
Specifying the
Negative in
TDD

© Copyright PMI All Rights Reserved 2

Scott Bain
Senior Technical Trainer

Scott.Bain@PMI.org
Agile Development
Emergent Design, Design Patterns, OO Analysis and Modeling,
Test-Driven Development, Acceptance Test-Driven Development

© Copyright PMI All Rights Reserved 3

tan = sin / cos (definition of tangent)

A Joke: Tacos are Imaginary

ta = i / co

taco = i

x
co

x
co

© Copyright PMI All Rights Reserved 4

Falsifiability is a standard of evaluation of scientific theories and
hypotheses that was introduced by the philosopher of science
Karl Popper in his book The Logic of Scientific Discovery
(1934). He proposed it as the cornerstone of a solution to both
the problem of induction and the problem of demarcation. A
theory or hypothesis is falsifiable (or refutable) if it can be
logically contradicted by an empirical test that can potentially
be executed with existing technologies.

Falsifiability

https://en.wikipedia.org/wiki/Falsifiability

© Copyright PMI All Rights Reserved 5

• What TDD specifies is behavior

• Most behaviors are about what business value the
stakeholders want from the system, and are willing to
pay for

• Sometimes, however, they are about things the
stakeholders want to guard against

• These are the “don’t do” rules

• How do we specify that a system must not do
something?

Behavior

© Copyright PMI All Rights Reserved 6

The Graph of Negatives

Must Not Do

Inherently Impossible Inherently Possible

Can Be Made
Impossible

Cannot Be Made
Impossible

Can Be Made
Possible

Cannot Be Made
Possible

© Copyright PMI All Rights Reserved 7

Inherently Impossible

1. Technology-dependent

2. Impossible, and cannot be made possible:
• Writing to a non-writable CD-ROM, or read-only memory
• Directly reading/writing a field that has been made “private”*

3. Impossible, and can be made possible:
• An immutable object

* Assuming the technology has the right idiom

© Copyright PMI All Rights Reserved 8

• Your customer wants to capture an online “Sale
Amount” for some kind of e-tail site

• They wants this amount to be accurately retrievable

Simple Example

© Copyright PMI All Rights Reserved 9

“The value can be retrieved” is a positive requirement

Given:

• SaleAmount S exists with value V

When:

• The value of S is requested

Then:

• V is returned

Customer Requirement

https://dannorth.net/introducing-bdd/

© Copyright PMI All Rights Reserved 10

The Executable Specification
public class SaleAmountTest {

@Test public void testSaleAmountCanBeRetieved() {
double someAmount = 10.00;

SaleAmount testSaleAmount =
new SaleAmount(someAmount);

double retrievedAmount = testSaleAmount.getValue();

assertEquals(someAmount, retrievedAmount, .01);
}

}

Won't Compile…

© Copyright PMI All Rights Reserved 11

Drives This Stub
public class SaleAmount {

public SaleAmount(double aValue) {}

public double getValue() {
return 0.00;

}
}

© Copyright PMI All Rights Reserved 12

Observed Failure
public class SaleAmountTest {

@Test public void testSaleAmountCanBeRetieved(){
double someAmount = 10.00;

SaleAmount testSaleAmount = new
SaleAmount(someAmount);

double retrievedAmount = testSaleAmount.getValue();

assertEquals(someAmount, retrievedAmount, 01);
}

}

© Copyright PMI All Rights Reserved 13

Drives This Code
public class SaleAmount {

private double theValue;
public SaleAmount(double aValue) {

theValue = aValue;
}

public double getValue() {
return theValue;

}
}

© Copyright PMI All Rights Reserved 14

Not all implementation decisions are specified
But some come from the customer, and those must be or
your specification is incomplete
Given:

• A SaleAmount S with value V exists in the system

Then:

• You cannot change V

Implementation Decisions

© Copyright PMI All Rights Reserved 15

• Private members are inherently unchangeable

• But they can be made changeable

• For example, by adding a “set” method

• How can we ensure, in the future, that this has not
happened?

• That’s a testing perspective

• Scientifically, how do you prove a negative?

