Pricing Equity Options with mdarray
NWCPP
17 May 2023
• Coming this year to C++23: `std::mdspan` (P0009)
 • Can impose a multidimensional array structure on a reference to a container, such as an STL vector (without tears)
 • View of existing data (i.e., non-owning)
 • Example: 2-D “matrix” view of vector data:

```cpp
vector<int> v{ 101, 102, 103, 104, 105, 106 };  
auto mds1 = std::mdspan{ v.data(), 3, 2 };    // using CTAD
```

• Terminology:
 • rows and columns are referred to as *extents*
 • the number of rows and columns are accessed by the index of each extent, 0 for rows and 1 for columns
 • The total number of extents is referred to as the *rank*

```cpp
int n_rows{ mds1.extent(0) };    // 3 rows
int n_cols{ mds1.extent(1) };    // 2 columns
int n_extents{ mds1.rank() };    // rank = 2
```

• For higher-order multidimensional arrays, the rank would be greater than two

• Extent sizes for `mdspan` (and `mdarray`) can be dynamically allocated

Note: The term *rank* as applied to `mdspan` is not the same as the mathematical definition of the *rank of a matrix*. This naming might unfortunately seem confusing, but it’s something one should be aware of.
• What if we don’t know the data a priori?
• What if we want to generate values and place them in a two-dimensional array format, for example?
• Enter `mdarray` (P1684)

 • Expected in C++26
 • But available on GitHub now (https://github.com/kokkos/mdspan)
 • In namespace `std::experimental`
 • Will use the alias
    ```cpp
    namespace stdex = std::experimental;
    ```

• Number of rows and columns can be allocated dynamically:

  ```cpp
  stdex::mdarray<int, stdex::dextents<int, 2>> test_mdarray{ m, n };
  ```

 • `stdex::dextents` => dynamic extents
 • “Two dynamic extents of `int` type” (m, n are arbitrary (positive) `int` values)
Binomial Lattice Option Pricing

Options Trading and the Model
An equity (stock) option is a derivative that gives the holder the right to buy or sell the stock at set price (the exercise price) on or before the expiration date:

- Call option: option to buy
- Put option: option to sell

Let S = the underlying stock price
Let X = the exercise (strike) price

The payoff when exercised:
- Call option: $max(S - X, 0)$
- Put option: $max(X - S, 0)$

- In-the-money (ITM)
 - Call option: $(S - X) > 0$
 - Put option: $(X - S) < 0$
- At-the-money (ATM) if equal
- Out-of-the-money (OTM) otherwise

Call option time $t < \text{expiration}$
Strike $X = 95$
Solid line: Value of option (prior to exercise)
Dotted line: Intrinsic value (payoff if exercised)
Difference: Time value
$S > 95 \text{ ATM, } S = 95 \text{ ITM, } S < 95 \text{ OTM}$

(Lyuu, Figure 7.3, p 77)
When can we exercise an options contract? (example: call option)

- **European**: may only be exercised on the expiration date
- **American**: may be exercised any time before or on the expiration date

Either type may be bought or sold anytime before expiration ($t = T$)

Goal: Calculate a fair price for a call option today ($t = 0$)

Note: The price of an American option is never less than a European option
European equity options can be valued using the closed-form Black-Scholes pricing formula.

American option valuation requires numerical approximation:
- No closed form formula exists
- Need to check for optimal early exercise
- The Binomial Lattice pricing model is well-suited for this purpose
- This is where mdarray can help us
- Boost MultiArray is also useful
- But now we will have a tool in the C++ Standard Library
Step 1: Project Prices Forward

- Call option, time to expiration = 1 year
- Binomial lattice with 4 time steps (plus t = 0)
 - Time step = $\Delta t = \frac{1}{4} = 0.25$
 - Initial (spot) equity price = 32
 - Volatility (σ) = 0.20, annual risk-free rate (r) = 6%, annual (continuous) dividend (q) = 7.5%
 - Prices projected out with up and down moves:
 - $32e^{0.2\sqrt{0.25}} = 35.37$
 - $32e^{-0.2\sqrt{0.25}} = 28.95$
 - $u = e^{\sigma\sqrt{\Delta t}}$
 - $d = \frac{1}{u} = e^{-\sigma\sqrt{\Delta t}}$
Step 2: Discounted Expected Payoffs (European Case)

