

Crafting Self-Evident Code with D

by Walter Bright
Dlang.org
August 2023
https://twitter.com/WalterBright

-or-

How I figured out how to understand my own code

The highest praise for code:

 “that's so simple,
 anyone could have written it”

We've All Heard About

● Secure code
● Safe code
● Clean code
● Modern code
● Structured code

● Optimized code
● Clever code
● User friendly code
● Effective code
● Maintainable code

But Is Your Code Comprehensible?

#include <stdio.h>
#define O1O printf
#define OlO putchar
#define O10 exit
#define Ol0 strlen
#define QLQ fopen
#define OlQ fgetc
#define O1Q abs
#define QO0 for
typedef char lOL;

lOL*QI[] = {"Use:\012\011dump file\012","Unable to open file '\x25s'\012",
 "\012"," ",""};

main(I,Il) lOL*Il[];
{ FILE *L;
 unsigned lO;
 int Q,OL[' '^'0'],llO = EOF,

 O=1,l=0,lll=O+O+O+l,OQ=056;
 lOL*llL="%2x ";
 (I != 1<<1&&(O1O(QI[0]),O10(1011-1010))),
 ((L = QLQ(Il[O],"r"))==0&&(O1O(QI[O],Il[O]),O10(O)));
 lO = I-(O<<l<<O);
 while (L-l,1)
 { QO0(Q = 0L;((Q &~(0x10-O))== l);
 OL[Q++] = OlQ(L));
 if (OL[0]==llO) break;
 O1O("\0454x: ",lO);
 if (I == (1<<1))
 { QO0(Q=Ol0(QI[O<<O<<1]);Q<Ol0(QI[0]);
 Q++)O1O((OL[Q]!=llO)?llL:QI[lll],OL[Q]);/*"
 O10(QI[1O])*/
 O1O(QI[lll]);{}
 }
 QO0 (Q=0L;Q<1<<1<<1<<1<<1;Q+=Q<0100)
 { (OL[Q]!=llO)? /* 0010 10lOQ 000LQL */
 ((D(OL[Q])==0&&(*(OL+O1Q(Q-l))=OQ)),
 OlO(OL[Q])):
 OlO(1<<(1<<1<<1)<<1);
 }
 O1O(QI[01^10^9]);
 lO+=Q+0+l;}
 }
 D(l) { return l>=' '&&l<='\~';
}

How I wrote code in
the 1980s

Just Shoot Me Now

#define BEGIN {
#define END }

Don't Reinvent bool

enum { No, Yes } // in my office, pls

enum { Yes, No } // no hire

Horrors Blocked By D

● Regex expressions with operator overloading
● Iostreams (I never remember which way the <<

goes)
● Metaprogramming with macros
● Argument Dependent Lookup
● SFINAE
● Floor wax or tasty dessert topping
● Multiple inheritance

Code flows from Left to Right
and Top to Bottom

(just like a book)

We do that already, right?

Oops

g(f(e(d(c(b(a))),3))))

UFCS To The Rescue

a.b.c.d(3).e.f.g;

Simpler Example of Left to Right

int a();
int b(int);

int oldway() => b(a);
int better() => a.b;

And Top to Bottom

import std.stdio;
import std.array;
import std.algorithm;

void main() {
 stdin.byLine(KeepTerminator.yes).
 map!(a => a.idup).
 array.
 sort.
 copy(stdout.lockingTextWriter());
}

The More Control Paths,
the Less Understandable

Shaw : you know a great deal about computers,
don't you?

Mr Spock : I know all about them.

version (X)
 doX();
doY();
if (Z)
 DoZ();

doX();
doY();
doZ();

Reduce Conditionals

Dr McCoy : We're trying to help you, Oxmyx.

Bela Oxmyx : Nobody helps nobody but
himself.

Mr Spock : Sir, you are employing a double
negative.

Negation In English

Negation in Code

if (!noWay)

Is inevitably perceived as

if (noWay)

Rewrite as a Positive

if (way)

Negation and version

version (!Windows) {...}

Is not allowed. But one can write:

version (Windows) else { … }

But why make it difficult?

