Pricing Equity Options with mdarray NWCPP

17 May 2023

- Coming this year to C++23: std: :mdspan (P0009)
- Can impose a multidimensional array structure on a reference to a container, such as an STL vector (without tears)
- View of existing data (ie, non-owning)
- Example: 2-D "matrix" view of vector data: vector<int> v\{ 101, 102, 103, 104, 105, 106 auto mds1 = std::mdspan\{ v.data(), 3, 2 \}; // using CTAD
- Terminology:
- rows and columns are referred to as extents
- the number of rows and columns are accessed by the index of each extent, 0 for rows and 1 for columns
- The total number of extents is referred to as the rank

```
int n_rows{ mds1.extent(0) }; // 3 rows
int n_cols{ mds1.extent(1) }; // 2 columns
int n_extents{ mds1.rank() }; // rank = 2
```

Note: The term rank as applied to mdspan is not the same as the mathematical definition of the rank of a matrix. This naming might unfortunately seem confusing, but it's something one should be aware of.

- For higher-order multidimensional arrays, the rank would be greater than two
- Extent sizes for mdspan (and mdarray) can be dynamically allocated
- What if we don't know the data a priori?
- What if we want to generate values and place them in a two-dimensional array format, for example?
- Enter mdarray (P1684)
- Expected in $\mathrm{C}++26$
- But available on GitHub now (https://github.com/kokkos/mdspan)
- In namespace std: : experimental
- Will use the alias
namespace stdex = std::experimental;
- Number of rows and columns can be allocated dynamically:

```
stdex::mdarray<int, stdex::dextents<int, 2>> test_mdarray{ m, n };
```

- stdex: : dextents => dynamic extents
- "Two dynamic extents of int type" (m, n are arbitrary (positive) int values)

Binomial Lattice Option Pricing

Options Trading and the Model

- An equity (stock) option is a derivative that gives the holder the right to buy or sell the stock at set price (the exercise price) on or before the expiration date
- Call option: option to buy
- Put option: option to sell
- Let $S=$ the underlying stock price
- Let $X=$ the exercise (strike) price
- The payoff when exercised:
- Call option: $\max (S-X, 0)$
- Put option: $\max (X-S, 0)$
- In-the-money (ITM)
- Call option: $(S-X)>0$
- Put option: $(X-S)<0$
- At-the-money (ATM) if equal
- Out-of-the-money (OTM) otherwise

Call option time t < expiration
Strike X = 95
Solid line: Value of option (prior to exercise)
Dotted line: Intrinsic value (payoff if exercised)
Difference: Time value
$S>95$ ATM, $S=95$ ITM, $S<95$ OTM
(Lyuu, Figure 7is, p 77)

Binomial Lattice Option Pricing

- When can we exercise an options contract? (example: call option)
- European: may only be exercised on the expiration date
- American: may be exercised any time before or on the expiration date
- Either type may be bought or sold anytime before expiration ($\mathrm{t}=\mathrm{T}$)
- Goal: Calculate a fair price for a call option today ($\mathrm{t}=0$)
- Note: The price of an American option is never less than a European option

- European equity options can be valued using the closed-form BlackScholes pricing formula
- American option valuation requires numerical approximation
- No closed form formula exists
- Need to check for optimal early exercise
- The Binomial Lattice pricing model is well-suited for this purpose
- This is where mdarray can help us
- Boost MultiArray is also useful
- But now we will have a tool in the C++ Standard Library
- Call option, time to expiration = 1 year
- Binomial lattice with 4 time steps (plus $\mathrm{t}=0$)
- Time step $=\Delta t=1 / 4=0.25$
- Initial (spot) equity price $=32$
- Volatility $(\sigma)=0.20$, annual risk-free rate $(r)=6 \%$, annual (continuous) dividend $(q)=7.5 \%$
- Prices projected out with up and down moves:
$\begin{array}{ll}>32 e^{0.2 \sqrt{0.25}}=35.37 & u=e^{\sigma \sqrt{\Delta t}} \\ >32 e^{-0.2 \sqrt{0.25}}=28.95 & d=\frac{1}{u}=e^{-\sigma \sqrt{\Delta t}}\end{array}$

0
\square
\square 3

Step 2: Discounted Expected Payoffs (European Case)

