers

Seen by monorepo
based
developers

Component based Monorepo based
paradigm paradigm

Seen by component
based
developers

Seen by monorepo
based
developers

Conway’s law

Organizations which design systems (in the broad sense used here)
are constrained to produce designs which are copies of the
communication structures of these organizations.

—Melvin E. Conway, How Do Committees Invent?

The structure of any system designed by an organization is
isomorphic to the structure of the organization

You can see the organization chart of a car company in the
dashboard, and also see whether the steering wheel team
hates the gear stick team.

Development paradigms

Mono-repo / monolithic build

Could be a
submodule

git@.../monorepo.git

-WORKSPACE
-1liba

| -BUILD

| -include

| |-a.h

| -src

|-a.cpp

-1libb
-BUILD
-include

|-b.h
-src

-src
| -main.cpp

Multi-repo / component build

git@.../liba.qgit

|-1iba

| | -CMakelList.txt
| | -include

| | [-a.h

| | -src

| |-a.cpp

git@.../app1.git
-appl
|
|

-Src

git@.../libb.git
| -1ibb
‘\\\\\ | | -CMakelList.txt
| | -include
| | [-b.h
| | -src
| |-b.cpp

-CMakeList.txt

| -main.cpp

Development paradigms

git@.../monorepo.git

| -WORKSPACE

| -1ibb

| | -BUILD

| | -include

| | |-b.h

| | -src

I |-b.cpp
| -app1
|
|

|

| -main.cpp

. hybrid

git@.../liba.qgit

|-1liba

| | -CMakeList.txt
| | -include

| | [-a.h

| | -src

| |-a.cpp

10

Mono repo

-WORKSPACE
-liba

| -BUILD

| -include

| |-a.h

| -src

|-a.cpp

-1libb
-BUILD
-include

|-b.h
-src

-src
| -main.cpp

Live at Head paradigm
- (Titus Winters, Google)
Tooling:
- Bazel(blaze), Buck2, Visual
- Heavy use of compilation caching
- Very dedicated and optimized build infra
- Tooling for git itself
Pros:
- No versioning
Cons:
- No versioning
- Organizational challenges
Infra
Tools can be complex

w Bazel % MvafzfﬁaIStudlo

11

Multi-repo/components

- Classic versioning paradigm git@.../liba.git
- Tooling: | -1iba git@.../libb.git
- CMake, Makefiles, MSBuild, Meson | | -CMakeList.txt
- Caching at the binary level (package | | -include |-1ibb
management) | | |-a.h \ | |-CMakeList.txt
- Pros: | |-src | |-include
' b.h
- Per component development, | |-a.cpp I I srl
versioning and releasing | |-b.cpp
- Cons:
- Per component development, git@.../app1.git
versioning and releasing
| -app1
| | -CMakeList.txt
| |-src
| | -main.cpp

12

Outline

- Introduction: monorepo vs components

- Challenges of component based development
- Continuous Integration at scale

- Simultaneous development of multiple packages
- Conclusions

- QA

14

Components evolve

- One package gets changes

- Build those changes

- Down to our applications
(integrate)

- Efficient and safe way

git@.../liba.qgit

liba

| -CMakelList.txt
| -include
| |-a.h

| -src

AN

|-a.cpp

git@.../app1.git

app
|
|

1
-CMakelList.txt
-src

| -main.cpp

git@.../libb.git
|-1ibb

| -CMakeList.txt
| -include
| |-b.h
| -src
|-b.cpp

15

Example project

Libraries (static) [mathlib/1.0 J

N

Cro | [omnn)
o~

[engine/1.0 }

Applications (exes) [game/1.0 } [mapviewer/mo}

16

Example project: multi-repository

[mathlib/1.0 J ——> od
conan install .
/\ cmake --preset conan-default
IDE work
[ai/1.0 } { graphics/1.0 }
[engine/1.0 }

[game/1.0 } [mapviewerM.O}

17

Assumptions: T Packagesenerrpostory
package and dependency B [
management M\eM.O][game/1.0][mapview/1.0] Tog Artifacto
//
@ download
- 81 [mathlib/1.0 J
$ cd ai

downloads mathlib/1.0 binary from server

$ cmake --preset conan-default _
e | a0

18

Package management 101

$ conan install

$ conan build

conan create

Install dependencies of current project

= conan install + build()

Install dependencies of current project
Executes “cmake” configure and
“cmake” build steps

Install dependencies of current project
Builds from source:

- cmake .