- Calculate discounted expected payoffs moving back in time
 - $X = 30$: Strike price (exercise price)
 - At expiration: $\max(S - X, 0)$
 - node (0, 4): $\max(47.74 - 30.00, 0) = 17.74$
 - node (3, 4): $\max(26.20 - 30.00, 0) = 0$
 - At each preceding node, compute the expected value and discount back by $\Delta t = 0.25$, using
 - node(0, 3) = $e^{-0.06(0.25)}(17.74p + 9.08(1 - p)) = 12.84$
 - node(0, 0) = $e^{-0.06(0.25)}(5.33p + 1.47(1 - p)) = 3.19$
 - Price of the Euro call option = 3.19 (exercise possible at expiry only)

\[
p = \frac{e^{(r-q)\Delta t} - e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}} - e^{-\sigma\sqrt{\Delta t}}}
\]
American options can be exercised anytime before expiration

- Need to check for optimal early exercise (mdarray becomes especially useful here)
- Start with payoffs at expiration
- Compare discounted expected payoff to actual payoff at each node moving backward in time

\[
\begin{align*}
\text{node}(0, 3) &= \max(12.84, 43.20 - 30) = 13.20 \\
\text{node}(0, 2) &= \max(8.80, 39.08 - 30) = 9.08 \\
\text{node}(0, 0) &= \max(3.34, 32.00 - 30) = 3.34 = \text{Value of the American option}
\end{align*}
\]

Optimal Early Exercise Boundary
Binomial Lattice Option Pricing
Implementation using mdarray
Extensions and Convergence
• A `VanillaOption` class
 • Does not perform valuation
 • Holds a `Payoff` resource (call or put, determined at runtime), and time to expiration

• The `Payoff` resource will represent the payoff of an option
 • Call or Put, determined dynamically
 • Holds the contractual strike price
 • Returns the payoff given the underlying market share price

• The assembled vanilla option contract
 • Is passed to `BinomialLatticePricer` for valuation
 • The generated lattice data is held on the `mdarray` member `grid_` with `Node` template parameter
Putting this into a two-dimensional array in C++

- Project up movement from each element in a given column
- The last element is also projected to a down movement

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.00</td>
<td>35.37</td>
<td>39.08</td>
<td>43.20</td>
<td>47.74</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>28.95</td>
<td>32.00</td>
<td>35.37</td>
<td>39.08</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>26.20</td>
<td>28.95</td>
<td>32.00</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>23.71</td>
<td>26.20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.45</td>
</tr>
</tbody>
</table>
Binomial Lattice Option Pricing Declaration

- **BinomialLatticePricer** class:
 - **VanillaOption** `opt` holds the payoff (call or put) and time to expiration
 - **calc_price(.)**
 - Can take in a European or American option type – **mdarray** itself doesn’t care
 - Underlying spot price taken from current market data
 - **Node** struct
 - Set underlying prices projecting out the lattice
 - Set discounted expected payoffs on the return trip
 - **mdarray<Node, stdex::dextents<size_t, 2>> grid_** member: stores the lattice dynamically
 - 2 extents (rows and columns)
 - Will store underlying and payoff values at each lattice node

```cpp
struct Node {
  double underlying;
  double payoff;
};

enum class OptType {
  Euro,
  American
};

class BinomialLatticePricer {
  public:
    BinomialLatticePricer(VanillaOption& opt,
      double vol, double int_rate, int time_steps,
      double div_rate = 0.0);

    double calc_price(double spot, OptType opt_type);

    void display_lattice_nodes() const;

  private:
    VanillaOption opt_;
    double vol_, int_rate_,
    int time_points_;
    double div_rate_;

    double u_(0.0), d_(0.0);  // up and down factors
    double p_(0.0);           // probability of up move
    double disc_fctr_;        // discount factor

    stdex::mdarray<Node, stdex::dextents<int, 2>> grid_;

    double spot_(0.0), opt_price_(0.0);

    void project_prices();
    void calc_payoffs_(OptType opt_type);
};
```
- \(r \) = risk-free interest rate (\texttt{int_rate}), \(q \) (\texttt{div_rate}) = continuous annual dividend rate

- \(\sigma \) (\texttt{vol}) = volatility of stock price (annualized)

- \(\Delta t \) (\texttt{dt})
 - year fraction over one time step
 - Ex: One year divided into four time steps of length \(\Delta t = 0.25 \)