- Calculate discounted expected payoffs moving back in time
- $X=30$: Strike price (exercise price)
- At expiration: $\max (S-X, 0)$
$>$ node $(0,4): \max (47.74-30.00,0)=17.74$
$>$ node $(3,4): \max (26.20-30.00,0)=0$
- At each preceding node, compute the expected value and discount back by $\Delta t=0.25$, using
$>\operatorname{node}(0,3)=e^{-0.06(0.25)}(17.74 p+9.08(1-p))=12.84$
$>\operatorname{node}(0,0)=e^{-0.06(0.25)}(5.33 p+1.47(1-p))=3.19$

$$
p=\frac{e^{(r-q) \Delta t}-e^{-\sigma \sqrt{\Delta t}}}{e^{\sigma \sqrt{\Delta t}}-e^{-\sigma \sqrt{\Delta t}}}
$$

$>$ Price of the Euro call option $=3.19$ (exercise possible at expiry only)

\square

- American options can be exercised anytime before expiration

- Need to check for optimal early exercise (mdarray becomes especially useful here)
- Start with payoffs at expiration
- Compare discounted expected payoff to actual payoff at each node moving backward in time
$>\operatorname{node}(0,3)=\max (12.84,43.20-30)=13.20$
$>$ node $(0,2)=\max (8.80,39.08-30)=9.08$
$>$ Each subsequent discounted expected value is based on the updated payoffs in the subsequent time period
$>$ It is then compared with the actual payoff if exercised
$>$ node $(0,0)=\max (3.34,32.00-30)=3.34=$ Value of the American option

Binomial Lattice Option Pricing

Implementation using mdarray
Extensions and Convergence

The Alew Hork Eimes
 Late Edition

STOCKS PLUNGE 508 POINTS, A DROP OF 22.6\%; 604 MILLION VOLUME NEARLY DOUBLES RECORD

Binomial Lattice Option Pricing Implementation

- A VanillaOption class
- Does not perform valuation
- Holds a Payoff resource (call or put, determined at runtime), and time to expiration
- The Payoff resource will represent the payoff of an option
- Call or Put, determined dynamically
- Holds the contractual strike price
- Returns the payoff given the underlying market share price
- The assembled vanilla option contract
- Is passed to BinomialLatticePricer for valuation
- The generated lattice data is held on the mdarray member grid_ with Node template parameter

Price Projection in Code

- Putting this into a two-dimensional array in C++
- Project up movement from each element in a given column
- The last element is also projected to a down movement

Binomial Lattice Option Pricing Declaration

- BinomialLatticePricer class:
- VanillaOption opt holds the payoff (call or put) and time to expiration
- calc_price(.)
> Can take in a European or American option type - mdarray itself doesn't care
$>$ Underlying spot price taken from current market data
- Node struct
$>$ Set underlying prices projecting out the lattice
$>$ Set discounted expected payoffs on the return trip
- mdarray<Node, stdex::dextents<size_t, 2>> grid_ member: stores the lattice dynamically
> 2 extents (rows and columns)
> Will store underlying and payoff values at each lattice node
class BinomialLatticePricer \{
public:
BinomialLatticePricer (VanillaOption\&\& double vol, double int_rate, int time_steps, double div_rate $=0.0)$;
double calc_price(double spot, OptType opt_typ
void display_lattice_nodes() const;
private:
VanillaOption opt_;
double vol_, int_rate_;
int time_points_;
double div_rate_;
enum class OptType \quad double u_\{ 0.0 \}, d_\{ 0.0 \}; // up and down factors
deuble p_\{ 0.0 \}; // probability of up move
doubie^disc_fctr_; // discount factor

Euro,

American
\};
stdex::mdarray<Node, stdex: :dextents<int, (2>> grid_;
double spot_\{ 0.0 \}, opt_price_\{ 0.0 \};
void project_prices_();
void calc_payoffs_(OptType opt_type);
\};

