
Back to Basics
The Three-Way Comparison Operator

(The Spaceship Operator <=>)

Daniel Hanson, NWCPP 17 April 2025

• C++20 brought us the three-way, or “spaceship”, operator <=>

• Not too long ago, it was necessary to declare and implement:

bool operator ==(const Blah& rhs) const;

bool operator !=(const Blah& rhs) const;

bool operator <(const Blah& rhs) const;

bool operator >(const Blah& rhs) const;

bool operator <=(const Blah& rhs) const;

bool operator >=(const Blah& rhs) const;

• These can now be replaced with a single operator†

ordering_type operator <=>(const Blah& rhs) const;

Overview

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 2

• Also with C++20, defining the equality operator now automatically
implies the != operator

• If you define equality:

 bool operator ==(const Blah& rhs) const;

• You also get

 bool operator !=(const Blah& rhs) const;

 for free

• † There may also be cases where you will want a separate

 operator == defined, in addition to operator <=>

Overview

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 3

• <=> kind of looks like a flying saucer
Why “the Spaceship” Operator?

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 4

• Some rejected proposals:

>=<

>=>

>===|=====O

<==V===7

Why “the Spaceship” Operator?

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 5

export module Point;

import <iostream>;

export class Point

{

public:

Point(int x, int y, int z) : x_{x}, y_{y}, z_{z} {}

auto operator <=>(const Point& rhs) const = default;

friend std::ostream& operator<<(std::ostream& os, const Point& p);

private:

int x_, y_, z_;
};

export std::ostream& operator<<(std::ostream& os, const Point& p)
{

return os << "(" << p.x_ << ", " << p.y_ << ", " << p.z_ << ") ";
}

Typical Textbook Example

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 6

• The default is a lexicographical comparison…

• End of textbook example

• Move on to the next chapter on unique pointers or something…

Typical Textbook Example

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 7

• A Fraction class

• Assume for simplicity
• Numerator and denominator are non-negative integers

• Denominator is never zero
• Fraction is simplified at construction

export class Fraction
{
public:

Fraction(int n, int d) :n_{n}, d_{d}
{

// Assume numerator non-negative and numerator strictly positive:
assert(!(n < 0) && !(d <= 0));

// Simplify at construction...
}

// Old Way:

bool operator ==(const Fraction& rhs) const;

bool operator !=(const Fraction& rhs) const;

bool operator <(const Fraction& rhs) const;

bool operator >(const Fraction& rhs) const;

bool operator <=(const Fraction& rhs) const;

bool operator >=(const Fraction& rhs) const;

// ...
};

Something a Little More Illustrative

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 8

• Proceed naively using the (textbook) default:

export class Fraction
{
public:

Fraction(int n, int d) :n_{n}, d_{d}
{

// . . .
}

// Proceed naively:

bool operator <=>(const Fraction& rhs) const = default;

friend std::ostream& operator<<(std::ostream& os, const Fraction& p);

// . . .

};

Fraction frac_01{1, 2}, frac_02{1, 5};

cout << frac_01 << "< " << frac_02 << "? " << (frac_01 < frac_02) << "\n";

• This is obviously wrong

Default form of <=>

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 9

• Replace the six comparison operators with two:

bool operator ==(const Fraction& rhs) const = default;

std::strong_ordering operator <=>(const Fraction& rhs) const

{

if (n_ * rhs.d_ < rhs.n_ * d_)

{

return std::strong_ordering::less;

}

else if (*this == rhs) // `==` defined with `default` above

{

return std::strong_ordering::equivalent;

}

else

{

return std::strong_ordering::greater;

}

}

Fraction Class: Implement <=>

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 10

• Now, repeat the same check:

Fraction frac_01{1, 2}, frac_02{1, 5};

cout << frac_01 << "< " << frac_02 << "? " << (frac_01 < frac_02) << "\n";

• Now we’re cooking with dilithium crystals…

Fraction Class: Implement <=>

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 11

auto comp = x <=> y

Possible return values for comp (compare) are:

std::strong_ordering::greater (x > y)

std::strong_ordering::less (x < y)

std::strong_ordering::equivalent (x == y)

Ordered return values: less, greater, equivalent

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 12

• These can be illustrated in this simple example:
 auto compare_type = [](const Fraction& frac_lhs, const Fraction& frac_rhs,

 const std::strong_ordering& comp) {

 cout << "Comparison result: " << frac_lhs << " <=> " << frac_rhs << "\n";

 if (comp == std::strong_ordering::less) {

 cout << "strong_ordering::less" << "\n";

 }

 else if (comp == std::strong_ordering::greater) {

 cout << "strong_ordering::greater" << "\n";

 }

 else {

 cout << "strong_ordering::equivalent" << "\n";

 }
 };

 auto comp = frac_01 <=> frac_02; // 1/2, 1/5

 cout << "Type of comp: " << typeid(comp).name() << "\n";

 compare_type(frac_01, frac_02, comp);

 comp = frac_02 <=> frac_01;

 compare_type(frac_02, frac_01, comp);