- \textbf{BinomialLatticePricer} implementation – constructor
 - Initializes the 2-D mdarray
 - number of rows and columns = number of time steps + 1 ("time points")
 - Template parameter: \texttt{Node}
 - Computes and assigns the lattice parameters \(u__, d__, p__ \)
 - Calculates the constant discount factor (\texttt{disc_fctr_}) over each \(\Delta t \): \(e^{-r \Delta t} \)

```c++
BinomialLatticePricer::BinomialLatticePricer(VanillaOption opt, double vol, double int_rate, int time_sterps, double div_rate) :
    opt(std::move(opt)), vol(vol), int_rate(int_rate),
    time_points(time_steps + 1), div_rate(div_rate),
    grid(time_points_, time_points_)
{
    double dt = opt.time_to_expiration() / time_steps;
    u_ = std::exp(vol * std::sqrt(dt));
    d_ = 1.0 / u_;
    p_ = 0.5 * (1.0 + (int_rate - div_rate - 0.5 * vol * vol) * std::sqrt(dt) / vol);
    disc_fctr_ = std::exp(-(int_rate)*dt);
}
```
Binomial Lattice Option Pricing Implementation

- **BinomialLatticePricer** implementation – valuing the option
- Divided into two steps
 - Project the generated prices forward in time: Calculate the expected payoffs
 - Traverse the lattice back in time: Check for optimal early exercise
 - `opt_type`: European or American

```cpp
double BinomialLatticePricer::calc_price(double spot, OptType opt_type) {
    spot = spot;
    project_prices();
    calc_payoffs_(opt_type);
    return opt_price_;
}
```
• Project the underlying share prices forward in time: `project_prices()`
 • Initial (spot) share price = 32 set at terminal node
 • Iterate forward over the `mdarray`
 ➢ By column
 ➢ Then row
 ➢ Multiply each previous price by values of u (up move return) and d (down move return)
 ➢ Set the underlying value on the `Node` struct at each node

```cpp
void BinomialLatticePricer::project_prices()
{
    grid_(0, 0).underlying = spot_; // Initial share price at terminal node
    // j: columns, i: rows.
    // Traverse by columns, then set node in each row.
    for (int j = 1; j < time_points; ++j)
    {
        for (int i = 0; i <= j; ++i)
        {
            if (i < j)
            {
                grid_(i, j).underlying = u_ * grid_(i, j - 1).underlying;
            }
            else  // (i == j)
            {
                grid_(i, j).underlying = d_ * grid_(i - 1, j - 1).underlying;
            }
        }
    }
}
```

• **Note:** in C++23, we will have the multidimensional square bracket operator overload:
 • `grid_(i, j)` // Prior to C++23
 • `grid_[i, j]` // C++23
Then, iterate *backward* in time through the `mdarray`: `calc_payoffs_(.)`

- Start at last column at expiration, calculate actual payoff and set on struct
- Traverse backward by column first, then row top to bottom
- Calculate the discounted expected payoffs for each node and set on the Node
- If an American option, compare with what the actual payoff would be at each prior node and replace if greater
- Value at final node ([0, 0] position) in the mdarray, is the estimated option value

```c
void BinomialLatticePricer::calc_payoffs_(OptType opt_type)
{
    for (int j = time_points_ - 1; j >= 0; --j)
    {
        for (int i = 0; i <= j; ++i)
        {
            if (j == time_points_ - 1) // Actual (not expected) payoff at expiration
            {
                grid_(i, j).payoff = opt_option_payoff(grid_(i, j).underlying);
            }
            else // Each node prior to expiration
            {
                double exct_val = p_ * grid_(i, j + 1).payoff;
                exct_val += (1.0 - p_) * grid_(i + 1, j + 1).payoff;
                exct_val *= disc_fctr;
                if (opt_type == OptType::American)
                {
                    grid_(i, j).payoff = // Check if exercise is optimal
                        std::max(exct_val, opt_option_payoff(grid_(i, j).underlying));
                }
                else // OptType::Euro
                {
                    grid_(i, j).payoff = exct_val;
                }
            }
        }
    }
    opt_price_ = grid_(0, 0).payoff; // Value of the option
}
```
Trinomial lattices are common in

- Option models with stochastic interest rates
- Incorporating variable volatility models

\[S_{+3} = 169.95 \]
\[S_{+2} = 142.41 \]
\[\lambda_{+3}^{d_m} = 0.0175 \]
\[\lambda_{+1}^{d_m} = 0.2555 \]
\[S_{+1} = 119.34 \]
\[S_{2} = 83.80 \]
\[S_{1} = 70.22 \]
\[S_{0} = 100 \]

Index | 0 | 1 | 2 | 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>119.34</td>
<td>142.41</td>
<td>169.95</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>119.34</td>
<td>142.41</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>83.80</td>
<td>100</td>
<td>119.34</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>83.80</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70.22</td>
<td>83.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>70.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>58.84</td>
</tr>
</tbody>
</table>

time_points_{ time_steps + 1 },
grid_{ time_points_ + 1, time_points_ }

James, Figure 9.8, p 119
• It is also possible to have options on more than one security