Binomial Lattice Option Pricing Implementation

- $r=$ risk-free interest rate (int_rate), q (div_rate) = continuous annual dividend rate
- $\sigma($ vol $)=$ volatility of stock price (annualized)
- $\Delta t(d t)$
- year fraction over one time step
- Ex: One year divided into four time steps of length $\Delta t=0.25$
- BinomialLatticePricer implementation - constructor
- Initializes the 2-D mdarray
> number of rows and columns = number of time steps +1 ("time points")
> Template parameter: Node
- Computes and assigns the lattice parameters $\mathbf{u}_{\mathbf{\prime}}, \mathbf{d}_{\mathbf{\prime}}, \mathbf{p}_{-}$
- Calculates the constant discount factor (disc_fctr_) over each $\Delta \mathrm{t}: e^{-r \Delta t}$

$$
u=e^{\sigma \sqrt{\Delta t}}
$$

$$
d=\frac{1}{u}=e^{-\sigma \sqrt{\Delta t}}
$$

$$
p=\frac{e^{(r-q) \Delta t}-e^{-\sigma \sqrt{\Delta t}}}{e^{\sigma \sqrt{\Delta t}}-e^{-\sigma \sqrt{\Delta t}}}
$$

BinomialLatticePricer::BinomialLatticePricer(VanillaOption opt, double vol, double int_rate, int time_steps, double div_rate) : opt_\{ std::move (opt) \}, vol_\{ vol \}, int_rate_\{ int_rate \}, time points $\{$ time steps + 1\}, div_rate_\{ div_rate \},

$$
\text { grid_\{ time_points_, time_points_ \} }
$$

```
double dt{ opt_.time_to_expiration() / time_steps };
u_ = std::exp(vol * std::sqrt(dt));
d_ = 1.0 / u_;
p_ = 0.5 * (1.0 + (int_rate - div_rate - 0.5 * vol * vol) * std::sqrt(dt) / vol);
disc_fctr_ = std::exp(-(int_rate)*dt);
```

\}

- BinomialLatticePricer implementation - valuing the option
- Divided into two steps
- Project the generated prices forward in time: Calculate the expected payoffs
- Traverse the lattice back in time: Check for optimal early exercise
- opt_type: European or American

```
double BinomialLatticePricer::calc_price(double spot, OptType opt_type)
{
    spot = spot;
    project prices ();
    calc_payoffs_(opt_type);
    return opt_price_;
}
```


Binomial Lattice Option Pricing Implementation

- Project the underlying share prices forward in time: project_prices_()
- Initial (spot) share price $=32$ set at terminal node
- Iterate forward over the mdarray
> By column
> Then row
> Multiply each previous price by values of u (up move return) and d (down move return)
$>$ Set the underlying value on the Node struct at each node
void BinomialLatticePricer::project_prices_()

```
grid_(0, 0).underlying = spot_; // Initial share price at terminal node
```

```
// j: columns, i: rows.
// Traverse bv columns, then set node in each row.
for (int j = 1; j < time_points_; ++j)
    for (int i = 0; i <= j; ++i)
        if (i < j)
            {
                grid_(i, j).underlying = u_ * grid_(i, j - 1).underlying;
            }
            else // (i == j)
            {
                grid_(i, j).underlying = d_ * grid_(i - 1, j - 1).underlying;
```


Projected share prices at option expiration
\}
\}

- Note: in $\mathrm{C}++23$, we will have the multidimensional square bracket operator overload:
- grid_(i, j)
- grid_[i, j]
// Prior to C++23
// C++23

Binomial Lattice Option Pricing Implementation

- Then, iterate backward in time through the mdarray: calc_payoffs_(.)
- Start at last column at expiration, calculate actual payoff and set on struct
- Traverse backward by column first, then row top to bottom
- Calculate the discounted expected payoffs for each node and set on the Node
- If an American option, compare with what the actual payoff would be at each prior node and replace if greater
- Value at final node ($[0,0]$ position) in the mdarray, is the estimated option value

Trinomial Lattices

- Trinomial lattices are common in
- Option models with stochastic interest rates
- Incorporating variable volatility models
time_points_\{ time_steps + 1 \}, grid_\{ time_points_ + 1, time_points_ \}

- It is also possible to have options on more than one security
- Example payoffs, $S_{i}^{T}=$ price of $i^{\text {th }}$ security at expiration T, strike price X
- $\max \left(S_{1}^{T}, S_{2}^{T}\right)$ Maximum of two asset prices
- $\max \left(S_{1}^{T}, S_{2}^{T}, S_{3}^{T}\right)$ Maximum of three asset prices
- $\max \left(S_{1}^{T}, S_{2}^{T}, X\right)-X$ Call on the maximum of two asset prices
- Price projection of two assets:


```
stdex::mdarray<Node, stdex::dextents<int, 3)> grid_;
time_points_{ time_steps + 1 },
grid_{ time_points_, time_points_, time_points_ }
```