- cmake --build
Packages:

- cmake --install

19

class aiRecipe(ConanFile):
name = "ai"
version = "1.0"
requires = "mathlib/[>=1.0 <2]"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
package_type = "static-library"

def export(self):
git = Git(self, self.recipe_folder)
git.coordinates_to_conandata()

def generate(self):
tc = CMakeToolchain(self)
tc.preprocessor_definitions["PKG_VERSION"] = f'"{self.version}
tc.generate()
deps = CMakeDeps(self)
deps.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install()

def package_info(self):
self.cpp_info.libs = ["ai"]

conanfile.py

20

Challenge: new version!

cd ai
conan install .

cmake --preset conan-default

IDE work, bump version 1.0=>1.1
conan create .

conan upload "ai/*" -r=myremote -c

/—%ge server rep@

ai/1.0 [

math)IIbM. ai/l1.1] [graphicsM.O]
[engine/1.0][game/1.0][mapwgwer/1.] JFrog Artifactory

N
[n1athﬁb/1.0 }

ail1lA

upload

ai.cpp ai.h
//bugfix /lchange

21

Problem Statement: Package server repository
Ve rS I O n - ra n g eS mathlib/1.0 aif1.0 eSO O

ai/1A1 JFrog Artifactory

[mathlib/1.0

T~

[ail1.1 [graphics/1.0 }

requires="ai/[>=1.0 <2]'

$ cd game .
$ conan install . game/1.0 mapviewer/1.0

N J 22

Two different scenarios

APl compatible

DT

APl incompatible

[ai/1.0

~

J

g

Cl Problem>

Jenkins

Dev Problem>

mathlib/1.0

graphics/1.0

engine/1.0

game/1.0 } [mapviewerﬁ .0}

engine/1.?

ol

game/1.?
A —

23

e

an cache User folders

.conan2

mathlib/1.0

ail2.0

ail1.1 graphics/1.0 engine

/1.0

CMakeLists.txt
[game/1.0 Hmapviewer/to

engine/1.?

class Ws(Workspace):
def root_conanfile(self):
return MyWs

class MyWs(ConanFile):

settings = "os", "compiler", "build_type", "arch"

def generate(self):
deps = CMakeDeps(self)
deps.generate()
tc = CMakeToolchain(self)
tc.preprocessor_definitions["PKG_VERSION"] = '"WS_@.1"'
tc.generate()

Outline

- Introduction: monorepo vs components

- Challenges of component based development

- Continuous Integration at scale

- Simultaneous development of multiple packages
- Conclusions

- QA

25

The CI problem

APl compatible

DT

Cl Problem>

!
I\

Jenkin

mathlib/1.0

graphics/1.0

S engine/1.0
game/1.0 } [mapviewerﬁ .0}

26

Cl Problem statement

Given an API compatible new version of a
package:

- Build and test the necessary packages for
the supported platforms, in the right order
down to my organization “products”

Conditions:

- Efficiently: do not build more than necessary

- Fast: build in parallel whenever possible

- Safely: do not break the build or disrupt
other development and release processes

T~

[mathlib/1.0

[ail1.1

{ graphics/1.0 J

game/1.0

S

[mapviewer/1.0 }

27

Principles: “don’t break
the build”