Positives are Self Evident

version (Windows) { … }
else version (OSX) { … }
else static assert(“unsupported”);

DMD Hall of Shame

● tf.isnothrow
● IsTypeNoreturn
● Noaccesscheck
● Ignoresymbolvisibility
● Include.notComputed
● “not nothrow”

Compound If Conditionals

The following

if (A && B && C && D)

if (A || B || C || D)

Is far more comprehensible than

if (A && (!B || C))

De Morgan's Theorem
to the rescue!

(!A && !B) => !(A || B)

(!A || !B) => !(A && B)

Mr Spock : Dazzling display of logic

From Ubuntu unistd.h

#if defined __USE_BSD || (defined \
__USE_XOPEN && !defined __USE_UNIX98)

Prof Marvel : I can't bring it back, I
 don't know how it works!

Casts Hide Bugs

● Make code harder to read
● Difficult to determine if casts are correct
● Sledgehammer
● Grep code for `cast`
● https://github.com/dlang/dmd/pull/15488

char* xyzzy(char* p)

● Does p modify what it points to?
● Is p returned?
● Does xyzzy free p?
● Does xyzzy save p somewhere, like in a global?

const char* xyzzy(return scope
const char* p)

● p doesn't modify what it points to
● p is returned
● p is not free'd
● xyzzy doesn't squirrel away a copy of p

Payoff: things that don't need to be documented

Memory Allocation

● Memory allocated during a function should be
free'd during that function, independent of caller

● Or pass allocator in as a parameter
● Have a “sink” parameter that accepts output

Pass Abstract “sink” For Output

https://github.com/dlang/dmd/pull/15471

import dmd.errors;
void gendocfile(Module m) {
 ...
 if (!success)
 error("expansion limit");
}

import dmd.errorsink;
void gendocfile(Module m, ErrorSink eSink) {
 ...
 if (!success)
 eSink.error("expansion limit");
}

Pass Files as Buffers Rather than
Files to Read

https://github.com/dlang/dmd/pull/15525

void gendocfile(Module m, const(char)*[] docfiles) {
 OutBuffer mbuf;
 foreach (file; ddocfiles) {
 auto buffer = readFile(file.toDString());
 mbuf.write(buffer.data);
 }
 ...
}

void gendocfile(Module m, const char[] ddoctext) {
 ...
}

Move Calls to Environment to Caller

https://github.com/dlang/dmd/pull/15503

void gendocfile(Module m) {
 char* p = getenv("DDOCFILE");
 if (p)
 global.params.ddoc.files.shift(p);
}

Write to Buffer, Caller Writes File

https://github.com/dlang/dmd/pull/15535

void gendocfile(Module m) {
 OutBuffer buf2;
 ...
 writeFile(m.loc, m.docfile.toString(), buf2[]);
}

void gendocfile(Module m, ref OutBuffer outbuf) {

 ... // write to outbuf
}

Use Pointers to Functions (or
Templates)

https://github.com/dlang/dmd/pull/15470

import dmd.doc;
bool expand(...) {
 if (isIDStart(p))
 …
}

alias fp_t = bool function(const(char)* p);
bool expand(..., fp_t isIDStart) {
 if (isIDStart(p))
 …
}

Two Categories of Functions

● Alter state of the program
– doAction()

● Ask a question
– isSomething()

– HasCharacteristic()

– These can hopefully be made pure

Try not to do both in one function. Makes it difficult
to understand/modify it.

Line Things Up

final switch (of)
{
 case elf: lib = LibElf_factory(); break;
 case macho: lib = LibMach_factory(); break;
 case coff: lib = LibMSCoff_factory(); break;
 case omf: lib = LibOMF_factory(); break;
}

Prof. Marvel : I have reached a cataclysmic
decision!

Use ref Instead Of *

https://github.com/dlang/dmd/pull/15487

Takeaways

● Use language features as intended
● Avoid negation
● Left to right, top to bottom
● Functions do everything through front door
● Don't conflate engine with environment
● Reduce cyclomatic complexity
● Keep trying – this is a process!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

