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How I figured out how to understand my own code



  

The highest praise for code:

 “that's so simple,
 anyone could have written it”



  

We've All Heard About

● Secure code
● Safe code
● Clean code
● Modern code
● Structured code

● Optimized code
● Clever code
● User friendly code
● Effective code
● Maintainable code



  

But Is Your Code Comprehensible?



  

#include <stdio.h>
#define O1O printf
#define OlO putchar
#define O10 exit
#define Ol0 strlen
#define QLQ fopen
#define OlQ fgetc
#define O1Q abs
#define QO0 for
typedef char lOL;

lOL*QI[] = {"Use:\012\011dump file\012","Unable to open file '\x25s'\012",
 "\012","   ",""};

main(I,Il) lOL*Il[];
{   FILE *L;
    unsigned lO;
    int Q,OL[' '^'0'],llO = EOF,

    O=1,l=0,lll=O+O+O+l,OQ=056;
    lOL*llL="%2x ";
    (I != 1<<1&&(O1O(QI[0]),O10(1011-1010))),
    ((L = QLQ(Il[O],"r"))==0&&(O1O(QI[O],Il[O]),O10(O)));
    lO = I-(O<<l<<O);
    while (L-l,1)
    {   QO0(Q = 0L;((Q &~(0x10-O))== l);
        OL[Q++] = OlQ(L));
        if (OL[0]==llO) break;
        O1O("\0454x: ",lO);
        if (I == (1<<1))
        {   QO0(Q=Ol0(QI[O<<O<<1]);Q<Ol0(QI[0]);
            Q++)O1O((OL[Q]!=llO)?llL:QI[lll],OL[Q]);/*"
            O10(QI[1O])*/
            O1O(QI[lll]);{}
        }
        QO0 (Q=0L;Q<1<<1<<1<<1<<1;Q+=Q<0100)
        {   (OL[Q]!=llO)? /* 0010 10lOQ 000LQL */
            ((D(OL[Q])==0&&(*(OL+O1Q(Q-l))=OQ)),
            OlO(OL[Q])):
            OlO(1<<(1<<1<<1)<<1);
        }
        O1O(QI[01^10^9]);
        lO+=Q+0+l;}
    }
    D(l) { return l>=' '&&l<='\~';
}

How I wrote code in
the 1980s



  



  

Just Shoot Me Now

#define BEGIN {
#define END    }



  

Don't Reinvent bool

enum { No, Yes } // in my office, pls

enum { Yes, No } // no hire



  

Horrors Blocked By D

● Regex expressions with operator overloading
● Iostreams (I never remember which way the << 

goes)
● Metaprogramming with macros
● Argument Dependent Lookup
● SFINAE
● Floor wax or tasty dessert topping
● Multiple inheritance



  

Code flows from Left to Right
and Top to Bottom

(just like a book)

We do that already, right?



  

Oops

g(f(e(d(c(b(a))),3))))



  

UFCS To The Rescue

a.b.c.d(3).e.f.g;



  

Simpler Example of Left to Right

int a();
int b(int);

int oldway() => b(a);
int better() => a.b;



  

And Top to Bottom

import std.stdio;
import std.array;
import std.algorithm;

void main() {
    stdin.byLine(KeepTerminator.yes).
    map!(a => a.idup).
    array.
    sort.
    copy(stdout.lockingTextWriter());
}



  

The More Control Paths,
the Less Understandable

Shaw : you know a great deal about computers, 
don't you?

Mr Spock : I know all about them.



  

version (X)
    doX();
doY();
if (Z)
    DoZ();

doX();
doY();
doZ();

Reduce Conditionals



  

Dr McCoy : We're trying to help you, Oxmyx.

Bela Oxmyx : Nobody helps nobody but 
himself.

Mr Spock : Sir, you are employing a double 
negative.

Negation In English



  

Negation in Code

if (!noWay)

Is inevitably perceived as

if (noWay)



  

Rewrite as a Positive

if (way)



  

Negation and version

version (!Windows) {...}

Is not allowed. But one can write:

version (Windows) else { … }

But why make it difficult?



