
Remedial C++ 17
Language
features

Pete Williamson
petewil00@hotmail.com

Original C++
C++ 98
C++ 11 (previously called C++ 0X)
C++ 14
C++ 17
C++ 20
C++ 23 (in planning)

C++ Landscape

By Nicolai M. Josuttis
Was the source for many of
the examples and the
organization for this talk.

https://www.cppstd17.com/

C++17 The Complete Guide

https://www.cppstd17.com/

● Making the text message for static_assert optional
● Allow typename (as an alternative to class) in a template template parameter
● New rules for auto deduction from braced-init-list
● Nested namespace definitions, e.g., namespace X::Y { … } instead of namespace X {

namespace Y { … } }
● Allowing attributes for namespaces and enumerators
● New standard attributes [[fallthrough]], [[maybe_unused]] and [[nodiscard]]
● UTF-8 (u8) character literals[16][19] (UTF-8 string literals have existed since C++11; C++17

adds the corresponding character literals for consistency, though as they are restricted to a
single byte they can only store ASCII)

● Hexadecimal floating-point literals
● Constant evaluation for all non-type template arguments
● Fold expressions, for variadic templates
● A compile-time static if with the form if constexpr(expression)
● Structured binding declarations, allowing auto [a, b] = getTwoReturnValues();

C++ 17 language changes (part 1)

● Initializers in if and switch statements
● copy-initialization and direct-initialization of objects of type T from prvalue expressions of

type T (ignoring top-level cv-qualifiers) shall result in no copy or move constructors from the
prvalue expression. See copy elision for more information.

● Some extensions on over-aligned memory allocation
● Class template argument deduction (CTAD), introducing constructor deduction guides, eg.

allowing std::pair(5.0, false) instead of explicitly specifying constructor arguments types
std::pair<double, bool>(5.0, false) or without an additional helper template function
std::make_pair(5.0, false).

● Inline variables, which allows the definition of variables in header files without violating the
one definition rule. The rules are effectively the same as inline functions

● __has_include, allowing the availability of a header to be checked by preprocessor
directives

● The keyword register is now reserved and unused (formerly deprecated)
● Value of __cplusplus changed to 201703L
● Exception specifications were made part of the function type

C++ 17 language changes (part 2)

● Most of Library Fundamentals TS I, including:
○ std::string_view, a read-only non-owning reference to a character sequence or string-slice
○ std::optional, for representing optional objects, a data type that may not always be returned by a

given algorithm with support for non-return
○ std::any, for holding single values of any type

● std::uncaught_exceptions, as a replacement of std::uncaught_exception in exception handling
● New insertion functions try_emplace and insert_or_assign for std::map and std::unordered_map key-value

associative data structures
● Uniform container access: std::size, std::empty and std::data
● Definition of "contiguous iterators"
● A file system library based on boost::filesystem
● Parallel versions of STL algorithms
● Additional mathematical special functions, including elliptic integrals and Bessel functions
● std::variant, a tagged union container
● std::byte, allowing char to be replaced for data types intending to model a byte of data as a byte rather

than a character
● Logical operator traits: std::conjunction, std::disjunction and std::negation

C++ 17 library changes

Structured Bindings

What it does:
Give local names to structure members
Example: (from Josuttis)
struct MyStruct { int i = 0; std::string s }
MyStruct ms;

auto [u, v] = ms;

Structured Bindings

When to use it:
Give local names to variables when a function returns a
struct - like multiple return values.

// keeps struct alive in scope.
auto[id, val] = getStruct();

Structured Bindings

Initialization inside if and switch

What it does:
Lets you init something before checking it
Example:
if (rc = file_open(foo); rc == SUCCESS) { … }
When to use it:
Not sure that I would, I think that the code clearer with
init outside. Just the same, we should be able to read it
in case somebody else writes it.

Initialization inside if and switch

Inline variables

What it does:
Just use “inline”, and you can define variables in header
files

Example:
In foo.h:
inline Foo globalFooObject;

Inline variables

When to use it:
You’re making a class entirely contained in a header file.

You want a single global object in your program, and the
header might be included in many cpp files. Before you
had to ensure that only one cpp file contained the object,
now you don’t need to put it in any of them.

