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• Coming this year to C++23:  std::mdspan (P0009)

• Can impose a multidimensional array structure on a reference to a container, such as an 
STL vector (without tears)

• View of existing data (ie, non-owning)

• Example: 2-D “matrix” view of vector data:

vector<int> v{ 101, 102, 103, 104, 105, 106 };

auto mds1 = std::mdspan{ v.data(), 3, 2 }; // using CTAD

• Terminology:
• rows and columns are referred to as extents

• the number of rows and columns are accessed by the index of each extent, 0 for rows 
and 1 for columns 

• The total number of extents is referred to as the rank

int n_rows{ mds1.extent(0) }; // 3 rows

int n_cols{ mds1.extent(1) }; // 2 columns

int n_extents{ mds1.rank() }; // rank = 2

• For higher-order multidimensional arrays, the rank would be greater than two

• Extent sizes for mdspan (and mdarray) can be dynamically allocated
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Note: The term rank as applied to 
mdspan is not the same as the 
mathematical definition of the rank of 
a matrix. This naming might 
unfortunately seem confusing, but it’s 
something one should be aware of.
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• What if we don’t know the data a priori?

• What if we want to generate values and place them in a two-dimensional array 
format, for example?

• Enter mdarray (P1684)

• Expected in C++26

• But available on GitHub now (https://github.com/kokkos/mdspan)

• In namespace std::experimental

• Will use the alias 

namespace stdex = std::experimental; 

• Number of rows and columns can be allocated dynamically:

stdex::mdarray<int, stdex::dextents<int, 2>> test_mdarray{ m, n };

• stdex::dextents => dynamic extents

• “Two dynamic extents of int type” (m, n are arbitrary (positive) int values)
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Binomial Lattice Option Pricing

Options Trading and the Model
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• An equity (stock) option is a derivative that gives the holder the right to buy or sell 
the stock at set price (the exercise price) on or before the expiration date
• Call option:  option to buy

• Put option:  option to sell

• Let 𝑆 = the underlying stock price

• Let 𝑋 = the exercise (strike) price

• The payoff when exercised:
• Call option:  𝑚𝑎𝑥 𝑆 − 𝑋, 0

• Put option:  𝑚𝑎𝑥 𝑋 − 𝑆, 0

• In-the-money (ITM)
• Call option:  𝑆 − 𝑋 > 0

• Put option:  𝑋 − 𝑆 < 0

• At-the-money (ATM) if equal

• Out-of-the-money (OTM) otherwise

Binomial Lattice Option Pricing
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Call option time t < expiration
Strike X = 95
Solid line:  Value of option (prior to exercise)
Dotted line: Intrinsic value (payoff if exercised)
Difference:  Time value
S > 95 ATM, S = 95 ITM, S < 95 OTM

(Lyuu, Figure 7.3, p 77)



• When can we exercise an options contract? (example: call option) 
• European:  may only be exercised on the expiration date

• American:  may be exercised any time before or on the expiration date

• Either type may be bought or sold anytime before expiration (t = T)

• Goal:  Calculate a fair price for a call option today (t = 0)

• Note:  The price of an American option is never less than a European option

Binomial Lattice Option Pricing
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Positive Payoffs

Payoffs = 0

Strike = 105

t=0 t=T



• European equity options can be valued using the closed-form Black-
Scholes pricing formula

• American option valuation requires numerical approximation

• No closed form formula exists

• Need to check for optimal early exercise

• The Binomial Lattice pricing model is well-suited for this purpose

• This is where mdarray can help us

• Boost MultiArray is also useful

• But now we will have a tool in the C++ Standard Library

Binomial Lattice Option Pricing
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• Call option, time to expiration = 1 year

• Binomial lattice with 4 time steps (plus t = 0)
• Time step = Δt = ¼ = 0.25 

• Initial (spot) equity price = 32

• Volatility (σ) = 0.20, annual risk-free rate (r) = 6%, annual (continuous) dividend(q) = 7.5%  

• Prices projected out with up and down moves:

➢ 32𝑒0.2 0.25 = 35.37

➢ 32𝑒−0.2 0.25 = 28.95

Step 1:  Project Prices Forward
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• Calculate discounted expected payoffs moving back in time

• 𝑋 = 30:  Strike price (exercise price)

