CUDA Without a PhE

J—

CyberData Corporation 3

Innovation For a Global Future

Lloyd Moore, President __
Lloyd@CyberData-Robotics.corm
www. CyberData-Robotics.com

Agenda:

Introduction to GPU Architecture
What is CUDA?

CUDA Setup

Problem Definition

CPU Single Threaded Solution
GPU Massively Parallel Solution
Debugging CUDA Kernels
Resources

Q&A

Disclaimer

CUDA development can be a VERY deep topic. To get the ma
performance from a GPU based application the problem needs to s
with a correct formulation, considering the specific hardware being

used, data access patterns, memory bandwidth, processor topology
and much more.

This talk IS NOT about all of that, as there are plenty of v
presentations covering those topics already. If yc
deep details NVIDA has a great starting point here:
https://docs.nvidia.com/cuda/doc/index.html

This talk IS about how a developer can get a very sim|
CUDA applications and see immediate benefits withou
spend weeks of time learning all of the details.
fully optimize an application but you will be able to ¢
select processing patterns and see a considerable ¢

https://docs.nvidia.com/cuda/doc/index.html

GPU Architecture

A modern CPU consists of a small number of complex processor
independent of one another, and perform work on generally independe

This computational pattern is generally referred to as SISD — Single Instr
Single Data.

A modern GPU consists of hundreds to thousands of ver
work together to perform the same operation on

This computational pattern is generally referred to as SiM
Multiple Data. (And SIMT — Single Instruction Multiple T

The GPU “likes” to work in 32 bit floating point. 6 _
however you do take a time penalty for the additional |
math is also supported! '

GPU Architecture

From this description, the GPU offers an effective speed up in th

1. You have a VERY large set of data that needs to be processed
Think 100’s of MB or GB of data
2. The data format is “regular”
For example stored in arrays or vectors
3. The same (or very similar) operations need to be perfor
4. The operations to be performed on each data ¢
5. The amount of work to be performed on each e
justify copying the data at least twice

Let’s look at that last statement in more detalil.....

GPU Memory Architecture

A GPU typically contains a dedicated bank of memory, independe
normal CPU memory.

GPU memory is optimized for highly parallel access patterns.

Information to be processed by the GPU must be copi
called “host memory”, to the GPU memory, called “device memons

Results may be used on the GPU directly or copied back to the,e

memory, depending on the application.

Due to the overhead of having to copy data between men
work that needs to be done needs to be complex enoughtoamortiZe e copy
overhead. -

Note: “Unified Memory”, “Shared Memory” and “Texturs
going to talk about those here as each has a specific

What is NVIDIA CUDA?

NVIDIA CUDA is a framework and tools which allow for applicati
on NVIDIA GPU hardware.

Top level documentation is here: https://docs.nvidia.com/cuda/doc/index b

Main Components:
NVIDIA Compiler: nvcc
CUDAAPI
Debugging and Profiling Tools: Nsight Compute
Math Libraries: cuBlas, cuFFT, cuRand, cuTens
nvdPEG, Thrust, and many others '
Technologies: GPUDirectStorage — Direct G

https://docs.nvidia.com/cuda/doc/index.html

CUDA Setup - Requirements

CUDA can run in Windows and Linux environments on PCs (x86
(ARM) hardware.

Jetson

For this exercise I'll use the following configuration (Note: smaller systems
also work fine — this is NOT a minimum recommended configuration):

CPU: AMD Ryzen 9 7950X, 16 core, 32 thread, 4
Motherboard: Asus ProArt X670E-Creatt
RAM: 64GB DDRS 4800
GPU: Asus GeForce RTX 4080, 16GB RAM.
GeForce Game Ready Driver Version
OS: Windows 11 Pro, 64 Bit, 22H2 22621.300
Visual Studio Community Edition 2022 -
CUDA: 12.2

CUDA Setup — Tool Chain

For this talk we’ll focus on Visual Studio and Windows as it is th
going.

CUDA supports many other configurations on both Windows and Linux inc
operating through WSL2.