Inline variables

Notes:
1. constexpr implies inline, so you can use

constexpr to get the same effect.
2. You can use inline with thread_local to get one

copy of the variable per thread.

Inline variables

Aggregate extensions

Uh, what was an aggregate again?
Remember how we can initialize a class using curly
braces? The part with the curlys is the aggregate.

MyData foo{“Meaning of Universe”, 42}

Aggregate extensions

What it does:
Aggregates can have base classes now
You can skip inner curly braces too

Aggregate Extensions

Example:
struct Data {
 std::string name;
 double value;
}

Data x {“Foo”, 1.4};

Aggregate Extensions

struct MoreData: Data {
 bool checked;
}

MoreData y{{“test1”, 1.8}, false};
MoreData z{“test2”, 5.4, true};

When to use it:
You want to initialize a derived class with an aggregate.

Aggregate Extensions

Mandatory Copy Elision

What it does:
In some cases, the compiler now has to construct an
object in its final location instead of making a temporary
and copying it. This used to be optional for the compiler.

Since it was optional, we had to write a copy constructor
and move operator for the class. Now we can skip that,
but only for unmaterialized objects.

Mandatory Copy Elision

Example (Josuttis):
class MyClass { … }
void foo(MyClass params) { … } // params is init by arg
MyClass bar() { return MyClass(); }

int main() {
 foo(MyClass{}); // pass temp to init param
 MyClass x = bar(); // use temp to init x
 foo(bar()); // use returned temp to init param
}

Mandatory Copy Elision

When to use it:
1. This guarantees better perf by avoiding copies
2. This lets us get away without writing copy ctor, move

operator - sometimes.

Mandatory Copy Elision

When we can’t use it:
We can’t use it for materialized objects:
MyClass foo() {
 MyClass obj;
 …
 // This has already been materialized
 return obj;
}

Mandatory Copy Elision

I rode through the desert on a function with no name.

Lambda extensions

What it does:
A number of small improvements to Lambdas:
● They are constexpr if they can safely be made

constexpr => You can use them at compile time.
● You can now capture the this pointer [*this] to get a

copy of the current object in case the lambda lives
longer than the calling scope.

● You can now capture objects by const reference

Lambda extensions

auto squared = [](auto val) {
 Return val * val;
};
// This can now be called at compile time.
std::array<int, squared(5)> a;

Lambda extensions examples

class C {
 private:
 Std::string name;
 public:
 void foo() {
 auto l1 = [*this] {
 std::cout << name << ‘\n’; };
 }

Lambda extensions examples

When to use it:
Helpful in moving more code to compile time to speed
up your app.

I would avoid functions where you capture a copy of the
object, but there could be edge cases where it helps. If
the lambda is complicated enough to need a copy of the
object, a normal function may be a better fit.

Lambda extensions

New Attributes

What it does:
C++ has had attributes (which act like Java annotations)
since C++ 11. C++ 17 adds several new ones.
● [[nodiscard]] - encourages warnings if result is

unused.
● [[maybe_unused]] - avoid warnings if not used
● [[fallthrough]] - avoid warnings for intentional

case statement fallthrough

New attributes

[[nodiscard]] int* foo();

int bar(int val,
 [[maybe_unused]] int debug_code)
{...}

New attributes examples

switch (error) {
 case (404):
 printf(“Page not found”);
 [[fallthrough]];
 case ():
 printf”(“bad request”);
 return REQUEST_ERROR;
}

[[fallthrough]] example

Sparingly. Every one of these, in my opinion, marks a
suboptimal design choice, consider refactoring the code
first. Might be useful for adding to old code as you
increase warning level.

When to use new attributes

Nested namespaces

What it does:
Allows an easier way to specify a nested namespace
Example:
namespace A::B::C {
 …
}
When to use it:
This is good, use away.

Nested namespaces

Defined expression eval order

What it does:
Some things we assumed in the past to work as
expected were really undefined behavior, this defines it.