O
a graphics/1.0

ai/1A1 JFrog Artifactory

Package server repository

[mathlib/1.0 1

ElF=
e

E°3

game/1 0 { mapviewer/1.0 1

28

“m u Itl_repOSIto ry” lFmgATifacm [mathlib/1.0] [ai/1.0] [graphics/1.0]

engine/1.0] game/1.0] mapview/1.0

< multi-branch I ——

In source
u download

[n1athﬁb/1.0 }

cd ai

conan install . -r=develop
cmake --preset conan-default ail1.1

IDE work, . .
conan create . aLCpp ai.h
conan upload "ai/*" -r=packages -c //bugfix //lchange

29

Principles: “package promotions”

source

< merge in

ail1.1

promotio

_/V

n > ail1.1

~

ai/1.0

N

upload J

XLdownIoad

30

Principles: “packages” and “products” Cl pipelines

[mathlib/1.0 J

“Packages”: Classic, build ai/1.1 4 oy } [graph,cs,m}

=
|

“Products”: Build game/1.0 and [
mapview/1.0 (and all other

necessary intermediate packages) ‘ [
against new ai/1.1 -

game/1.0

[mapview/1.0 }

31

Project setup

~ @~

~ @~

[mathlib/1.0][ai/1.0][graphicsm.o]

[engine/1.o] [game/1.0] [mapviewﬁ .0]

~

32

Product pipeline: game/1.0

O

JFrog Artifactory

(produesrrene)

N~

[mathlib/1.0[ai/1.0][graphicsm.o]

[engine/1.0 [game/1.0 [mapview/1.0

~ “

$ conan install --requires=game/1.0

Requires
mathlib/1.0
ai/1.1
engine/1.0
game/1.0

[mathlib/1.0 1

ElE=
e

o]
omero |

game/1.0

[mmwbwﬂﬂ}

33

Product pipeline: game/1.0

O [mathlibm.o] [ai/1.0] [graphics/1.0] [math“b/1 o 1
]FmgATifactory ai/ll1.1
[) o

engine/1.0 [game/1.0 [mapV|ew/1.0
\/ w ail1.1 graphics/1.0

-
1

$ conan install --requires=game/1.0

Required packages [
mathlib/1.0 - Cache

ai/1.1 - Cache
engine/1.0 - Missing binary
game/1.0 - Missing binary

game/1.0

[mmwbwﬂﬂ}

34

There are missing binaries

Product pipeline: game/1.0

O [mathlibm.o] [ai/1.0] [graphics/1.0] [math“b/1 o 1
]FmgATifactory ai/ll1.1
[) o

engine/1.0 [game/1.0 [mapV|ew/1.0
\/ w ail1.1 graphics/1.0

-
1

$ conan install --requires=game/1.0

Required packages [
mathlib/1.0 - Cache

ai/1.1 - Cache
engine/1.0 - Missing binary
game/1.0 - Missing binary

game/1.0

[mmwbwﬂﬂ}

35

There are missing binaries

Welcome “conan graph build-order”

“products” repo “develop” repo
N A mathlib/1.0

[mathlib/1.0][ai/1.0][graphicsm.o]
JFrog Artifactory a i / 11

[engine/1.0 [game/1.0 [mapview/1.0]

v w ail1.1 graphlcs/1 O

$ conan
--requires=game/1.0 --build=missing >
game_build order.json

[rnapwemd10

36

graph_build_order.json

[
{
"ref": "engine/1.0",
"packages": [[{
"package id": "de73..a765",
"binary": "Build",
"build_args": "--requires=engine/1.0 --build=engine/1.0",

H1

"ref": "game/1l.0",
"depends”: ["engine/1.0"],
"packages": [[{
"package id": "bac7..9d4c",
"binary": "Build",
"build args": "--requires=game/1.0 --build=game/1.0",

11

37

confFeremnce

Continuous Integration (Cl) for

Large Scale Package-Based C, C++
Projects With Conan2

Diego Rodriguez-Losada -

::::::::::

Building ai/1.1 for Linux

4 “packages” repo

7 Diego Rodriguez-Losada

e

https://youtu.be/A3X1TMpvYTrM
https://docs.conan.io/2/ci_tutorial/tutorial.html

38

https://youtu.be/A3X1MpvYTrM

The development workspace problem

APl incompatible

[ai/1.0

~

J

| azo

Dev Problem>

Y
ail2.0

i

engine/1.?

ol

game/1.?

