
Speaker Bio

Cristian Vlasceanu

● https://www.linkedin.com/in/cristianvlasceanu/
● Used C/C++ professionally for nearly 30 years

○ Amazon
○ Microsoft
○ Tableau Software / Salesforce

https://www.linkedin.com/in/cristianvlasceanu/

My First Rust Project as a
Long Time C++ Dev

First impressions and commentary

Introduction

Unix commands are (still) an expedient way for:

● Grepping for pattern in log files
● Looking at config files
● Checking available disk space
● Inspecting running processes
● Searching for files

On Windows …

● Cygwin: a good (older) solution, but
○ May take some time to install, large

● WSL2: a good (newer) solution, but
○ Maps user home elsewhere than the native environment
○ Slower filesystem than native
○ Runs in its own VM - ‘ps’ command shows processes in VM, not native

On Windows … (cont)

● Write my own command interpreter (shell):
○ Excuse to dive into Rust
○ Light-weight, built-in common commands (cat, cp, diff, ls)
○ Full control / ownership of code, customize to own needs
○ Consistent behavior across different platforms and systems

● Project at: https://github.com/cristivlas/shmy

https://github.com/cristivlas/shmy

First Speed Bumps

● Rc / Arc are smart pointers like std::shared_ptr
○ without the shared part!
○ std::cell::RefCell feels hacky (lie about immutability?)

● It is more tempting for a beginner to over-allocate memory (clone) than to
annotate lifetimes and understand std::borrow::Cow

Detour (Back to WSL)

● Symbolic links created under WSL cannot be opened by cmd.exe, File
Explorer, etc.

● Not “seen” by Rust (std::fs, std::path::PathBuf::canonicalize) either
● WSL symbolic links are implemented as NTFS Reparse Points

○ https://en.wikipedia.org/wiki/NTFS_reparse_point

Solution using Windows Crate

Feeling Unsafe

 // Retrieve the reparse point data
 unsafe {
 DeviceIoControl(
 HANDLE(file.as_raw_handle()),
 FSCTL_GET_REPARSE_POINT,
 None,
 0,
 Some(buffer.as_mut_ptr() as *mut _),
 buffer.len() as u32,
 Some(&mut bytes_returned),
 None,
)
 }
 .map_err(|_| io::Error::last_os_error())?;

Impressions So Far

● Safety features oversold?
○ Wrapping legacy (Windows) APIs feels like ATL

● Memory mapped files are considered unsafe?
○ Came as a surprise, common with large datasets

● Allocation failures panic, no std::bad_alloc
○ It’s okay, we’ve got memory
○ Need to think carefully about bad user inputs!

● Love the Cargo Ecosystem
○ I do not miss: building boost (jam anyone?), make, cmake, ninja and all that junk
○ Ease of writing unit tests and generating documentation

Impressions… (cont)

Also do not miss:

● C/C++ Lib Artifact built with g++ under one Linux distro mixed with clang
under different distro

● Rust / cargo dependency management avoids such problems

Bonus: Know Your Test Environment

cristian@ARIADNE|~\Projects\rust\shmy$ if 1 (True) else (False)

True

● Failed in github on Windows (but passed under MacOS and Linux!)
● Passed locally 100%
● “Too simple to mock”

Explanation: Commands vs String Literals

cristian@ARIADNE|~\Projects\rust\shmy$ bogus -al

1:6 Cannot subtract strings

cristian@ARIADNE|~\Projects\rust\shmy$ ls -al

This works! “-al” interpreted as command argument, not rhs of subtract expression

The if (1) (True) test failed because:

 “True” and “False” exist as commands in the github Windows VMs