Install Microsoft Visual Studio Community 2022, 64 bit:
https://visualstudio.microsoft.com/vs/commuinity
Configure for at least C++ development

Install NVIDIA CUDA for Microsoft Visual Studio:

https://docs.nvidia.com/cuda/cuda-installation-guide=m
| k

Don’t need to worry about installing the Pytr

https://visualstudio.microsoft.com/vs/community/
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

Sample Problem Definition

For this talk we’ll solve a fairly simple problem showing a typical
solving many other problems, and that won’t distract us with any comp
problem itself.

attern for

Problem:

Compute the hypotenuse of a large quantity of triangles
sides of the triangles, using the Pythagorean The

For this example we’ll create two vectors of random nu

We’ll compute the results using a single threaded appr
convert the code to use the GPU and compare the exe

Finally we’ll compare the results between the CP '
match.

Note: For this example we'll use 32 bit floating point.

Creating the Project in VS

Visual Studio 2022

Open recent Get started
[1 £ é' Clone a repository

Get code fram an online repository like GitHub or

4 This month Azure DevOps
3 cudawork.sin 1/2/202411:16 AM - i i
C:\BitBucket\investmentanalysis\CudaWork |§-l Open a project or solution
Open a local Visual Studio project or sln file
4 Older
ﬁ' Samples_V52022.sln 10/13/2023 10:47 AM >
G:\SampleReposicuda-samples B Open a local folder

Navigate and edit code within any folder

ﬁﬂ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code -

reating th

Create a new project

Recent project templates

& Google Test

B CUDA 12.2 Runtime

e Project in VS

Search for templates (Alt+S) P~ Clear all
| cupa -| ANl platforms - Al project types =
- CUDA 12.2 Runtime
G A project that uses the CUDA 12.2 runtime

C++ CUDA Windows Linux Cloud Console DataScience
Desktop Machine Learning

Mot finding what you're looking for?
Install more tools and features

Creating the Project in VS

Configure your new project

CUDA 12.2 Runtime ¢+ CUDA Windows Linux Cloud Console DataScience Desktop Machine Learning

Project name

SimpleCuda

Location

G:\CudaWoPhd' = E

Solution name (@)

SimpleCuda

D Place solution and project in the same directory

Project will be created in "G:\CudaWoPhd\SimpleCuda\SimpleCuda\"

Creating the Project in VS

1
B#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
cudaError_t addwithCuda(int *c, const int *a, const int *b, unsigned int size);
Bl_.global__ void addKernel(int *c, const int *a, const int %b)

int i = threadIdx.x;
c[i] = a[i] + b[i];

Bint main()

const int arraySize = 5;

const int a[arraysize] = {1, 2, 3, 4, 5 };
const int b[arraysize] = { 10, 20, 30, 40, 50 };
int c[arraysize] = { 0 };

.+ // Add vectors in parallel.

: cudaError_t cudaStatus = addwWwithCuda(c, a, b, arraySize);
B if (cudaStatus != cudaSuccess) {

i : fprintf(stderr, "addwithCuda failed!");

: : return 1;

3

. printf("{1,2,3,4,5} + {10,20,30,u0,50} = {%d,%d, %d,%d,%d}\n",
; clel, cl1], cl2], c[3], c[ul);

Hi // cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.

: cudaStatus = cudaDeviceReset();

=N if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaDeviceReset failed!");

return 1;

}

return ©;

Note: Full sample truncated to fit

Creating the Project in VS

When adding files for CUDA use the “Add” — “Module...” op
CUDA files are named *.ccuh for header files and *.cu for C++ file

Add New ltem - SimpleCuda ? *

4 Installed Sort by: Default - Search (Ctrl+E) p-

4 Visual C++ Type: Visual C++

C++ File (.cpp) Visual C++
friz Creates a C++ module interface unit file
Formatti

e Header File (-h) Visual C++
ATL
Data C++ Class Visual C++
Resource
Web

?_ CUDA 12,2 C/C++ File Visual C++
LUtility
P Sheets -

roperty she B CUDA 12.2 C/C++ Header Visual C++
Test 3
HLSL

C++ Module Interface Unit (o) Visual C++

CuDa 12,2
Graphics
I Online
MName: [Module.io |

Location: G\ CudaWoPhd\SimpleCuda\SimpleCudal <

CPU Single Threaded

To start we’ll create a little C++ class to hold all of our data a
called CudaWorker:

#pragma once -

J#include <thrust/host_vector.h>
#include <thrust/device_vector.h> —_

constexpr size_t VECTOR_SIZE = 106000600; // Number of elements to compute

dclass CudaWorker
{
public:
: CudaWorker();
~CudaWorker() ;

// Disable special member functions

CudaWorker(const CudaWorker& other) = delete;
CudaWorker(CudaWorker&& other) noexcept = delete;
CudaWorker& operator=(const Cudaworker& other) = delete;
CudaWorker& operator=(CudaWorker&& other) = delete;

// Perform the computation using a single thread on the CPU
: void CpuCompute();

// Perform the computation using the GPU in parallel
void GpuCompute();

: // Verify that the answers match between the CPU and GPU
: bool Verify();

private:

: // Storage on the host

: thrust: :host_vector<float> a; // Values for one one side of the triangle
thrust::host_vector<float> b; // Values for the other side of the triangle
thrust: :host_vector<float> cpu_result; // Result values from CPU computation
thrust: :host_vector<float> gpu_result; // Result values from GPU computation

// Storgage on the gpu
thrust::device_vector<float> device_a;
thrust: :device_vector<float> device_b;
thrust: :device_vector<float> device_result;

CPU Single Threaded

| am using a library called Thrust. Thrust is a C++ template
CUDA, based on the std::vector that works for both ‘host’ and ‘de
memory.

E#include <thrust/host_vector.h=>
#include <thrust/device_vector. h>

// Storage on the host
thrust: :host_vector<float> a; // values for one one side of the triangle

thrust: :host_vector<float> b; // Values for the other side of the triangle
thrust: :host_vector<float> cpu_result; // Result values from CPU computation
thrust: :host_vector<float> gpu_result; // Result values from GPU computation

// Storgage on the gpu

thrust: :device_vector<float> device_a;
thrust: :device_vector<float> device_b;
thrust: :device_vector<float> device_result;

CPU Single Threaded

The constructor simply fills the a & b vectors with random d
prep the ‘device’ vectors for the GPU at the same time:

ECudaworker :CudawWorker() {

// Preallocate the vector storage
a.reserve(VECTOR_SIZE);
b.reserve(VECTOR_SIZE);
cpu_result.reserve(VECTOR_SIZE);
gpu_result.reserve(VECTOR_SIZE);

// Initialize a random number generator
std: :default_random_engine rgen(83903);
std: :uniform_real_distribution<float> fran(e.e, 180.8);

// Fill the two vectors with some random numbers
= for (size_t i = ©; i < VECTOR_SIZE; ++i) {
a.push_back(fran(rgen));
: b.push_back(fran(rgen));
3
// Setup the same values on the GPU
device_a = a;

device_b = b;

device_result.reserve(VECTOR_SIZE);

Note that with Thrust copying the vector from
memory is a simple assignment!

CPU Single Threaded

CpuCompute() simply consists of a loop that calls a commo
for each set of data:

outine

gvnid CudaWorker: :CpuCompute() {

= for (size_t i = @; i1 < VECTOR_SIZE; ++i) {

' float* ptr_to_a = &al[i];

float* ptr_to_b = &b[i];

float* ptr_to_result = &cpu_result[i];
do_pythagorean(ptr_to_a, ptr_to_b, ptr_to_result);

I —

B __device__ __host__ void do_pythagorean(const float* p_a, const float* p_b, float* p_result) {
float a = *p_a;
float b = *p_b;
*p_result = sqrt(a * a + b = b);

Note that do_pythagorean() is tagged with “__de
These are attributes to the NVCC compiler to buil
on both the CPU and GPU.

We will also see “_global__" which is an attribute f
we’ll talk about that more when we convert this cod

PU Single Threaded

And of course we need a main() to instantiate and call Cuda
also has the GPU code present.......