• Example payoffs, \(S_i^T \) = price of \(i^{th} \) security at expiration \(T \), strike price \(X \)
 - \(\max(S_1^T, S_2^T) \) Maximum of two asset prices
 - \(\max(S_1^T, S_2^T, S_3^T) \) Maximum of three asset prices
 - \(\max(S_1^T, S_2^T, X) - X \) Call on the maximum of two asset prices

• Price projection of two assets:

```
stdex::mdarray<Node, stdex::dextents<int,(3)> grid_;
...

time_points_{ time_steps + 1 },
grid_{ time_points_, time_points_, time_points_ }
```
• Need more time steps (and nodes) for the price to converge

• Results tend to oscillate

• Mitigate by taking average over \(n \) and \(n + 1 \) steps
 • “Typical” range for \(n \): 50-350
 • Depends upon the type and terms of the option

James, Figure 7.11, p 85
• Previous example: American call with dividend

```cpp
int start_iter{ 65 }, max_iterations{ 10 };

vector<double> avg_values;
double penult_val = 0.0, max_pts_val = 0.0, new_price = 0.0, last_price = 0.0;
for (int n = start_iter; n <= start_iter + max_iterations; ++n)
{
    auto cp = make_unique<CallPayoff>(strike);// cp = "call pointer"
    VanillaOption call(std::move(cp), time_to_exp);
    BinomialLatticePricer call_pricer{ std::move(call), mkt_vol, rf_rate, n, div_rate };
    new_price = call_pricer.calc_price(spot, OptType::American);
    cout << format("Time points = {}, Call option price = {}\n", n, new_price); 

    if (last_price > 0)
    {
        avg_values.push_back((new_price + last_price) / 2.0);
    }
    last_price = new_price;
}

cout << "\nAverage values over (n, n + 1):\n";
for (double x : avg_values)
{
    cout << x << "\n";
}
cout << "\nOption value = last average value: " << avg_values.back() << "\n";
```
Results:

Price convergence of an American call option (with dividend):

American Call Option: strike = 30, rf rate = 0.06, vol = 0.2
time to exp (yr) = 1, ann div rate = 0.075, spot = 32

Time points = 65, Call option price = 3.2410748526085094
Time points = 66, Call option price = 3.2451088835792774
Time points = 67, Call option price = 3.240382233154151
Time points = 68, Call option price = 3.2452714284503634
Time points = 69, Call option price = 3.2397379581732584
Time points = 70, Call option price = 3.2453696939935845
Time points = 71, Call option price = 3.2391012017460277
Time points = 72, Call option price = 3.2454060060945635
Time points = 73, Call option price = 3.2384641154940665
Time points = 74, Call option price = 3.24539330008411
Time points = 75, Call option price = 3.2378588597204407

Average values over \((n, n + 1)\):

3.24309
3.24275
3.24283
3.24283
3.2425
3.24255
3.24224
3.24225
3.24194
3.24193
3.24163

Option value = last average value: 3.24163
Wind-Up

References

Summary
References

 - Chapters 7, 9, and 12

 - Chapters 7-8

 - Chapter 4

mdarray: An Owning Multidimensional Array Analog of mdspan

- **WG21 Proposal P1684**
 - https://wg21.link/p1684

- Special thanks to Mark Hoemmen, co-author P1684

Document #: P1684R4
Date: 2023-01-14
Project: Programming Language C++
Library Evolution
Reply-to: Christian Trott
<crtrott@sandia.gov>
Daisy Hollman
<me@dsh.fyi>
Mark Hoemmen
<mark.hoemmen@gmail.com>
Daniel Sunderland
<dansunderland@gmail.com>
Damien Lebrun-Grandie
<lebrunrandt@ornl.gov>
• **mdspan** coming in C++23: Multidimensional view of 1-D container

• **mdarray** expected in C++26
 - Can use for case where data not known in advance
 - “Ready made” for binomial lattice models
 - American option pricing
 - Can evaluate optimal early exercise

• Generic multidimensional array
 - Can be extended to trinomial lattice
 - Stochastic interest rates
 - Stochastic volatility
 - Can be extended to three or more dimensions
 - Maximum of two asset prices
 - Maximum of three asset prices
 - Call/Put on the maximum of two asset prices
 - Other multi-asset exotic options...

• **Node** object can be modified or extended for more complex payoffs
Contact/ Questions

• Contact:
 • daniel (at) cppcon.org (Student Program Advisor, CppCon)

 • https://www.linkedin.com/in/danielhanson/

• Thank You!

• Questions?