• At expiration: 𝑚𝑎𝑥 𝑆 − 𝑋, 0

➢ node (0, 4): 𝑚𝑎𝑥(47.74 – 30.00, 0) = 17.74

➢ node (3, 4): 𝑚𝑎𝑥(26.20 – 30.00, 0) = 0

• At each preceding node, compute the expected value and discount back by Δt = 0.25, using

➢ node(0, 3) = 𝑒−0.06 0.25 17.74𝑝 + 9.08 1 − 𝑝 = 12.84

➢ node(0, 0) = 𝑒−0.06 0.25 5.33𝑝 + 1.47 1 − 𝑝 = 3.19

➢ Price of the Euro call option = 3.19 (exercise possible at expiry only)

Step 2: Discounted Expected Payoffs (European Case)
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• American options can be exercised anytime before expiration

• Need to check for optimal early exercise (mdarray becomes especially useful here)

• Start with payoffs at expiration

• Compare discounted expected payoff to actual payoff at each node moving backward in time

➢ node(0, 3) = max(12.84, 43.20 - 30) = 13.20

➢ node(0, 2) = max(8.80, 39.08 - 30) = 9.08

➢ Each subsequent discounted expected value is based on the updated payoffs in the subsequent time period

➢ It is then compared with the actual payoff if exercised

➢ node(0, 0) = max(3.34, 32.00 – 30) = 3.34 = Value of the American option

American Call Option
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Binomial Lattice Option Pricing
Implementation using mdarray

Extensions and Convergence 
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• A VanillaOption class

• Does not perform valuation

• Holds a Payoff resource (call or put, determined at runtime), and time to expiration

• The Payoff resource will represent the payoff of an option

• Call or Put, determined dynamically

• Holds the contractual strike price

• Returns the payoff given the underlying market share price

• The assembled vanilla option contract 

• Is passed to BinomialLatticePricer for valuation

• The generated lattice data is held on the mdarray member grid_ with Node template parameter

Binomial Lattice Option Pricing Implementation
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• Putting this into a two-dimensional array in C++

• Project up movement from each element in a given column

• The last element is also projected to a down movement

Price Projection in Code
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Index 0 1 2 3 4

0 32.00 35.37 39.08 43.20 47.74

1 28.95 32.00 35.37 39.08

2 26.20 28.95 32.00

3 23.71 26.20

4 21.45



• BinomialLatticePricer class:

• VanillaOption opt holds the payoff (call or put) and time to expiration

• calc_price(.)

➢ Can take in a European or American option type – mdarray itself doesn’t care

➢ Underlying spot price taken from current market data

• Node struct

➢ Set underlying prices projecting out the lattice

➢ Set discounted expected payoffs on the return trip

• mdarray<Node, stdex::dextents<size_t, 2>> grid_ member:  stores the lattice dynamically

➢ 2 extents (rows and columns)

➢ Will store underlying and payoff 

values at each lattice node

Binomial Lattice Option Pricing Declaration
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• r = risk-free interest rate (int_rate), q (div_rate) = continuous annual dividend rate

• σ (vol) = volatility of stock price (annualized)

• Δt (dt)

• year fraction over one time step 

• Ex:  One year divided into four time steps of length Δt = 0.25

• BinomialLatticePricer implementation – constructor

• Initializes the 2-D mdarray

➢ number of rows and columns = number of time steps + 1 (“time points”)

➢ Template parameter: Node

• Computes and assigns the lattice parameters u_, d_, p_

• Calculates the constant discount factor (disc_fctr_) over each Δt:  𝑒−𝑟∆𝑡

Binomial Lattice Option Pricing Implementation
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• BinomialLatticePricer implementation – valuing the option

• Divided into two steps

• Project the generated prices forward in time: Calculate the expected payoffs

• Traverse the lattice back in time: Check for optimal early exercise

• opt_type:  European or American

Binomial Lattice Option Pricing Implementation
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• Project the underlying share prices forward in time:  project_prices_()
• Initial (spot) share price = 32 set at terminal node

• Iterate forward over the mdarray

➢ By column

➢ Then row

➢ Multiply each previous price by values of u (up move return) and d (down move return)

➢ Set the underlying value on the Node struct at each node

• Note:  in C++23, we will have the multidimensional square bracket operator overload:
• grid_(i, j) // Prior to C++23

• grid_[i, j] // C++23

Binomial Lattice Option Pricing Implementation
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Projected share
prices at option
expiration



• Then, iterate backward in time through the mdarray: calc_payoffs_(.)