B#include <chrono>
#include <iostream>

using namespace std;

using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;

using std::chrono::duration;

using std::chrono::microseconds;

B#include "CudaWorker.cuh"
[#include "Gpu.h"

Bint main()
{
: Gpu gpu; // singleton to mange the GPU, initializes the first card
CudaWorker worker; // A instance of the work we want to accomplish

cout << endl;

// Perform the work on the CPU and report the time
auto start_cpu_time = high_resolution_clock: :now();
worker.CpuCompute();

auto end_cpu_time = high_resolution_clock::now();
cout << "CpuCompute took " << duration_cast<microseconds>(end_cpu_time - start_cpu_time).count() << "us" << endl

// Perform the work on the GPU and report the time
auto start_gpu_time = high_resolution_clock: :now();
worker.GpuCompute();

auto end_gpu_time = high_resolution_clock::now();
cout << "GpuCompute took " << duration_cast<microseconds>(end_gpu_time - start_gpu_time).count() << "us" << endl

! // Make sure the answers match between the CPU and GPU
= if (worker.Verify()) {

: : cout << "Answers match!"™ << endl;
]
B! else {
: cout << "Answers DO NOT match!"™ << endl;
3

return ©;

GPU Massively Parallel

Next we’ll convert this solution to run on the GPU. The first
to do is initialize the GPU. | have a singleton class called Gpu for

need

#pragma once

B// A helper class to interact with the GPU. Currently this class is basically implemented as a singleton and assumed
// It will always initialize to the first GPU enumerated if more than one GPU is present.

#include "cuda_runtime.h"

Bclass Gpu
i
public:
i GpuQd;

~Gpu();

static int ComputeCapabilityMajor();

static int ComputeCapabilityMinor();

static int CudaCoreCountPerMultiProcessor();
static int CudaCores();

static int MaxThreadsPerBlock();

static int MaxThreadsPerMultiProcessor();
static int MultiProcessorCount();

private:
: static bool initialized;
static cudaDeviceProp deviceProp;

3

PU Massively Parallel

The constructor initializes the GPU and prints out some of t
parameters:

Elf#tinclude <iostream>

#include "Gpu.h"
using namespace std;

bool Gpu::initialized {false};
cudaDeviceProp Gpu::deviceProp;

const int DEFAULT_GPU = 8;

BGpu: :Gpu() {

B if (linitialized) {
: cudaError_t cudaStatus = cudaSetDevice(DEFAULT_GPU);
Ei : if (cudaStatus != cudaSuccess) {

cout << "cudaSetDevice failed with error: " << cudaGetErrorString(cudaStatus) << endl;

L
Bl : else
i
: cudaGetDeviceProperties(&deviceProp, DEFAULT_GPU);
: initialized = true;
}

cout << "GPU Stats:"™ << endl;

cout << " Compute Capability: ™ << ComputeCapabilityMajor() << "." << ComputeCapabilityMinor() << endl;
cout << " " << MultiProcessorCount() << " Multiprocessors, " << CudaCoreCountPerMultiProcessor() << " CUDA
cout << " MaxThreadsPerMultiProcessor: " << MaxThreadsPerMultiProcessor() << endl;

cout << " MaxThreadsPerBlock: ™ << MaxThreadsPerBlock() << endl;

GPU Massively Parallel

The destructor “cleans up” the GPU with a cudaDeviceRes

ngu::nGpu() {
El: if (initialized) {
: i initialized = false;
= : // cudaDeviceReset must be called before exiting in order for profiling and
: // tracing tools such as Nsight and visual Profiler to show complete traces.

. cudaError_t cudaStatus = cudaDeviceReset();

B : if (cudastatus != cudaSuccess) {

: cout << "cudaDeviceReset failed with error: " << cudaGetErrorString(cudaStatus) << endl;
}

GPU Massively Parallel

A block of code that runs on the GPU is called a “kernel”

An instance of the “kernel” is run on each core of the processor as an
independent thread.

From the developer’s point of view the “kernel” i
however under the covers this function call will be ins
core in parallel, and have access to informati
instance. This is called a “thread address”.