39

Wo rking on /Conan cache\ 4 User folders N
. ~/.conan2

multiple packages

simultaneously

[ai/1.0

engine/1.0

i)

~—

[graphics/1 .O]

game 1

i
/

game/1.0

(&)

$ git clone git@...game.git && cd game
$ conan install

Requires
mathlib/1.0 -
ai/1.1 -
engine/1.0 -

Working on

multiple packages
simultaneously

Conan cache User folders
~/.conan2

mathlib/1.0

graphics/1.0 |«

engine

(

L
- x
e

_ / _

\

$ git clone git@...engine.git && cd engine
$ conan install
Requires

mathlib/1.0 -
ai/1.1 -
$ vim engine.cpp
$ cmake ...

41

Working on

multiple packages
simultaneously

Conan cache
~/.conan2

mathlib/1.0

game/1.0

User folders

engine

$ conan create

conan create .

cd ../game

conan install .

cmake ...

game

[
.
L
_

42

Editable
packages

23 setuptools.pypa.io/en/latest/userguide/development_mode.html

© JFrog Bi Portal

5]

SETUP

Q Search

LINKS

Home ¢

PyPl

User guide
Quickstart
Supported Interfaces

Package Discovery and
Namespace Packages

Dependencies Management
in Setuptools

Development Mode (a.k.a.
“Editable Installs™)

Entry Points

Data Files Support

Development Mode (a.k.a.
“Editable Installs”)

When creating a Python project, developers usually want to implement and test changes iteratively,
before cutting a release and preparing a distribution archive.

In normal circumstances this can be quite cumbersome and require the developers to manipulate the
PYTHONPATH environment variable or to continuously re-build and re-install the project.

To facilitate iterative exploration and experimentation, setuptools allows users to instruct the Python
interpreter and its import machinery to load the code under development directly from the project
folder without having to copy the files to a different location in the disk. This means that changes in the
Python source code can immediately take place without requiring a new installation.

You can enter this “development mode” by performing an editable installation inside of a virtual
environment, using pip’s -e/--editable flag, as shown below:

$ cd your-python-project

$ python -m venv .venv

Activate your environment with:

“source .venv/bin/activate’ on Unix/mac0S
or " .venv\Scripts\activate’ on Windows

$ pip install --editable .
Now you have access to your package
as if it was installed in .venv

$ python -c "import your_python_project™

FRSARN | AU S UCTRIPON [{I TSN TRV SIS MG, 6 DUPORSRISISPHIS AR SR, | Ll = SRR, AR

43

Editable
packages

Incremental
builds, much
faster!

T

Conan cache
~/.conan2

mathlib/1.0

User folders

raphics/1.0 |«
ai/1.0 9

engine/1.0

game/1.0

(&)

conan install game

cd engine && cmake ...

cd ../game && cmake ...
more changes
cd engine && cmake ...

cd ../game && cmake ...

engine

$ conan editable

4

game

/Kﬁ)

44

DEMO

45

Editable
packages

Incremental
builds, much
faster!

T

Conan cache
~/.conan2

mathlib/1.0

User folders

raphics/1.0 |«
ai/1.0 9

engine/1.0

game/1.0

(&)

conan install game

cd engine && cmake ...

cd ../game && cmake ...
more changes
cd engine && cmake ...

cd ../game && cmake ...

engine

$ conan editable

4

game

/Kﬁ)

46

Workspaces!!!

