
Pricing Equity Options with mdarray
NWCPP

17 May 2023

• Coming this year to C++23: std::mdspan (P0009)

• Can impose a multidimensional array structure on a reference to a container, such as an
STL vector (without tears)

• View of existing data (ie, non-owning)

• Example: 2-D “matrix” view of vector data:

vector<int> v{ 101, 102, 103, 104, 105, 106 };

auto mds1 = std::mdspan{ v.data(), 3, 2 }; // using CTAD

• Terminology:
• rows and columns are referred to as extents

• the number of rows and columns are accessed by the index of each extent, 0 for rows
and 1 for columns

• The total number of extents is referred to as the rank

int n_rows{ mds1.extent(0) }; // 3 rows

int n_cols{ mds1.extent(1) }; // 2 columns

int n_extents{ mds1.rank() }; // rank = 2

• For higher-order multidimensional arrays, the rank would be greater than two

• Extent sizes for mdspan (and mdarray) can be dynamically allocated

Introduction

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 2

Note: The term rank as applied to
mdspan is not the same as the
mathematical definition of the rank of
a matrix. This naming might
unfortunately seem confusing, but it’s
something one should be aware of.

101 102

103 104

105 106

• What if we don’t know the data a priori?

• What if we want to generate values and place them in a two-dimensional array
format, for example?

• Enter mdarray (P1684)

• Expected in C++26

• But available on GitHub now (https://github.com/kokkos/mdspan)

• In namespace std::experimental

• Will use the alias

namespace stdex = std::experimental;

• Number of rows and columns can be allocated dynamically:

stdex::mdarray<int, stdex::dextents<int, 2>> test_mdarray{ m, n };

• stdex::dextents => dynamic extents

• “Two dynamic extents of int type” (m, n are arbitrary (positive) int values)

Introduction

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 3

https://github.com/kokkos/mdspan

Binomial Lattice Option Pricing

Options Trading and the Model

Daniel Hanson NWCPP 17 May 2023 4

• An equity (stock) option is a derivative that gives the holder the right to buy or sell
the stock at set price (the exercise price) on or before the expiration date
• Call option: option to buy

• Put option: option to sell

• Let 𝑆 = the underlying stock price

• Let 𝑋 = the exercise (strike) price

• The payoff when exercised:
• Call option: 𝑚𝑎𝑥 𝑆 − 𝑋, 0

• Put option: 𝑚𝑎𝑥 𝑋 − 𝑆, 0

• In-the-money (ITM)
• Call option: 𝑆 − 𝑋 > 0

• Put option: 𝑋 − 𝑆 < 0

• At-the-money (ATM) if equal

• Out-of-the-money (OTM) otherwise

Binomial Lattice Option Pricing

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 5

Call option time t < expiration
Strike X = 95
Solid line: Value of option (prior to exercise)
Dotted line: Intrinsic value (payoff if exercised)
Difference: Time value
S > 95 ATM, S = 95 ITM, S < 95 OTM

(Lyuu, Figure 7.3, p 77)

• When can we exercise an options contract? (example: call option)
• European: may only be exercised on the expiration date

• American: may be exercised any time before or on the expiration date

• Either type may be bought or sold anytime before expiration (t = T)

• Goal: Calculate a fair price for a call option today (t = 0)

• Note: The price of an American option is never less than a European option

Binomial Lattice Option Pricing

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 6

Positive Payoffs

Payoffs = 0

Strike = 105

t=0 t=T

• European equity options can be valued using the closed-form Black-
Scholes pricing formula

• American option valuation requires numerical approximation

• No closed form formula exists

• Need to check for optimal early exercise

• The Binomial Lattice pricing model is well-suited for this purpose

• This is where mdarray can help us

• Boost MultiArray is also useful

• But now we will have a tool in the C++ Standard Library

Binomial Lattice Option Pricing

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 7

• Call option, time to expiration = 1 year

• Binomial lattice with 4 time steps (plus t = 0)
• Time step = Δt = ¼ = 0.25

• Initial (spot) equity price = 32

• Volatility (σ) = 0.20, annual risk-free rate (r) = 6%, annual (continuous) dividend(q) = 7.5%