Now for many operators (not all), it is guaranteed they
work in an order we would expect: expr 1, then expr2
expr1[expr2] expr1.expr2 expr1.*expr2
expr1->*expr2 expr1 << expr2 expr1 >> expr2
expr2 = expr1 expr2 += expr1 expr2 *= expr1

Defined expression eval order

Example: (Jousittis)
std::string str =
 “I heard it even works if you don’t believe”;

std::replace(0,8,””).
 replace(s.find(“even”), 4, “sometimes”).
 replace(s.find(“you don’t”, 9, “I”);

You might expect: “it sometimes works if I believe”

Defined expression eval order

Example (continued):
This could produce different results depending on which
relative order the find and replace calls operate in

Before C++ 17, you might get:
It sometimes workIdon’t believe
It even worksometiIdon’t believe
It even worsometimesf youIlieve

Defined expression eval order

When to use it:
We will be using it, like it or not (but it should be good)

// still undefined, but we shouldn’t do this.
i = i++ + i;

Defined Expression Eval order

Relaxed Enum init from int

What it does:
You can now init an enum using the underlying int

Example:
enum class Weekday { mon, tue, wed, … }
Weekday day1{0}; // OK with C++ 17
Weekday day2 = 0; // Still an error

Relaxed Enum init from int

When to use it:
Allows you to define a new enum type based on the
underlying integral type without specifying all values
enum MyInt : char { };
MyInt int1{42};

Not sure I would use it this way.

Relaxed enum from int

Fixed direct list init with auto

What it does:
Before:
int x{42}; // initializes an int
auto a{42}; // error
auto b{1,2,3}; initializes a std::initializer
list
After:
auto a{42}; // initializes an int
auto b{1, 2, 3}; // now an error

Fixed direct list init with auto

When to use it:
Note that this is a breaking change as one old case is
now an error.

I wouldn’t go out of my way to use this. While auto is
good, I’d generally prefer to use the actual type if I didn’t
really need the auto. Might be helpful in a template.

Fixed direct list init with auto

Hexadecimal floating point literals

What it does:
You can specify float literals in hex to get an exact
representation.
Example:
std::initializer_list<double> values {
 0x1p4, // 16
 0xC.68p+2, // 49.625
};

Hexadecimal floating point literals

The mantissa is written in hex.
The exponent is base 2, and written in decimal
0xCp2 is the decimal value 48 = 12 * 2^2

When to use:
When you really want an exact value.

Hexadecimal floating point literals

UTF-8 character literals

What it does:
Before you could use the u8 prefix for strings, but not for
characters. Now you can use it for characters too.
Example:
auto ch = u8’8’;

When to use:
You need a single UTF-8 literal character.

UTF-8 character literals

Smaller features

Exception specifications as type

What it does:
The exception specification is now officially part of the
type of the function

Example:
void funcGuaranteedNotToThrow() noexcept;
void funcThatMightThrow();

Exception specifications as type

When to use it:
You might want a function pointer of a type guaranteed
not to throw, and want an error if you try to assign a
throwing function to it:

void(*func_pointer) () noexcept;
func_pointer = funcGuaranteedNotToThrow; // OK
Func_pointer = funcThatMightThrow; // Error

Exception specification as type

What it does:
Now in static_assert() you don’t need the “message”

Example:
static_assert(sizeof(int)>=4, “Needs big ints”);
static_assert(sizeof(int)>=4); // OK in C++ 17

When to use:
Sparingly. I think asserts are better with a message.

static_assert: message optional

What it does:
In the preprocessor, check to see if a header could be
included.

Example:
#if __has_include(<filesystem>)
include <filesystem>
#endif

Preprocessor __has__include

When to use it:
Might switch on different but similar includes depending
on what is available in the current compilation
environment (which platform you are compiling for).

Note it doesn’t guarantee the file has the expected
contents, only that the file exists.

Note preprocessor only, can’t use in the code itself.

Preprocessor __has__include

Template features

Class template argument deduction

What it does:
Deduces template arguments whenever there is enough
information (most of the time).

Examples:
From: std::complex<double> c{3.14, 2.72}
To: std::complex c{3.14. 2.72}

Class Template Argument Deduction

When to use it:
When the class type is obvious to any maintenance
programmers.

