Overloading 2022-06-15

overloadi oy Alittle aboutme
verloading VERL S .
OADING me‘\“‘\“\g B.A. (math’s); M.S., Ph.D. (computer science).

Professional programmer for over 50 years,
programming in C++ since 1982.

Overy, . ’ I))
How Does It ReaIIy Work? oad/ng Eﬁzerrelizsrecdh{n industry, academia, consulting,

Founded a Computer Science Dept.; served as Professor
.““o and Dept. Head; taught and mentored at all levels.
ov¥ Managed and mentored the programming staff for a reseller.

20in8

overi© Overloading in C++:

L\“\g G

Lectured internationally as a software consultant and
Walter E. Brown, Ph.D. . commercial trainer.
L2 Retired from the Scientific Computing Division at Fermilab,
< webrown.cpp @ gmail.com > specializing in C++ programming and in-house consulting.

Not dead — still doing training & consulting. (Email me!)

Emeritus participant in C++ standardization Not this kind of overloadin

Written ~175 papers for WG21, proposing such 1y
now-standard C++ library features as gcd/lcm,
cbegin/cend, common type, and void t, as well
as all of headers <random> and <ratio>.
Influenced such core language features as alias templates,
contextual conversions, and variable templates; recently
worked on requires-expressions, operator<=>, and more!
Conceived and served as Project Editor for Int’l Standard
on Mathematical Special Functions in C++ (ISO/IEC 29124),
now incorporated into C++17’s <cmath>.

. Be forewarned: Based on my training and experience,
| hold some rather strong opinions about computer software|
and programming methodology — these opinions are not
shared by all programmers, but they should be!

Nor this kind of overloading © Nope, still wrong kind of overloadin

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 1

Overloading 2022-06-15

No, not there yet © Nor this kind of overloading, either ©

No, not this 2018 film Getting a bit closer

OVERLOAD

fmerica’s Toxic Towe Sl
fewesery Quick Modular
 Calculations

An observation © In today’s talk we'll explore ...
¢ Origins of Overloading

Isn’t it remarkable | * Principles of Overloading
how often the word
“OVERLOAD” Selecting among Overloaded Functions

has itself been overloaded?
Scenarios and Subtleties of Overloading

An Advanced Case Study (or Two)

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 2

Overloading 2022-06-15

Let's consider the expression x +y
e What does the + operator mean in this context?

= Without more information, it’s simply unclear how to

Origins of Oveﬂoading obtain the intended result.

= In mathematics, we would evaluate the expression
according to the kinds of entities denoted by x and by y.

= F.g., summing whole numbers vs. fractions vs. matrices.

= The method to be used depends on solely the operands.

= So operators are ...

From The Design and Evolution of C++ [1994, reformatted] The net outcome
e “Operators are used to provide notational convenience. ... e So C++ supports operator overloading, just as many
other programming languages (e.g., 1957’s FORTRAN) do.

e “When variables can be of different types, we must
decide whether to allow mixed-mode arithmetic or to e But C++ supports, too, the more general feature that
require explicit conversion to a common type [instead]. ... we term function overloading.

“By choosing the former — as [other languages] have — e By treating operators as “functions with funny names,”
C++ entered a difficult area without perfect solutions. ... we obtain a coherent set of rules for all overloading:
“This ... results in a fundamentally difficult problem. ® Whether we spell a function plus to call it as plus(x, y), ...

“The desire for flexibility and freedom of expression picifseellthejfunctionloperatorgandicalllitlash iy

clashes with wishes for safety, predictability, & simplicity.” e So this talk will focus mostly on named functions.

C++ has overloaded declarations

e A C++ name is described as overloaded if:

PrinCip|eS of Ovel'|Oading v Each such declaration introduces either a function
SSSS—————— or a primary (unspecialized) function template, and ...

v' The declarations are mutually distinguishable.

e Examples of indistinguishable declarations:

X A redeclaration is not distinguishable from its initial decl.

X Fctn decl’s are not distinguishable if their sole difference
is in their { return types, noexcept specifications }.

X Member fctn decl’s are not distinguishable if they differ
by only the presence/absence of { static, ref-qual }.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 3

Overloading

What's left?

v One declares a primary function template and the other
declares an ordinary function, or ...

v They have different numbers of parameters, or ...

v Any corresponding param’s have distinguishable types.

Examples of indistinguishable fctn parameters:

X Differ only in name or in default value (not part of type).
X One type is an alias for the other’s (alias is not a new type).

X One type is the decayed form of the other’s type
(e.g., E[-*]=E* or R(--)=R(*)(-+)or Tconst=T).