• Prices projected out with up and down moves:

➢ 32𝑒0.2 0.25 = 35.37

➢ 32𝑒−0.2 0.25 = 28.95

Step 1: Project Prices Forward

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 9

28.95

32.00

35.37

26.20

32.00

39.08

23.71

28.95

35.37

43.20

21.45

26.20

32.00

39.08

47.74

0 1 2 3time point 4

Expiration

• Calculate discounted expected payoffs moving back in time

• 𝑋 = 30: Strike price (exercise price)

• At expiration: 𝑚𝑎𝑥 𝑆 − 𝑋, 0

➢ node (0, 4): 𝑚𝑎𝑥(47.74 – 30.00, 0) = 17.74

➢ node (3, 4): 𝑚𝑎𝑥(26.20 – 30.00, 0) = 0

• At each preceding node, compute the expected value and discount back by Δt = 0.25, using

➢ node(0, 3) = 𝑒−0.06 0.25 17.74𝑝 + 9.08 1 − 𝑝 = 12.84

➢ node(0, 0) = 𝑒−0.06 0.25 5.33𝑝 + 1.47 1 − 𝑝 = 3.19

➢ Price of the Euro call option = 3.19 (exercise possible at expiry only)

Step 2: Discounted Expected Payoffs (European Case)

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 10

28.95
1.47

32.00
3.19

35.37
5.33

26.20
0.40

32.00
2.80

39.08
8.53

23.71
0.00

28.95
0.90

35.37
5.15

43.20
12.84

21.45
0.00

26.20
0.00

32.00
2.00

39.08
9.08

47.74
17.74

0 1 2 3time step 4

• American options can be exercised anytime before expiration

• Need to check for optimal early exercise (mdarray becomes especially useful here)

• Start with payoffs at expiration

• Compare discounted expected payoff to actual payoff at each node moving backward in time

➢ node(0, 3) = max(12.84, 43.20 - 30) = 13.20

➢ node(0, 2) = max(8.80, 39.08 - 30) = 9.08

➢ Each subsequent discounted expected value is based on the updated payoffs in the subsequent time period

➢ It is then compared with the actual payoff if exercised

➢ node(0, 0) = max(3.34, 32.00 – 30) = 3.34 = Value of the American option

American Call Option

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 11

28.95
1.52

32.00
3.34

35.37
5.63

26.20
0.40

32.00
2.89

39.08
8.80 9.08

23.71
0.00

28.95
0.90

35.37
5.15 5.37

43.20
12.84 13.20

21.45
0.00

26.20
0.00

32.00
2.00

39.08
9.08

47.74
17.74

0 1 2 3time step 4

Optimal Early
Exercise Boundary

Binomial Lattice Option Pricing
Implementation using mdarray

Extensions and Convergence

Daniel Hanson NWCPP 17 May 2023 12

• A VanillaOption class

• Does not perform valuation

• Holds a Payoff resource (call or put, determined at runtime), and time to expiration

• The Payoff resource will represent the payoff of an option

• Call or Put, determined dynamically

• Holds the contractual strike price

• Returns the payoff given the underlying market share price

• The assembled vanilla option contract

• Is passed to BinomialLatticePricer for valuation

• The generated lattice data is held on the mdarray member grid_ with Node template parameter

Binomial Lattice Option Pricing Implementation

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 13

• Putting this into a two-dimensional array in C++

• Project up movement from each element in a given column

• The last element is also projected to a down movement

Price Projection in Code

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 14

Index 0 1 2 3 4

0 32.00 35.37 39.08 43.20 47.74

1 28.95 32.00 35.37 39.08

2 26.20 28.95 32.00

3 23.71 26.20

4 21.45

• BinomialLatticePricer class:

• VanillaOption opt holds the payoff (call or put) and time to expiration

• calc_price(.)