- Need more time steps (and nodes) for the price to converge
- Results tend to oscillate
- Mitigate by taking average over n and $n+1$ steps
- "Typical" range for n : 50-350
- Depends upon the type and terms of the option

James, Figure 7.11, p 85

Convergence

- Previous example: American call with dividend

```
int start_iter{ 65 }, max_iterations{ 10 };
vector<double> avg_values;
double penult_val = 0.0, max_pts_val = 0.0, new_price = 0.0, last_price = 0.0;
for (int n = start_iter; n <= start_iter + max_iterations; ++n)
    auto cp = make_unique<CallPayoff>(strike);// cp = "call pointer"
    VanillaOption call(std::move(cp), time_to_exp);
    BinomialLatticePricer call_pricer{ std::move(call), mkt_vol, rf_rate, n, div_rate }
    new_price = call_pricer.calc_price(spot, OptType::American);
    cout << format("Time points = {}, Call option price = {}\n", n, new_price) ;
    if (last_price > 0)
    { avg_values.push_back((new_price + last_price) / 2.0);
    }
    last_price = new_price;
}
cout << "\nAverage values over (n, n + 1):\n";
for (double x : avg_values)
{
    cout << x << "\n";
}
cout << "\n\nOption value = last average value: " << avg_values.back() << "\n\n";
```


Convergence

- Results:

Price convergence of an American call option (with dividend):
American Call Option: strike $=30, \mathrm{rf}$ rate $=0.06$, vol $=0.2$ time to $\exp (y r)=1$, ann div rate $=0.075$, spot $=32$

Time points $=65$, Call option price $=3.2410748526085094$
Time points $=66$, Call option price $=3.2451088835792774$
Time points $=67$, Call option price $=3.240382233154151$
Time points $=68$, Call option price $=3.2452714284503634$
Time points $=69$, Call option price $=3.2397379581732584$
Time points $=70$, Call option price $=3.2453696939935845$
Time points $=71$, Call option price $=3.2391012017460277$
Time points $=72$, Call option price $=3.2454060060945635$
Time points $=73$, Call option price $=3.238464115494065$
Time points $=74$, Call option price $=3.24539330008411$
Time points $=75$, Call option price $=3.2378588597204407$
Average values over $(\mathrm{n}, \mathrm{n}+1):$
3.24309
3.24275
3.24283
3.2425
3.24255
3.24224
3.24225
3.24194
3.24193
3.24163

Option value = last average value: 3.24163

Wind-Up

References

Summary

References

- Peter James, Option Theory, Wiley (2003)
- Chapters 7, 9, and 12
- Yuh-Dauh Lyuu, Financial Engineering and Computation, Cambridge (2002)
- Chapters 7-8
- Mark Joshi, C++ Design Patterns and Derivatives Pricing (2E), Cambridge (2008)
- Chapter 4

Financial Engineering and Computation

C++ Design Patterns and Derivatives pricing

Second edition
Mark S. Joshi

References

- WG21 Proposal P1684

- https://wg21.link/p1684
- Special thanks to Mark Hoemmen, co-author P1684

mdarray: An Owning Multidimensional Array Analog of mdspan

Document \#:	P1684R4
Date:	2023-01-14
Project:	Programming Language C++ Library Evolution
Reply-to:	Christian Trott
	crtrott@sandia.gov
	Daisy Hollman
	me@dsh.fyi
	Mark Hoemmen
	mark.hoemmen@gmail.com
	Daniel Sunderland
	dansunderland@gmail.com
	Damien Lebrun-Grandie
	lebrungrandt@ornl.gov

- mdspan coming in C++23: Multidimensional view of 1-D container - mdarray expected in C++26
- Can use for case where data not known in advance
- "Ready made" for binomial lattice models
$>$ American option pricing
$>$ Can evaluate optimal early exercise
- Generic multidimensional array
- Can be extended to trinomial lattice
$>$ Stochastic interest rates
$>$ Stochastic volatility
- Can be extended to three or more dimensions
$>$ Maximum of two asset prices
$>$ Maximum of three asset prices
$>$ Call/Put on the maximum of two asset prices
$>$ Other multi-asset exotic options...
- Node object can be modified or extended for more complex payoffs
- Contact:
- daniel (at) cppcon.org (Student Program Advisor, CppCon)
- https://www.linkedin.com/in/danielhanson/
- Thank You!
- Questions?