Overloaded?

e char calc4(char);
template< class T = char > char calc4(T);

V' Yes; a fctn and a fctn template can overload each other.

e double * calc5(double p (double));
double * calc5(double (xq) (double));

No; the 2nd redeclares the 15t. A param of fctn type is
indistinguishable from its decayed (ptr-to-fctn) type.

o float calc6(float);
float calc6(float, double =3.14);

V' Yes; a 1-param fctn and a 2-param fctn can overload.
(However, a single-arg call is likely ambiguous here.)

Selecting among Overloaded Functions

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-06-15

Overloaded?

e char calcl(char c);
namespace ns { long calcl(unsigned char u); }
No; declarations are in (inhabit) different scopes.
e char calc2(char c);
char calc2(unsigned char c);
V Yes; these parameters’ types are distinguishable. (While
char might natively be an unsigned type, it’s not an alias.)
e char calc3(char c);
char calc3(char d ='a');

No; param names and defaults do not affect the param
types, so the 2" declaration merely redeclares the 15t

Overloaded?
e struct B { int calc7(int); }
struct D : B { char calc7(float); };
No; these declarations inhabit different scopes.
Further, D::calc7 hides B::calc7; never are both visible.
e struct B { int calcg(int); }
struct D : B { using B::calc8; char calc8(float); };
v Yes; D::calc8 is overloaded.

v The using declaration brings B::calc8 into D’s scope,
where there is also a distinguishable calc8. However, ...

If the two calc8’s were indistinguishable, B::calc8 would
(despite the using) be hidden by D::calc8.

Preamble to clause “Overloading” [reformatted]

e “When a function name is used in a call,
which function declaration is being referenced

= “the types of the arguments at the point of use with

= “the types of the parameters

in the declarations that are visible [at that point of use].

e “This function selection process is [termed] overload
resolution....”

Overloading

Overload resolution: compiler's initial steps
d function use. (Not via fctn ptrs!)

2) Prepare a list of candidate fctn decl’s via appropriate
name lookup(s) (unqualified, qualified, arg-dep, ...):

= C’tor? Consider deduction guides, too (since C++17).

3) For each candidate c, determine c’s viability, namely:

accounting for ellipsis param. and default arguments, if any)?
v Can each arg (directly, or via promotion/conversion/decay, or
via reference binding) initialize c’s corresponding param?
v Are c’s associated constraints satisfied (since C++20)?

Sample criteria to decide the better of two viable candidates

e How many conversion steps are needed to init a param
with its corresponding arg?

v’ Prefer the candidate needing fewer conversion steps.
e A param of rvalue type vs. a param of lvalue type:

v’ Prefer the candidate with the rvalue parameter type.
e A param of derived vs. a param of its base class type:

v’ Prefer the candidate with the

¢ An ordinary fctn vs. one synthesized from a template:

v’ Prefer the candidate that’s an ordinary function.

Scenarios and Subtleties of Overloading

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-06-15

Overload resolution: compiler’s remaining steps
4) Seek the best of the viable candidate fctn decl’s.

= (Details on the next page.)

Success iff:

= “there is exactly one viable [candidate] that is a better

= That candidate is accessible in the context of the use.
If overload resolution succeeds:

= The fctn (instantiated if necessary)
in the use context.

= Else the program is ill-formed.

In brief ...

e “[T]he candidate function whose parameters match
the arguments most closely is the one that is called.”

But overload resolution may be needed wherever a

As an initializer in an obj or ref declaration, or ...
On the right-hand side of an assignment , or ...

As an argument to a function, to a user-defined operator,
or to a static or explicit cast, or ...

As the operand of a return statement, or ...

As a non-type template argument.

Scenarios @

e What if a candidate function (or function template
specialization) is defined as deleted?
= F.g., double g(double) = delete; //a deleted definition

e The overload resolution algorithm considers only
declarations, not any definition, ...

= So how (or even whether) a function is defined is not
relevant to the O.R. algorithm.

= But if overload resolution selects a deleted definition
as its best viable candidate, the program is ill-formed
(analogous to a function that’s declared but not defined).

Overloading

Scenarios @

e What if a candidate member function (or member
function template specialization) is declared private?
= F.g., class C{double g(double);} //implicitly private g

e Overload resolution considers only the declaration,
not its accessibility:

= But the program is ill-formed if overload resolution yields
an inaccessible declaration as its best viable candidate.

= (l.e., even private members affect a class’ interface!)