  

Positives are Self Evident

version (Windows) { … }
else version (OSX) { … }
else static assert(“unsupported”);



  

DMD Hall of Shame

● tf.isnothrow
● IsTypeNoreturn
● Noaccesscheck
● Ignoresymbolvisibility
● Include.notComputed
● “not nothrow”



  

Compound If Conditionals

The following

if (A && B && C && D)

if (A || B || C || D)

Is far more comprehensible than

if (A && (!B || C))



  

De Morgan's Theorem
to the rescue!

(!A && !B) => !(A || B)

(!A || !B) => !(A && B)

Mr Spock : Dazzling display of logic



  

From Ubuntu unistd.h

#if defined __USE_BSD || (defined \ 
__USE_XOPEN && !defined __USE_UNIX98)

Prof Marvel : I can't bring it back, I
 don't know how it works!



  

Casts Hide Bugs

● Make code harder to read
● Difficult to determine if casts are correct
● Sledgehammer
● Grep code for `cast`
● https://github.com/dlang/dmd/pull/15488



  

char* xyzzy(char* p)

● Does p modify what it points to?
● Is p returned?
● Does xyzzy free p?
● Does xyzzy save p somewhere, like in a global?



  

const char* xyzzy(return scope 
const char* p)

● p doesn't modify what it points to
● p is returned
● p is not free'd
● xyzzy doesn't squirrel away a copy of p

Payoff: things that don't need to be documented



  

Memory Allocation

● Memory allocated during a function should be 
free'd during that function, independent of caller

● Or pass allocator in as a parameter
● Have a “sink” parameter that accepts output



  

Pass Abstract “sink” For Output

https://github.com/dlang/dmd/pull/15471

import dmd.errors;
void gendocfile(Module m) {
    ...
    if (!success)
        error("expansion limit");               
}
    
import dmd.errorsink;
void gendocfile(Module m, ErrorSink eSink) {
    ...
    if (!success)
        eSink.error("expansion limit");               
}



  

Pass Files as Buffers Rather than 
Files to Read

https://github.com/dlang/dmd/pull/15525

void gendocfile(Module m, const(char)*[] docfiles) {
    OutBuffer mbuf;
    foreach (file; ddocfiles) {
        auto buffer = readFile(file.toDString());
        mbuf.write(buffer.data);
    }
    ...
}

void gendocfile(Module m, const char[] ddoctext) {
    ...
}



  

Move Calls to Environment to Caller

https://github.com/dlang/dmd/pull/15503

void gendocfile(Module m) {
    char* p = getenv("DDOCFILE");
    if (p)
        global.params.ddoc.files.shift(p);
}



  

Write to Buffer, Caller Writes File

https://github.com/dlang/dmd/pull/15535

void gendocfile(Module m) {
    OutBuffer buf2;
    ...
    writeFile(m.loc, m.docfile.toString(), buf2[ ]);
}

void gendocfile(Module m, ref OutBuffer outbuf) {

    ... // write to outbuf 
}



  

Use Pointers to Functions (or 
Templates)

https://github.com/dlang/dmd/pull/15470

import dmd.doc;
bool expand(...) {
    if (isIDStart(p))
        …
}

alias fp_t = bool function(const(char)* p); 
bool expand(..., fp_t isIDStart) {
    if (isIDStart(p))
         …
}



  

Two Categories of Functions

● Alter state of the program
– doAction()

● Ask a question
– isSomething()

– HasCharacteristic()

– These can hopefully be made pure

Try not to do both in one function. Makes it difficult
to understand/modify it.



  

Line Things Up

final switch (of)
{
    case elf:        lib = LibElf_factory();         break;
    case macho: lib = LibMach_factory();    break;
    case coff:      lib = LibMSCoff_factory(); break;
    case omf:      lib = LibOMF_factory();     break;
}

Prof. Marvel : I have reached a cataclysmic
decision!



  

Use ref Instead Of *

https://github.com/dlang/dmd/pull/15487



  

Takeaways

● Use language features as intended
● Avoid negation
● Left to right, top to bottom
● Functions do everything through front door
● Don't conflate engine with environment
● Reduce cyclomatic complexity
● Keep trying – this is a process!
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