In traditional graphics processing each pixel displa
thread. See https://www.shadertoy.com/ to playswit

For the current problem we have vectors
each element / index of the vector to a thread.

https://www.shadertoy.com/

GPU Massively Parallel

GpuCompute() is the member function that configures and la
“kernel” on the GPU, at this point it is assumed the data has alrea
copied to the GPU memory, the CudaWorker constructor did that:

a

Evoid CudaWorker: :GpuCompute() {
: const size_t num_threads = Gpu::MaxThreadsPerBlock();
const size_t num_blocks = VECTOR_SIZE / num_threads + 1; // Simple ceiling function
pythagorean_kernel<<<num_blocks, num_threads>>>(device_a.data().get(), device_b.data().get(),
device_result.data().get());

cudaError_t cudaStatus = cudaGetLastError();

El if (cudaStatus != cudaSuccess) {
: cout << "CudaWorker::GpuCompute() Kernel failed with" << cudaGetErrorString(cudaStatus) << endl;
' return;
}
. cudaStatus = cudaDeviceSynchronize();
= if (cudaStatus != cudaSuccess) {
: cout << "CudaWorker::GpuCompute() synchronize failed with " << cudaGetErrorString(cudaStatus) << endl;
! return;
{3
|}

cudaGetLastError() will return an error code
launched successfully.

cudaDeviceSynchronize() will wait for the work ol
completed and return an error code if anything w

GPU Massively Parallel

The GPU hardware only allows so many threads in a “block
must be partitioned into blocks.

work

Invoking a kernel looks just like a function call with some extra annotz

const size_t num_threads = Gpu::MaxThreadsPerBlock();
const size_t num_blocks = VECTOR_SIZE / num_threads + 1; // Simple ceiling function
pythagorean_kernel<<<num_blocks, num_threads>>>(device_a.data().get(), device_b.data().get(),

device_result.data().get());

The “<<<blocks, threads>>>" annotation is picked up
converted into a kernel invocation matching the gi

Under the covers CUDA maps the given geomet
geometry and launches as many.threads.|
allows. If there are more threads than actual
are serialized until all the work is done.

GPU Massively Parallel

E_.global

S —
__ void pythagorean_kernel(const float* a, const float* b, float* result) {
const size_t index = threadIdx.x + blockIdx.x * blockDim.Xx;
5. if (index < VECTOR_SIZE) {
: do_pythagorean(a+index, b+index, result+index);

=

}

>

3

Function annotations tell the compiler how to build
__global__ : Runs on the GPU, called
__device__ : Runs on the GPU, called f
__host _ : Runs on the CPU, called

Annotations can be combined.

Each GPU thread needs to do two thlngs
|dentify the data elements that it is to
Perform the specified work on those date

GPU Massively Parallel

Each kernel is invoked with variables for “thread addressing™
threadldx : Contains the “address” of current thread
blockldx : Contains the “address” of the current block
blockDim : Contains the geometry of the block sizes

Currently we use only the X dimension, in reality these values

dimensions allowing for easy mapping to real w

E_._.global__ void pythagorean_kernel(const float* a, const float* b, float* result) {
.+ const size_t index = threadIdx.x + blockIdx.x * blockDim.x;
= . if (index < VECTOR_SIZE) {

: do_pythagorean(a+index, b+index, result+index);

e

}

3
For each dimension combine the threadldx, blo kI
shown to create a fully unique ID for the kernel inv:

For this problem data was up such that the “threa
maps to the index of the data — this is very comm

There may be more “thread addresses” than dat

CPU vs. GPU Code

Elvoid CudaWorker: :GpuCompute() {
: const size_t num_threads = Gpu::MaxThreadsPerBlock();
1 | Y| const size_t num_blocks = VECTOR_SIZE / num_threads + 1; // Simple ceiling function
: pythagorean_kernel<<<num_blocks, num_threads>>>(device_a.data().get(), device_b.data().get(),
device_result.data().get());

cudaError_t cudaStatus = cudaGetLastError();
B if (cudaStatus != cudaSuccess) {
cout << "CudawWorker: :GpuCompute() kernel failed with™ << cudaGetErrorString(cudaStatus) << endl;