- Definition

- Workspace open/add
SCM

- Workspace build (orchestrated)

- Workspace super-install (super-build monolithic)
CMakelLists.txt with FetchContent

- Workspace new template

48

Workspace

Definition: a dynamic and
orchestrated set of locally
editable packages:

- Editable definition not
global

- Can add/remove
packages

- Orchestrated:
- Multi-repo
- Mono-repo

Conan cache
~/.conan2

User folders

-

liba

~

f

libb

f

app1

J

conanws.py

conanws.ym|

S

~/

49

DEMO

50

Dynamic: conan (Gonan cache T

~/.conan2

workspace $ conan
open/add/remove workspace add

--ref=game/1.0

conandata.yml

scm:
url: git@github.com.../conanci_game.git
commit: Oab1c2...

=T

class aiRecipe(ConanFile): .
name = "ai" # Internally does git clone ...

version = "1.0" # Then conan editable add game
def export(self):

git = Git(self, self.recipe_folder)
git.coordinates_to_conandata()

51

mailto:git@github.com

DEMO

52

Mono-repo like

Conan cache
~/.conan2

mathlib/1.0

graphics/1.0

~

User folders
4 N\

ai
{
engine

f

game

conanws.py

\S

CMakelLists.txt

=~/

53

Mono-repo like

Conan cache
~/.conan2

mathlib/1.0

graphics/1.0

User folders

conanfile.py

CMakelLists.txt

xxx-config.cmake ‘

nan_toolchain.cmake ‘

V

conanfile.py

CMakelLists.txt

("\
— ai
& J
t
p
_— engine
G J
{
4 N\
game
N\ J
conanws.py
CMakelLists.txt

Ry

xxx-config.cmake ‘

|

conan_toolchain.cmake ‘

conanfile.py

N CMakelists.txt

xxx-config.cmake ‘

|
|

conan_toolchain.cmake ‘

\S

=~/

54

One CMakelLists.txt to rule them all

and one “conan_toolchain.cmake”, one install, 1 project in IDE

55

Virtual collapsed
node/pkg in the

Workspace conanfile dependency
graph
/Conan cache\ / User folders
~/.conan2 a 3
ai
4 N
. >> engine
-graph|cs/1.0 \ T J
game
| ’ 4
conanws.py
CMakelLists.txt
_ NG —/

56

Workspace conanfile

~

/ User folders
q D
class Ws(Workspace): .
def root_conanfile(self): “l
return MyWs \ f /
e N
class MyWs(ConanFile): engine
settings = "os", "compiler", "build type", "arch" _)
def generate(self): ()
deps = CMakeDeps(self) game
deps.generate()
tc = CMakeToolchain(self) & y
tc.preprocessor_definitions["PKG_VERSION"] = '"WS @.1"'
tc.generate() < conanws.py
def layout(self):)
cmake_layout(self) K CMakelLists.txt /

Workspace CMake

_ists.txt

cmake _minimum_required (VERSION 3.25)
project(myws CXX)

include(FetchContent)

function(add_project PACKAGE_NAME SUBFOLDER)
FetchContent Declare(
${PACKAGE_NAME }
SOURCE_DIR ${CMAKE_CURRENT LIST_DIR}/${SUBFOLDER}
SYSTEM
OVERRIDE_FIND_PACKAGE
)
FetchContent_MakeAvailable (${PACKAGE_NAME})
endfunction()

add_project(ai ai)

add_library(ai::ai ALIAS ai) # only necessary cause project didn’t
add_project(engine engine)

add_library(engine::engine ALIAS engine)

add_project(game game)