Scenarios @

¢ Valid code? class S { - };
SS; // ok, but IMO perverse

" int S; S t; //nol S is not a type
struct S { - class S u; // ok, heres is atype
Yes, S is multiply-declared in a single scope, but
Sis not overloaded because no functions are declared.
= Nonetheless, it is valid C++ (because it was valid C code).
e This (mis?)feature is termed an elaborated type:
= The variable’s name hides the type’s name.

= But the type name becomes visible when it’s preceded
by struct/class/union (i.e., as an elaborated type specifier).

= (Please avoid such code whenever possible.)

Scenarios

¢ Does an explicit specialization overload its primary
function template?

= No, neither the primary template nor any specialization
is ever a candidate for overload resolution.

: atemplate
does not declare any function, although function declarations
can be synthesized from a primary template.

= When function templates are involved, declarations
(not definitions!) synthesized from the primary template
become candidates considered by overload resolution.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-06-15

Scenarios (adapted from C\W(G2169)
e Consider:

struct wrapped long { longk; };
struct wrapped short { short

void g(wrapped long) { -
void g(wrapped short) { -

= ... g({1'000'000}) --- //callis ambiguous!

e The wrapped short parameter can’t be initialized from
the arg { 1'000'000 } due to the narrowing conversion:

Scenarios
e Overload resolution is sometimes performed twice!

e Example:
= struct copy_only { // has no move c’tor, so not movable
copy_only(); // default c’tor
copy_only(copy,only &); //copy c'tor, so no implicit move
) o

® copy_only go() {
copy_only x;

\
return x; // even if elided: prefer to move, fall back to copy
}

= Treat x as an rvalue during overload resolution; if that
fails, treat x as an Ivalue and repeat overload resolution.

Scenarios @

e Suppose overload resolution selects a synthesized
(from a function template) declaration: now what?

e Then we need that declaration’s corresponding
specialization (definition):

= Either the programmer has explicitly provided such a

corresponding explicit specialization, or ...

= Else the compiler must instantiate such a specialization
from the definition of the primary template.

Overloading 2022-06-15

Scenarios ® Scenarios @
e What if overload resolution yields a tie between e Suppose some declarations originate elsewhere:
candidate declarations that were each synthesized, = double calc9(double);

but from distinct function templates?
= extern long calc9(long);

* Such ties are resolved via a partial ordering algorithm: = using yonder :: calc9;

- E'g':,a more Sp,ecialimd capdidatelblbeitegthanions ¢ |s this a valid set of overloaded calc9 declarations?
that is less specialized.
)) . = Yes, provided that ...
= F.g.: aconstrained candidate (C++20) is better than one

that is unconstrained or less constrained. (Applies iff all = Each calc9 declaration from namespace yonder is of a
corresponding parameters have identical type.) function (or fctn template) that is distinguishable from

. . . . the first two declarations.
e (The algorithm is termed partial because not all ties

can be broken.)

narios (0 From The Design & Evolution of C++ reformatted
e Compare use of a default argument vs. : e “Given general function overloading, ...

1) - calc10(string s = "Hello"s) { -} = default [function] arguments are logically redundant ...

2) - calcl0(string s){--} s = and at best a minor notational convenience.
- calc10() { return calc10("Hello"s);} //forwards e “However, C with Classes ...

e Recall that a default argument, like every argument, ® had default argument lists for years ..

is supplied at each call site: = before general overloading became available in C++.”
= l.e., default arguments are always inlined. * Another reason to prefer overloading:

= Thus, if you have many calls to calc10(), ... template< class T> void g(T=0) { }

= You potentially have many copies of the default arg ... // won't infer T as int when defaulted!

v =1 i 5 {
= But just one (out-of-line) copy in the emplatesiclassiplintigvoidiz (EdONR!

Default arguments interact with virtual [A. Tomazos] Scenario adapted from recent posted question
e struct B { e Which function g will be called in each case?
virtual void g(intx=42) = 0;
I

= void g(int pl) {-}
void g(intconst && p2) {--}
struct D : B { = intk = 0; :

Recall that
void g(intx=43) override { std::icout << x; } g(k); // #1

C++ expressions never
5 g(std::move(k)); // #2 have a reference type!
int main() {

D d; d.g(); // no vtable involved; displays 43

B&b=d; b.g(); // vtable dispatch; displays 42 (!)

= Hint: consider the type of each call’s argument.

e At #1, argument k has type int, which can equally well
initialize param’s p1 and p2, - call #1 is ambiguous.

e At #2, the argument expression std::move(k)
has type int (not int &&), -~ #2 is identically ambiguous.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 7

Overloading

nario excerpted from Jover.ics.list] Example 1

e struct A {intx,y;};

struct B {inty, x; };
e void g(Aa);

void g(Bb);
e g({.x=1,.y=2}); //aggregate initialization; uses

// a (C++20) designated-initializer-list

e Ambiguous: “Aggregate initialization does not require

that the members are declared in designation order.”