§v01d CudaWorker: :CpuCompute() { . ! return;
B fnr (size_t i = ©; i < VECTOR_SIZE; ++i) {
float* ptr_to_a = &a[i];
float* ptr_to_b = &b[i];
float* ptr_to_result = &cpu_result[i];
do_pythagorean(ptr_to_a, ptr_to_b, ptr_to_resu

cudaStatus = cudaDeviceSynchronize();

B if (cudaStatus != cudaSuccess) {

cout << "CudaWorker::GpuCompute() synchronize failed with " << cudaGetErrorString(cudaStatus) << endl;
return;

j

global__ void pythagorean_kernel(const float* a, const float* b, float* result
. ®Wconst size_t index = threadIdx.x + blockIdx.x * blockDim.x;

. ___if (index < VECTOR_SIZE) {
E; do_pythagorean(a+index, b+index, result+index);

Key Conversion Points:
1. The sequential ‘for’ statement becom
2. The address calculations become a thr
3. The “work” ends up being done by exa

Once you get familiar with this conversion techniqu'
it in about 30 to 60 minutes! (Faster if you plan for

Verification

Ebool CudawWorker::Verify() {
+ f/ Copy the GPU / device results back to the host
gpu_result = device_result;

// Make sure the size and contents of the CPU results matches the GPU results
bool verification_result = cpu_result.size() == gpu_result.size();
verification_result &= std::equal(cpu_result.begin(), cpu_result.end(), gpu_result.begin());

~
s

return verification_result;

T —

You don’t normally need to include a verific
Math processing on the GPU is differe
Nice sanity check to convince yourself

Results

GPU 5tats:
Compute Capability: 8.9
76 Multiprocessors, 128 CUDA Cores / MP, 9728 CUDA Cores
MaxThreadsPerMultiProcessor: 1536
MaxThreadsPerBlock: 16024

CpuCompute took 167394us
GpuCompute took 2847us
Answers match!

Speed up: 107394us / 2047us = 52.46x (for this one

This speed up DOES NOT include the copy,
the GPU. This will impact the results consider
also doing is pretty simple. It does include kerne

This is a VERY unoptimized solution! With a full
improvements for very well formed and well fitting

Debugging CUDA Kernels

Debugging kernels can be a bit more challenging due to the foll
Typically there are THOUSANDS of instances running
Access to the GPU memory is more restricted

Simple guidelines to get started:
Place the “work” to be done in function, like
Debug the “work” on the CPU a
Once this is done all that is left i
Reduce the kernel invocation to a single
function<<<1,1>>>(a, b, c);
Gets around thousands of invocations
Also helpful to test with two invocatio
In Visual Studio, printf() works just as you ex
Combine with reducing the ke

Breakpoints and visual debugging technique'

n File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help £ Search ~ SimpleCuda
®@-0 | i-a B B e (e C b Lo Mokt v

5 Manage Extensions |6 start CUDA Debugging (Next-Gen)
Solution Explorer ~ B x CudaWorker.cuh ke Customize Menu...
OF @ o=]), [SimpleCuda
Bi#include <chrono>
#include <iostream=

Break On Launch

Search Solution Explorer (Ctrl+;) P
[Solution ‘SimpleCuda' (1 of 1 project)
a SimpleCuda
b o0 References
b &M External Dependencies

b [CudaWorker.cu
[- PR

Freeze
using namespace std;
using std::chrono: :high_resolutioi
using std::chrono: :duration_cast;
using std::chrono: :duration;

Options...
Developer Tools Available For Integration...
Help

Additional Resources

This talk has barely scratched the surface of what can be done.
to provide a simple, effective solution to a common problem, and is
beginning of a journey!

Official Documentation:
CUDA Main Docs: hitps://docs.nvidia.com/
CUDA Dev Tools: https://developernviaie:
Thrust Library: https://developer.nvidiases

Good Books:
Programming in Parallel with CUDA y
Richard Anderson; ISBN: 978-1108:
Programming Massively Parallel Processors
Hwu, Kirk, Jajj; ISBN: 978-032391231C

Shader Toy: https://www.shadertoy.com/

https://docs.nvidia.com/cuda/doc/index.html
https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/thrust
https://www.shadertoy.com/

Open Discussion ‘ .

&
Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