58

Dynamic CMakelLists.txt

function(add_project PACKAGE_NAME SUBFOLDER)
endfunction()

add_project(ai ai)

add_library(ai::ai ALIAS ai)
add_project(engine engine)
add_library(engine::engine ALIAS engine)
add_project(game game)

function(add_project PACKAGE_NAME SUBFOLDER)
endfunction()
include(build/conanws_build_order.cmake)

foreach(pair ${CONAN_WS_BUILD_ORDER})
string(FIND "${pair}" ":" pos)
string(SUBSTRING "${pair}" @ "${pos}" pkg)
math(EXPR pos "${pos} + 1") # Skip the separator
string (SUBSTRING "${pair}" "${pos}" -1 folder)

add_project(${pkg} ${folder})
get target property(target type ${pkg} TYPE)
if (NOT target_type STREQUAL "EXECUTABLE")
add_library(${pkg}::${pkg} ALIAS ${pkg})
endif()
endforeach()

59

Dynamic conanws.py

def

def

def

class Ws(Workspace):

root_conanfile(self):
return MyWs

packages(self):
result = []
for £ in os.listdir(self.folder):
if os.path.isdir(os.path.join(self.folder, f)):
if not os.path.isfile(os.path.join(self.folder, f, "conanfile.py")):
continue
conanfile = self.load conanfile(f)
result.append({"path": f,
"ref": f"{conanfile.name}/{conanfile.version}"})

return result

build_order(self, order):

super().build order(order) # default behavior prints the build order

pkglist = " ".join([f'{it["ref"].name}:{it["folder"]}"' for level in order for it in level])
save(self, "build/conanws_build_order.cmake", f"set(CONAN_WS BUILD ORDER {pkglist})")

60

conan workspace super-install

’ xxx-config.cmake ‘

conan_toolchain.cmake ‘

Vs

Conan cache User folders
~/.conan2 «a 3
ai
\ 4 N\
~ engine
| o
graphics/1.0
{
game
) " ’ 4
conanws.py
CMakelLists.txt

- AN =/

61

DEMO

62

Want to experiment? “conan new workspace”

-

User folders

v

~

liba

app1

J

~

conanws.py

conanws.ym|

3

4

$ conan workspace super-install
$ cmake --preset

63

Outline

- Introduction: monorepo vs components

- Challenges of component based development

- Continuous Integration at scale

- Simultaneous development of multiple packages
- Conclusions

- QA

64

Conclusions

- Both monorepo and component based development have their own
challenges
- Component/package-based dev challenges:

Cl at scale
Development UX to work on multiple packages

- CI at scale with Conan?2

200 lines of GH actions code: simple!

No extra scripting necessary

Escalable, for any graph size, any number of configurations (architectures, platforms), any
number or products. Without explicit model in CI!

Jenkins or similar preferred for the products pipeline

- Workspaces: Developing multiple packages in a mono-repo project

Simple, standard and out of the box
30 lines of CMakelLists + 50 lines of conanws.py

65

Conclusions

For the first time in C++ we have:
- Component/package based approach
- Aframework for scalable CI
- Standard monorepo like development experience
- With familiar and established tooling: CMake and Conan2
- 30 lines of CMake + 50 lines of conanws.py
- Extensible to MSBuild

An enterprise ready C, C++ tooling framework for dependencies,
packaging, continuous integration and development

66

Seen by component
based
developers

Component based
paradigm

67

Thank you!

Source code: https://github.com/memsharded/conanci_*

.html

€ > C =% ntp

ConanCenter 88 & Jenkins / ConanTest...

b CONAN 2

JFrog C/C++ Package Manager

Introduction
What's new in Conan 2
Install
Tutorial
B Cl Tutorial
Project setup
Packages pipeline

Products pipeline

.conan.io/2/ci_f

| & Scan for vulnerabilities in your packages with the new conan au

/ Continuous Integration (Cl) tutorial

Continuous Integration (CI) tutorial

(ONte

« This is an advanced topic, previous knowledge of Conan is neces:
practice the user tutorial first.

« This section is intended for devops and build engineers designing
pipeline involving Conan packages, if it is not the case, you can sl

Continuous Integration has different meanings for different users and

N https://conan.io

CONAN

GitHub

https://docs.conan.io

https://github.com/conan-io/conan

https://docs.conan.io