➢ Can take in a European or American option type – mdarray itself doesn’t care

➢ Underlying spot price taken from current market data

• Node struct

➢ Set underlying prices projecting out the lattice

➢ Set discounted expected payoffs on the return trip

• mdarray<Node, stdex::dextents<size_t, 2>> grid_ member: stores the lattice dynamically

➢ 2 extents (rows and columns)

➢ Will store underlying and payoff

values at each lattice node

Binomial Lattice Option Pricing Declaration

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 15

• r = risk-free interest rate (int_rate), q (div_rate) = continuous annual dividend rate

• σ (vol) = volatility of stock price (annualized)

• Δt (dt)

• year fraction over one time step

• Ex: One year divided into four time steps of length Δt = 0.25

• BinomialLatticePricer implementation – constructor

• Initializes the 2-D mdarray

➢ number of rows and columns = number of time steps + 1 (“time points”)

➢ Template parameter: Node

• Computes and assigns the lattice parameters u_, d_, p_

• Calculates the constant discount factor (disc_fctr_) over each Δt: 𝑒−𝑟∆𝑡

Binomial Lattice Option Pricing Implementation

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 16

• BinomialLatticePricer implementation – valuing the option

• Divided into two steps

• Project the generated prices forward in time: Calculate the expected payoffs

• Traverse the lattice back in time: Check for optimal early exercise

• opt_type: European or American

Binomial Lattice Option Pricing Implementation

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 17

• Project the underlying share prices forward in time: project_prices_()
• Initial (spot) share price = 32 set at terminal node

• Iterate forward over the mdarray

➢ By column

➢ Then row

➢ Multiply each previous price by values of u (up move return) and d (down move return)

➢ Set the underlying value on the Node struct at each node

• Note: in C++23, we will have the multidimensional square bracket operator overload:
• grid_(i, j) // Prior to C++23

• grid_[i, j] // C++23

Binomial Lattice Option Pricing Implementation

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 18

Projected share
prices at option
expiration

• Then, iterate backward in time through the mdarray: calc_payoffs_(.)

• Start at last column at expiration, calculate actual payoff and set on struct

• Traverse backward by column first, then row top to bottom

• Calculate the discounted expected payoffs for each node and set on the Node

• If an American option, compare with what the actual payoff would be at each prior node and replace if greater

• Value at final node ([0, 0] position) in the mdarray, is the estimated option value

Binomial Lattice Option Pricing Implementation

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 19

Projected Share Prices (previous step)

Optimal Early
Exercise Boundary

• Trinomial lattices are common in
• Option models with stochastic interest rates

• Incorporating variable volatility models

James, Figure 9.8, p 119

Trinomial Lattices

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 20

Index 0 1 2 3

0 100 119.34 142.41 169.95

1 100 119.34 142.41

2 83.80 100 119.34

3 83.80 100

4 70.22 83.80

5 70.22

6 58.84

time_points_{ time_steps + 1 },
grid_{ time_points_ + 1, time_points_ }

• It is also possible to have options on more than one security

• Example payoffs, 𝑆𝑖
𝑇 = price of 𝑖𝑡ℎ security at expiration 𝑇, strike price 𝑋

• max 𝑆1
𝑇 , 𝑆2

𝑇 Maximum of two asset prices

• max 𝑆1
𝑇 , 𝑆2

𝑇 , 𝑆3
𝑇 Maximum of three asset prices

• max 𝑆1
𝑇 , 𝑆2

𝑇 , 𝑋 − 𝑋 Call on the maximum of two asset prices

• Price projection of two assets:

James, Figure 12.1, p 160

Higher Dimensions

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 21

stdex::mdarray<Node, stdex::dextents<int, 3>> grid_;
. . .
time_points_{ time_steps + 1 },
grid_{ time_points_, time_points_, time_points_ }

• Need more time steps (and nodes) for the price to converge

• Results tend to oscillate

• Mitigate by taking average over 𝑛 and 𝑛 + 1 steps
• “Typical” range for 𝑛: 50-350
• Depends upon the type and terms of the option