Fraction frac_03{1, 2};

comp = frac_01 <=> frac_03;

compare_type(frac_01, frac_03, comp);

less, greater, equivalent and Ordering Type:

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 13

std::strong_ordering

• Use case: exact comparison, such as with integer types (no rounding, NaN’s…)

• Return values are greater, less, and equivalent

• Exactly one of a < b, a == b, or a > b must be true

std::partial_ordering

• Return values also include greater, less, and equivalent

• Use case: with floating point types such as double and float

• A floating type can

➢ Have rounding error

➢ hold non-comparable assignments such as infinity and NaN

• Exactly one of a < b, a == b, or a > b must be true

• <=> returns std::partial_ordering::unordered if both variables are NaN

std::weak_ordering

• Possible for a < b, a == b, and a > b to all be false

• Can (purportedly) be used for cases such as comparing case-insensitive strings

• However, the default return type for std::string comparisons is
std::strong_ordering

Three ordering types can be returned from the <=> operator

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 14

int m = 0, n = 1;

double x = 1.06, y = 8.74;

std::string bass = "Rickenbacker", BASS = "RICKENBACKER";

auto int_compare = m <=> n;

auto real_compare = x <=> y;

auto str_compare = bass <=> BASS;

cout << format("int compare type: {}\nfloating compare type: {}\nstring compare type: {}\n",

typeid(int_compare).name(), typeid(real_compare).name(), typeid(str_compare).name());

Ordering Types: Default Examples

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 15

There is also an equal return value

std::strong_ordering::equal
• Identical to std::strong_ordering::equivalent
• Means two values have exactly the same bitwise representation
• Perfectly valid for integer values (e.g., in our Fraction class)

std::partial_ordering::equal
• Again, means two values have exactly the same bitwise representation
• Becomes meaningless with roundoff error, NaN’s, etc
• Also identical to std::partial_ordering::equivalent
• But, it indicates the intent…

➢Floating type values should never be tested for exact equality
➢Valid floating type values can be defined to be equivalent within a given

tolerance (as will be seen shortly)

Personal preference: Always use equivalent, even with strong_ordering, to
avoid possible confusion

Ordering Values: equal vs equivalent

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 16

• A limit order for buying or selling shares of a stock

• An order to buy or sell a desired number of shares at a specified limit
price or better

• Ensures execution will not be at price worse than the pre-specified price

➢Buy order will not be executed above the limit price

➢Sell order will not be executed below the limit price

• Limit orders are placed in an order book on an exchange

An Example from Financial Equity Trading

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 17

• An example of an order book consists of limit orders as shown†:

• Orders are queued by priority (to be discussed next)

†Doug Service, 2016

An Order Book

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 18

• Given two limit orders a and b, assume that both are of like type
• Buy (bid) or

• Sell (offer)

• An order to buy, a, will have priority over b, if
• The limit price of a is greater than that of b

• If equal, then if a is a round lot (multiple of 100 shares) and b is not

• If the same, then if order a has an earlier timestamp, it has priority

• Otherwise (to be considered unlikely in this example), the two are equivalent

• Similar for an order to sell, except the limit value of a is less than that of b

Queuing Priority (a Simplified Example)

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 19

Order a
Buy 200 @20.07

Order b
Buy 200 @20.04

Order a
Buy 200 @20.07

Order b
Buy 125 @20.07

Order a
Buy 200 @20.07

Order b
Buy 200 @20.07

• Instead of a < b and b > a meaning less than or greater than,

• We will take them to indicate priority

• b < a => a is has priority in the order book over b

Queuing Priority (a Simplified Example)

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 20

• Start with an enum class indicating a buy or sell limit order:

module;

#include <cassert>

export module LimitOrder;

import std;

export enum class Buy_or_Sell

{

 Buy,

 Sell

}

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 21

• For private data members, we will have:
export class LimitOrder

{

 // . . .

private:

 Buy_or_Sell buy_or_sell_;

 double price_; // Bid (buy) or offer (sell) price

 int num_shares_;

 std::chrono::time_point<std::chrono::system_clock> time_stamp_;

 inline static const double epsilon_ =

 std::sqrt(std::numeric_limits<double>::epsilon());

 inline static int trade_id_ = 0; // Will be incremented

 // . . .

• Use a std::chrono::time_point for the time stamp (simple approach)

• The epsilon value follows the Boost convention for comparing two real
(double) values

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 22

• At construction:

public:

 LimitOrder(Buy_or_Sell buy_or_sell, double price, int num_shares,

 std::chrono::time_point<std::chrono::system_clock> time_stamp) :

 buy_or_sell_{buy_or_sell}, price_{price}, num_shares_{num_shares},

 time_stamp_{time_stamp}

 {

 assert(num_shares > 0);

 assert(price > 0.0);

 ++trade_id_;

 }

• The members are initialized

• Enforce the constraint that the number of shares and bid/offer price are > 0

• Increment the trade ID (also simplified – integer value)

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 23

• Implementation of <=> Step 1

 std::partial_ordering operator <=>(const LimitOrder& rhs) const

 {

 assert(this->buy_or_sell_ == rhs.buy_or_sell_);

 // First: Compare prices first, but flip depending on Buy or Sell

 std::partial_ordering cmp_price = (buy_or_sell_ == Buy_or_Sell::Buy)

 ? (this->price_ <=> rhs.price_) // Case: Bid order (higher price wins)

 : (rhs.price_ <=> this->price_); // Case: Sell order (lower price wins)

 // Check if the absolute difference between the prices is within epsilon;

 // if not, return the result of the <=> operator for the two order prices

 if (std::abs(this->price_ - rhs.price_) > epsilon_)

 {

 return cmp_price;

 }

 // More to follow . . .