A Conundrum for Testing

© Copyright PMI All Rights Reserved 16

• Software is a verb, it does something
• Otherwise it is worthless
• The “something” must have a traceable path to business

value. The specification shows this
• Here, the value to the customer is that the software is

absent a behavior, lacks a verb
• How can we specify this, if our spec is a suite of tests?
• The spec, in this case, must be able to compile, and

execute

A Conundrum for Specification

© Copyright PMI All Rights Reserved 17

1. Add the setValue() method, but make it throw an
exception if anyone ever calls it. Write a test that calls
this method and fails if the exception is not
thrown. Sometimes other actions are suggested if the
method gets called, but an exception is quite common

2. Use reflection in the test to examine the object and, if
setValue() is found, fail the test

Two Common Ideas

© Copyright PMI All Rights Reserved 18

 “Throw an exception” is not what the customer wanted

 If we do this, we are creating our own specification

 If this is object is used in other parts of the system, the
exception will not be expected

Problem With Option #1

© Copyright PMI All Rights Reserved 19

 Not all technologies provide refection mechanisms

 Reflection, generally, impedes performance. In TDD tests should run
fast so they can be run frequently

 What are you going to look for in your reflective test?
? setValue()

? changeValue()

? putValue()
? alterValue()

? makeValue()

You see the problem

Problems With Option #2

© Copyright PMI All Rights Reserved 20

If we think of TDD as creating a specification (that later
can also be used as a test) then…
The rules of specification apply:
1. The specification must be complete
2. Anything not specified is something the system does

not do

The TDD Solution

© Copyright PMI All Rights Reserved 21

• In TDD, tests are always written first
• In TDD, production code is never written without a

failing test
• In TDD, the production code is only what is needed to

make the test pass
• Any production code written without a failing test is an

attack on the system
• Only the process can prevent this
• No process works if you don’t follow it

TDD as a Process

© Copyright PMI All Rights Reserved 22

The Graph of Negatives

Must Not Do

Inherently Impossible Inherently Possible

Can Be Made
Impossible

Cannot Be Made
Impossible

Can Be Made
Possible

Cannot Be Made
Possible

© Copyright PMI All Rights Reserved 23

Inherently Possible

1. Inherently impossible, we said, can be technology dependent
• EG: What if we’re working in a language without “private”?

2. Even languages that have good encapsulation still cannot
prevent all bad behavior
• But maybe we can guard against it in the executable specification

3. We need to examine the difference between defect
prevention and defect detection

© Copyright PMI All Rights Reserved 24

Maybe we’re using the wrong technology

You should never assume the customer doesn’t care

Some things can only be caught in static analysis

• A code/design review, for example

• …or a QA pass on the code

TDD does not replace other good practices

Technology Problems

© Copyright PMI All Rights Reserved 25

Inherently Possible

1. Inherently impossible, we said, can be technology dependent
• EG: What if we’re working in a language without “private”?

2. Even languages that have good encapsulation still cannot
prevent all bad behavior
• But maybe we can guard against it in the executable specification

3. We need to examine the difference between defect
prevention and defect detection

© Copyright PMI All Rights Reserved 26

Notable Times In Programming

Coding Time Compile Time Link Time Load Time Test Time

© Copyright PMI All Rights Reserved 27

Defect Detection vs. Defect Prevention

public void setDayOff(int day) {
// detect <1 or >7 and
// do something about it

}

• Throw an exception
• Perfect the value
• Interpret the value
• Etc…

© Copyright PMI All Rights Reserved 28

Defect Detection vs. Defect Prevention

public void setDayOff(int day) {
// detect <1 or >7 and
// do something about it

}

public enum DOW {
MON, TUE, WED, THU, FRI,
SAT, SUN}

}

public void setDayOff(DOW day){
// code assumes compiler
// ensures valid value

}• Throw an exception
• Perfect the value
• Interpret the value
• Etc…

© Copyright PMI All Rights Reserved 29

Customer says: “No Sale Amount over a given maximum
makes any sense. Nobody is going to spend a million
dollars at my online store. If that happens, either we’re
being hacked, or something has gone seriously wrong.”

Let’s look at our code again:

New Customer Requirement

© Copyright PMI All Rights Reserved 30

The Code
public class SaleAmount {

private double theValue;
public SaleAmount(double aValue) {

theValue = aValue;
}

public double getValue() {
return theValue;

}
}

What will the compiler allow?

© Copyright PMI All Rights Reserved 31

$179,769,313,486,231,520,616,720,392,992,464,536,472,240,
560,432,240,240,944,616,576,160,448,992,408,768,712,032,3
20,616,672,472,536,248,456,776,672,352,088,672,544,960,56
8,304,616,280,032,664,704,344,880,448,832,696,664,856,832,
848,208,048,648,264,984,808,584,712,312,912,080,856,536,5
12,272,952,424,048,992,064,568,952,496,632,264,936,656,12
8,816,232,688,512,496,536,552,712,648,144,200,160,624,560,
424,848,368

A Very Big Sale!

Is this the maximum the customer had in mind? I rather doubt it. What was?