James, Figure 7.11, p 85

Convergence

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 22

• Previous example: American call with dividend

Convergence

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 23

int start_iter{ 65 }, max_iterations{ 10 };

vector<double> avg_values;
double penult_val = 0.0, max_pts_val = 0.0, new_price = 0.0, last_price = 0.0;
for (int n = start_iter; n <= start_iter + max_iterations; ++n)
{
auto cp = make_unique<CallPayoff>(strike);// cp = "call pointer"
VanillaOption call(std::move(cp), time_to_exp);

BinomialLatticePricer call_pricer{ std::move(call), mkt_vol, rf_rate, n, div_rate };

new_price = call_pricer.calc_price(spot, OptType::American);
cout << format("Time points = {}, Call option price = {}\n", n, new_price) ;

if (last_price > 0)
{
avg_values.push_back((new_price + last_price) / 2.0);

}

last_price = new_price;
}

cout << "\nAverage values over (n, n + 1):\n";
for (double x : avg_values)
{
cout << x << "\n";

}

cout << "\n\nOption value = last average value: " << avg_values.back() << "\n\n";

• Results:

Convergence

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 24

Wind-Up
References

Summary

Daniel Hanson NWCPP 17 May 2023 25

• Peter James, Option Theory, Wiley (2003)

• Chapters 7, 9, and 12

• Yuh-Dauh Lyuu, Financial Engineering and Computation, Cambridge (2002)

• Chapters 7-8

• Mark Joshi, C++ Design Patterns and Derivatives Pricing (2E), Cambridge (2008)

• Chapter 4

References

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 26

• WG21 Proposal P1684
• https://wg21.link/p1684

• Special thanks to Mark Hoemmen, co-author P1684

References

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 27

https://wg21.link/p1684

• mdspan coming in C++23: Multidimensional view of 1-D container

• mdarray expected in C++26
• Can use for case where data not known in advance
• “Ready made” for binomial lattice models

➢American option pricing
➢Can evaluate optimal early exercise

• Generic multidimensional array
• Can be extended to trinomial lattice

➢Stochastic interest rates
➢Stochastic volatility

• Can be extended to three or more dimensions
➢Maximum of two asset prices
➢Maximum of three asset prices
➢ Call/Put on the maximum of two asset prices
➢ Other multi-asset exotic options…

• Node object can be modified or extended for more complex payoffs

Summary

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 28

• Contact:
• daniel (at) cppcon.org (Student Program Advisor, CppCon)

• https://www.linkedin.com/in/danielhanson/

• Thank You!

• Questions?

Contact/ Questions

Daniel Hanson (Copyright © 2023) NWCPP 17 May 2023 29

https://www.linkedin.com/in/danielhanson/

	Default Section
	Slide 1: Pricing Equity Options with mdarray

	Introduction
	Slide 2: Introduction
	Slide 3: Introduction

	Binomial Lattice - The Model
	Slide 4: Binomial Lattice Option Pricing
	Slide 5: Binomial Lattice Option Pricing
	Slide 6: Binomial Lattice Option Pricing
	Slide 7: Binomial Lattice Option Pricing
	Slide 9: Step 1: Project Prices Forward
	Slide 10: Step 2: Discounted Expected Payoffs (European Case)
	Slide 11: American Call Option
	Slide 12: Binomial Lattice Option Pricing
	Slide 13: Binomial Lattice Option Pricing Implementation
	Slide 14: Price Projection in Code
	Slide 15: Binomial Lattice Option Pricing Declaration
	Slide 16: Binomial Lattice Option Pricing Implementation
	Slide 17: Binomial Lattice Option Pricing Implementation
	Slide 18: Binomial Lattice Option Pricing Implementation
	Slide 19: Binomial Lattice Option Pricing Implementation

	Extensions and Multidimensional Cases
	Slide 20: Trinomial Lattices
	Slide 21: Higher Dimensions

	Convergence
	Slide 22: Convergence
	Slide 23: Convergence
	Slide 24: Convergence

	References & Summary
	Slide 25: Wind-Up
	Slide 26: References
	Slide 27: References
	Slide 28: Summary
	Slide 29: Contact/ Questions