 }

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 24

• Use <=> default as applied to double types; for example:
• If an order to buy, this->price < rhs.price_ => this < rhs in priority
• If an order to sell, rhs.price_ < this->price => this < rhs in priority
• Returns std::partial_ordering::less in each case

Make sure both trades are in the same
direction (buy or sell)

Make sure the difference between the two limit prices is greater than the
tolerance defining equivalence

Return either partial_ordering::less or partial_ordering::greater

• Implementation of <=> Step 2

 std::partial_ordering operator <=>(const LimitOrder& rhs) const

 {

 // Continued from previous slide . . .

 // Second: Prefer round lots (multiples of 100 shares)

 bool this_round_lot = (this->num_shares_ % 100) == 0;

 bool rhs_round_lot = (rhs.num_shares_ % 100) == 0;

 if (this_round_lot != rhs_round_lot)

 {

 return this_round_lot ? std::partial_ordering::greater : std::partial_ordering::less;

 }

 // More to follow . . .

 }

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 25

Check each order, whether it is a round
lot of 100 shares or not

Only in the case where one is a round order and the other is not, return
a result, greater if *this is a round order, less if rhs is.

• Implementation of <=> Step 3 (last)

 std::partial_ordering operator <=>(const LimitOrder& rhs) const

 {

 // Continued from previous slide . . .

 // Third (and final comparison criterion): Earlier timestamp takes priority,

 // and hence is "greater", i.e., higher in priority

 if (this->time_stamp_ < rhs.time_stamp_) return std::partial_ordering::greater;

 else if (this->time_stamp_ > rhs.time_stamp_) return std::partial_ordering::less;

 // Assume for this example almost surely not to occur . . .

 else return std::partial_ordering::equivalent; // Also the overall default

 }

A LimitOrder Class

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 26

This is another case where a lower value (earlier timestep)
implies an object is “greater”, and vice versa

In this simple example, we’re assuming this default
case will almost surely not occur, but return
equivalent if it is reached

• The <=> operator allows us to incorporate all six comparison
operators into a single operator implementation

• There can also be cases where a separate == operator definition is
desired (as we saw in the Fraction class)
• Can use as the condition for std::xxxx_ordering::equivalent in <=>

• Note this also gives you != for free (no need to define separately)

• There is also a default option for the == operator

• A default option is also available for <=>
• Lexicographic comparison of data members on two objects

• Will not always suffice

• Coverage in textbooks and references is often limited to this case

Summary

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 27

• Nicolai Josuttis, C++20: The Complete Guide (LeanPub), Ch 1

• Hanson, Learning Modern C++ for Finance (O’Reilly, November 2024), Ch 2
(shameless plug)

• cppreference.com

References

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 28

• Contact:
• daniel (at) cppcon.org (Student Program Coordinator, CppCon)

• https://www.linkedin.com/in/danielhanson/

• Thank You!

• Questions?

Contact/ Questions

Daniel Hanson (Copyright © 2025) NWCPP 17 April 2025 29

https://www.linkedin.com/in/danielhanson/

	Default Section
	Slide 1: Back to Basics The Three-Way Comparison Operator (The Spaceship Operator <=>)

	Introduction
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Why “the Spaceship” Operator?
	Slide 5: Why “the Spaceship” Operator?

	Back to Oakland
	Slide 6: Typical Textbook Example
	Slide 7: Typical Textbook Example
	Slide 8: Something a Little More Illustrative
	Slide 9: Default form of <=>
	Slide 10: Fraction Class: Implement <=>
	Slide 11: Fraction Class: Implement <=>
	Slide 12: Ordered return values: less, greater, equivalent
	Slide 13: less, greater, equivalent and Ordering Type:
	Slide 14: Three ordering types can be returned from the <=> operator
	Slide 15: Ordering Types: Default Examples
	Slide 16: Ordering Values: equal vs equivalent
	Slide 17: An Example from Financial Equity Trading
	Slide 18: An Order Book
	Slide 19: Queuing Priority (a Simplified Example)
	Slide 20: Queuing Priority (a Simplified Example)
	Slide 21: A LimitOrder Class
	Slide 22: A LimitOrder Class
	Slide 23: A LimitOrder Class
	Slide 24: A LimitOrder Class
	Slide 25: A LimitOrder Class
	Slide 26: A LimitOrder Class

	References & Summary
	Slide 27: Summary
	Slide 28: References
	Slide 29: Contact/ Questions