Class Template Argument Deduction

More details:
● It works for copying
● You can make a wrapper class

 that deduces the type of a callback lambda
● It won’t work for partial argument deduction
● We can replace make_pair<> with ctor{}
● You can provide deduction guides if the compiler

chooses wrong

Class Template Argument Deduction

Compile time if

What it does:
As it says, calculates the if/then/else at compile time.

Compile time if (thanks, Walter!)

template <typename T> std::string asString(T x) {
 if constexpr(std::is_same_v<T, std::string>) {
 return x;
 } else if constexpr(std::is_arithmetic_v<T>) {
 return std::to_string(x);
 } else {
 return std::string(x);
 }
}

Compile time if: example - Josuttis

Allows templates that would otherwise never compile
like the example.
Could be used for perfect forwarding (& -> &, && -> &&)
of return values
Helpful for tag dispatching
Can be used outside templates to reduce code size

Compile time if - when to use

Gotchas:
● The unused branches must still be syntactically

correct. It could affect the return type.
● Return type could be affected by “else” even if then

returns.
● Does not short circuit the condition like regular if.

Compile time if gotchas

Fold Expressions

What it does:
Apply a binary operator to all the arguments.

Example:
template<typename… T>
auto addAll(T… args) {
 return (... + args);
}

Fold expressions

Unary left fold: (… op args)
Unary right fold: (args op …)
Binary left fold: (value op … op args)
Binary right fold: (args op … op value)

We usually want a left fold, which starts from the left:
((arg1 op arg2} op arg3) op …
Especially important for strings instead of just “+”

Fold Expression types

When to use them:
Before this feature, you had to write a recursive template
to do this, stressing out both the compiler and the
programmer

Fold Expressions

String Literals for Template Param

What it does:
You used to need to have “external linkage” or “internal
linkage” to pass a string as a template parameter. Now
you can do it with “no linkage”

Before we explain this more, a quick digression:

String Literals for Template Param

String linkage types

extern const char hello[] = “Hello”; // external
const char hello11[] = “Howdy”; // internal
void somefunc() {
 // This declaration has no linkage.
 static const char hello17[] = “Greetings”;
 ...
}

String linkage types

Example:
template<const char* string>
class Greeting { ... }
void somefunc() {
 ...
 Greeting<Hello17> message17; // OK in C++17
 Greeting<”Hi there”> badMessage; // Error

String Literals for Template Param

When to use it:
Before this, you could have a template that takes a
pointer for an argument, but you couldn’t have a compile
time function that returned the address of something.
This feature fixes that hole.

String Literals for Template Param

Placeholder types as Templ. param

What it does:
You can use auto to declare a non-type template
parameter.

Placeholder types as Templ. Param

Example:
template<auto T> class Foo { ... }

Foo<42> foo1; // type of T is int
Foo<’p’> foo2; // type of T is char

Placeholder types as Templ. Param

When to use it:
1. A template that could take either a string or a char.
2. Define compile time constants
3. Using auto as a variable template param

Placeholder types as Templ. Param

Extended Using Declarations

What it does:
You can now use a comma separated list of names in a
using declaration. That lets you use it with parameter
packs.
Example:
class Derived : private Base {
 using Base::a, Base::b, Base::c;
};

Extended Using Declarations

When to use it:
Maybe with varadic parameter packs or inheriting
constructors, but I don’t see this as useful for most code.
All the examples I saw had added complexity for only a
small benefit.

Extended using declarations

New Library Components

Coming “soon”, talk planned for next year in April

New Library Componets

Josuttis: C++ 17 The Complete Guide
https://www.cppstd17.com/

Wikipedia: https://en.wikipedia.org/wiki/C%2B%2B17

Anthony Caldera:
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md

CPP Reference: https://en.cppreference.com

For Googlers:
https://g3doc.corp.google.com/experimental/users/tkoeppe/g3doc/c++17_changes.ht
ml?cl=head

Links:

https://www.cppstd17.com/
https://en.wikipedia.org/wiki/C%2B%2B17
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md
https://en.cppreference.com/
https://g3doc.corp.google.com/experimental/users/tkoeppe/g3doc/c++17_changes.html?cl=head
https://g3doc.corp.google.com/experimental/users/tkoeppe/g3doc/c++17_changes.html?cl=head

Any questions?

Thanks for listening!