A: You have to ask

© Copyright PMI All Rights Reserved 32

Customer Q & A
Q: “Customer, you said any Sale
Amount over a maximum is not
credible, and represents some
kind of problem to you. What is
the maximum?”

A: “Anything over a thousand
dollars is ridiculous. Probably a
hacker or a really bad calculation
somewhere.’

Q: “Um, how much over? A penny?
A dollar? Ten dollars?”

A: “A penny.”

Q: “Okay. Unfortunately, our
technology can’t prevent that, but we
can detect it. What should we do if
that happens?”

A: “Raise an alarm! Make sure we
know about it so we can do
something…”

© Copyright PMI All Rights Reserved 33

Given:

• The system

Then:

• The Maximum value for a Sale Amount is $1000.00 within the required Tolerance

--

Given:

• The System

Then:

• The Tolerance for the comparison of SaleAmount values is 1 cent

Capturing the First Two Answers: Constants

© Copyright PMI All Rights Reserved 34

The Executable Specification
@Test
public void specifyMaximumDollarValue() {

assertEquals(1000d, SaleAmount.MAXIMUM,
SaleAmount.TOLERANCE);

}

@Test
public void specifySaleamountTolerance() {

assertEquals(.01, SaleAmount.TOLERANCE);
}

© Copyright PMI All Rights Reserved 35

Making the Test Compile/Fail
public class SaleAmount {

public static final double MAXIMUM = -42;
public static final double TOLERANCE = -42;
private double theValue;

public SaleAmount(double aValue) {
theValue = aValue;

}

public double getValue() {
return theValue;

}
}

© Copyright PMI All Rights Reserved 36

Drives These Changes to the Code
public class SaleAmount {

public static final double MAXIMUM = 1000d;
public static final double TOLERANCE = .01;
private double theValue;

public SaleAmount(double aValue) {
theValue = aValue;

}

public double getValue() {
return theValue;

}
}

© Copyright PMI All Rights Reserved 37

• There are multiple ways to do this
• One typical way: throw an exception

• So now we have our new requirement

• Let’s do the Given, When, Then

Capturing Answer 3: Raise the Alarm!

© Copyright PMI All Rights Reserved 38

Given:

• Amount S greater than or equal to Maximum + Tolerance

When:

• An attempt is made to create a SaleAmount with value S

Then:

• An exception is thrown

Required Behavior

© Copyright PMI All Rights Reserved 39

Executable Specification
@Test
public void testExcessiveSaleAmountThrowsException() {

double excessiveValue = SaleAmount.MAXIMUM + SaleAmount.TOLERANCE;

try {
new SaleAmount(excessiveValue);
fail("SaleAmount created with excessive amount should have " +

thrown an exception");
}
catch (ValueTooLargeException) { }

}

© Copyright PMI All Rights Reserved 40

Drives These Changes to the Code
public class SaleAmount {

public static final double MAXIMUM = 1000d;
public static final double TOLERANCE = .01;
private double theValue;

public SaleAmount(double aValue) {
validateValue(aValue);
theValue = aValue;

}

private void validateValue(double value) {
if (value >= MAXIMUM + TOLERANCE) {

throw new ValueTooLargeException();
}

}

public double getValue() {
return theValue;

}
}

© Copyright PMI All Rights Reserved 41

Conclusions
Specifying negative requirements begins with identifying
where the requirement lives on the graph of negatives:

© Copyright PMI All Rights Reserved 42

Inherently Impossible, Can't Be Made Possible
There is nothing to do, it's done

© Copyright PMI All Rights Reserved 43

Inherently Impossible, Can Be Made Possible
Follow the TDD process diligently

© Copyright PMI All Rights Reserved 44

Inherently Possible, Can't Be Made Impossible
Switch technology, increase QA and reviews

© Copyright PMI All Rights Reserved 45

Inherently Possible, Can Be Made Impossible
Defect Detection vs. Defect Prevention

Detection: Ask for the right behavior, test-drive it

© Copyright PMI All Rights Reserved 46

Staying in Touch

https://www.projectmanagement.com/blogs/654443/Sustainable-Test-Driven-Development

• I have written about a lot of TDD topics
• I also post frequently on LinkedIn about this stuff
• If you want to connect with me, you can do so at:

• ProjectManagement.com
• LinkedIN.com

Training Courses at PMI

• Acceptance Test-Driven Development

• Design Patterns Thinking
• Advanced Software Design
• Sustainable Test-Driven Development

Scott.Bain@pmi.org

https://www.pmi.org/business-solutions/agile-training/technical-solutions

© Copyright PMI All Rights Reserved 48

Thank You!

Feel free to email questions:
scott.bain@pmi.org