= But: “If, after overload resolution, the order does
not match for the selected overload, the initialization
of the parameter will be ill-formed.”

= (Not all compilers yet correctly implement this rule.)

ver.match.best.general]/4 and Exampl xcerpted

e “If ... multiple declarations were found [in] different
scopes and specify a default argument that made the
function viable, the program is ill-formed.”

e |.e., default arguments can affect viability, if used:
= namespace A { extern "C" void g(int =5); }

namespace B { extern "C" void g(int=5); }
= using A::g, B::g; //bring both g declarations into our scope
= void use() {

g(3); //OK: no default argument was used for viability
g(); //error: default argument found twice

Can we overload callables that aren't functions?
e |.e., given several function objects:

= Each of whose type has the form*:
struct - { -~ Roperator () (=){-~} -}

= Can we provide them under some common name ...
= So as to allow overload resolution to apply to their call?
e auto go = overload{ your, function, object, instances, -+ };

go(---); // after overload resolution of go’s operators (),
// will call the corresponding function object instance

*Note that all lambdas’ closure types have this form, as do
all function objects of class type (e.g., std::function)!

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-06-15

e Start with:

= template< class > void foo() { } //#1
void usel() { foo<int>(); }

nari ted from a recent compiler bug report ‘

= |nstantiates foo<int> from primary template #1, right?

e Later in the same translation unit, continue with:

= template< class > requires true void foo() { } //#2
void use2() { foo<int>(); } // which foo<int>?

= O.R. selects foo<int> from template #2 — its constraint
breaks the tie with unconstrained #1.

= But “you can't change the result of O.R. for a given call”,
so this “program is ill-formed, no diagnostic required.”

46

An Advanced Case Study

Yes, via parameter packs, inheritance, and using
inherit from each of the function objects,
bring each of their call operators into our scope:
= template< class... Fs > // treat the fctn objs’ types as a pack
struct overload
: Fs ... // @ inherit from each fctn obj’s type
{ //noc’tor needed — rely on aggregate initialization

using Fs::operator()...; //@ bring call op’s into this scope

N
e Example (being careful to ensure distinguishability):

= auto go = overload{[] (intk) {returnk+1;}
[] (strings) {returns+s;}

bE

Overloading

an we overl t control the order of consideration?
e |.e., given the same kinds of function obj’s as before:
= Can we provide them under some common name ...

= So that, of the function objects that we provide,
we will call the first-listed one that’s viable?

e Yes; let’s design a class template first viable:

We’'ll distinguish its first parameter, f of type F,
from the rest of its parameters, a pack fs of types Fs....

(It’s a rather Lisp-like approach, treating our list of
function object parameters as having a head and a tail.)

If f is viable when supplied with arg’s, we’ll call f(args...).

Else, we'll call first viable<Fs...>{fs...}(args...).

Fleshing out detail
e We need a c’tor:
= constexpr first viable(F f, Fs... fs)
: first(move(f)), rest(move(fs)...) {}
e Let Casel denote the call first(forward<Args>(args)...):

= template< class... Args >
constexpr auto operator () fArgs && ... args) const
noexcept(noexcept(Casefl)) -> decltype(Casel)
requires requires { Caselfl} // satisfied iff a viable call
{return Casel;}

e Let Case2 denote the call rest(forward<Args>(args)...):
= As above, changing all Casel -> Case2, except ...

= requires (not requires { Casel; })

Overloading in C++:
How Does It Really Work?

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-06-15

The big picture
e First, an empty primary template to handle cases
when nothing is viable, so we call nothing:

= template< class... > class first viable { };

e Then a specialization that will check viability in order:

= template< class F, class... Fs >
class first viable<F, Fs...> {
private:
using Rest = first viable<Fs...>;
F first; // head of the list
Rest rest; // tail of the list
public:

A few last touches
e A deduction guide can be useful:

= template< class... Fs >
first viable(Fs...) -> first viable <Fs...>;

e Could consolidate the operator () overloads:

= {if constexpr(requires { Casel; }) return Casel;
else return Case2; }

= But the return type and the noexcept(---) clauses become
messier (although certain type traits can help with these).

¢ Finally, consider using std::invoke instead of bare calls:

= Understands calling members (both functions and data),
and reference wrappers as well as function objects.