• Start at last column at expiration, calculate actual payoff and set on struct

• Traverse backward by column first, then row top to bottom

• Calculate the discounted expected payoffs for each node and set on the Node 

• If an American option, compare with what the actual payoff would be at each prior node and replace if greater

• Value at final node ([0, 0] position) in the mdarray, is the estimated option value

Binomial Lattice Option Pricing Implementation
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Projected Share Prices (previous step)

Optimal Early 
Exercise Boundary



• Trinomial lattices are common in 
• Option models with stochastic interest rates

• Incorporating variable volatility models

________________________

James, Figure 9.8, p 119

Trinomial Lattices
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Index 0 1 2 3

0 100 119.34 142.41 169.95

1 100 119.34 142.41

2 83.80 100 119.34

3 83.80 100

4 70.22 83.80

5 70.22

6 58.84

time_points_{ time_steps + 1 },
grid_{ time_points_ + 1, time_points_ }



• It is also possible to have options on more than one security

• Example payoffs, 𝑆𝑖
𝑇 = price of 𝑖𝑡ℎ security at expiration 𝑇, strike price 𝑋

• max 𝑆1
𝑇 , 𝑆2

𝑇 Maximum of two asset prices

• max 𝑆1
𝑇 , 𝑆2

𝑇 , 𝑆3
𝑇 Maximum of three asset prices

• max 𝑆1
𝑇 , 𝑆2

𝑇 , 𝑋 − 𝑋 Call on the maximum of two asset prices

• Price projection of two assets:

________________________

James, Figure 12.1, p 160

Higher Dimensions
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stdex::mdarray<Node, stdex::dextents<int, 3>> grid_;
. . .
time_points_{ time_steps + 1 },
grid_{ time_points_, time_points_, time_points_ }



• Need more time steps (and nodes) for the price to converge

• Results tend to oscillate

• Mitigate by taking average over 𝑛 and 𝑛 + 1 steps
• “Typical” range for 𝑛: 50-350
• Depends upon the type and terms of the option

________________________

James, Figure 7.11, p 85

Convergence
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• Previous example:  American call with dividend

Convergence
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int start_iter{ 65 }, max_iterations{ 10 };

vector<double> avg_values;
double penult_val = 0.0, max_pts_val = 0.0, new_price = 0.0, last_price = 0.0;
for (int n = start_iter; n <= start_iter + max_iterations; ++n)
{
auto cp = make_unique<CallPayoff>(strike);// cp = "call pointer"
VanillaOption call(std::move(cp), time_to_exp);

BinomialLatticePricer call_pricer{ std::move(call), mkt_vol, rf_rate, n, div_rate };

new_price = call_pricer.calc_price(spot, OptType::American);
cout << format("Time points = {}, Call option price = {}\n", n, new_price) ;

if (last_price > 0)
{
avg_values.push_back((new_price + last_price) / 2.0);

}

last_price = new_price;
}

cout << "\nAverage values over (n, n + 1):\n";
for (double x : avg_values)
{
cout << x << "\n";

}

cout << "\n\nOption value = last average value: " << avg_values.back() << "\n\n";



• Results:

Convergence
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Wind-Up
References 

Summary
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• Peter James, Option Theory, Wiley (2003)

• Chapters 7, 9, and 12

• Yuh-Dauh Lyuu, Financial Engineering and Computation, Cambridge (2002)

• Chapters 7-8

• Mark Joshi, C++ Design Patterns and Derivatives Pricing (2E), Cambridge (2008)

• Chapter 4
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• WG21 Proposal P1684
• https://wg21.link/p1684

• Special thanks to Mark Hoemmen, co-author P1684
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• mdspan coming in C++23: Multidimensional view of 1-D container

• mdarray expected in C++26
• Can use for case where data not known in advance
• “Ready made” for binomial lattice models

➢American option pricing
➢Can evaluate optimal early exercise

• Generic multidimensional array
• Can be extended to trinomial lattice

➢Stochastic interest rates
➢Stochastic volatility

• Can be extended to three or more dimensions
➢Maximum of two asset prices
➢Maximum of three asset prices
➢ Call/Put on the maximum of two asset prices
➢ Other multi-asset exotic options…

• Node object can be modified or extended for more complex payoffs

Summary
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• Contact:
• daniel (at) cppcon.org (Student Program Advisor, CppCon)

• https://www.linkedin.com/in/danielhanson/

• Thank You!

• Questions?

Contact/ Questions
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