
Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 1

Overloading in C++:

How Does It Really Work?

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Edi$on: 2022-06-15. Copyright © 2020-2022 by Walter E. Brown. All rights reserved.

Overlo
ading

Overloading

Overloading

Overloading

Overloading

Ov
erl
oa
din

g

OVERLOADING

Overl
oadin

g
A little about me
• B.A. (math’s); M.S., Ph.D. (computer science).
• Professional programmer for over 50 years,

programming in C++ since 1982.
• Experienced in industry, academia, consulLng,

and research:
! Founded a Computer Science Dept.; served as Professor

and Dept. Head; taught and mentored at all levels.
! Managed and mentored the programming staff for a reseller.
! Lectured internaLonally as a soRware consultant and

commercial trainer.
! ReLred from the ScienLfic CompuLng Division at Fermilab,

specializing in C++ programming and in-house consulLng.
• Not dead — sLll doing training & consulLng. (Email me!)

3C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Emeritus participant in C++ standardization

4C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

• Wri]en ∼175 papers for WG21, proposing such
now-standard C++ library features as gcd/lcm,
cbegin/cend, common type, and void t, as well
as all of headers <random> and <raLo>.

• Influenced such core language features as alias templates,
contextual conversions, and variable templates; recently
worked on requires-expressions, operator<=>, and more!

• Conceived and served as Project Editor for Int’l Standard
on Mathema:cal Special Func:ons in C++ (ISO/IEC 29124),
now incorporated into C++17’s <cmath>.

• Be forewarned: Based on my training and experience,
I hold some rather strong opinions about computer soRware
and programming methodology — these opinions are not
shared by all programmers, but they should be! "

Not this kind of overloading ☺

5C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Nor this kind of overloading ☺

6C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Nope, still wrong kind of overloading ☺

7C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 2

No, not there yet ☺

8C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Nor this kind of overloading, either ☺

10C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

No, not this 2018 film ☺

11C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Getting a bit closer … ☺

12C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

An observation ☺

Isn’t it remarkable
how o2en the word

“OVERLOAD”
has itself been overloaded?

13C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

In today’s talk we’ll explore …

• Origins of Overloading

• Principles of Overloading

• Selec4ng among Overloaded Func4ons

• Scenarios and Subtle4es of Overloading

• An Advanced Case Study (or Two)

14C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 3

Origins of Overloading

C o p y rig h t © 2 0 2 0 -2 0 2 2 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

Let’s consider the expression x + y
• What does the + operator mean in this context?

! Without more informaLon, it’s simply unclear how to
obtain the intended result.

! In mathemaLcs, we would evaluate the expression
according to the kinds of enLLes denoted by x and by y.

! E.g., summing whole numbers vs. fracLons vs. matrices.

• I.e., the same nota4on can imply different techniques:
! The method to be used depends on solely the operands.

! So operators are …

16C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

From The Design and Evolution of C++ [1994, reformatted]

• “Operators are used to provide nota4onal convenience. …

• “When variables can be of different types, we must
decide whether to allow mixed-mode arithme4c or to
require explicit conversion to a common type [instead]. …

• “By choosing the former — as [other languages] have —
C++ entered a difficult area without perfect solu4ons. …

• “This … results in a fundamentally difficult problem.

• “The desire for flexibility and freedom of expression
clashes with wishes for safety, predictability, & simplicity.”

17C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

The net outcome
• So C++ supports operator overloading, just as many

other programming languages (e.g., 1957’s FORTRAN) do.

• But C++ supports, too, the more general feature that
we term func4on overloading.

• By trea4ng operators as “func4ons with funny names,”
we obtain a coherent set of rules for all overloading:

! Whether we spell a funcLon plus to call it as plus(x, y), …

! Or spell the funcLon operator + and call it as x + y.

• So this talk will focus mostly on named func4ons.

18C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Principles of Overloading

C o p y rig h t © 2 0 2 0 -2 0 2 2 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

C++ has overloaded declarations
• A C++ name is described as overloaded if:

The name is declared at least twice in a single scope, …
Each such declaraLon introduces either a funcLon

or a primary (unspecialized) funcLon template, and …
The declaraLons are mutually disLnguishable.

• Examples of indis4nguishable declara4ons:
× A redeclaraLon is not disLnguishable from its iniLal decl.
× Fctn decl’s are not disLnguishable if their sole difference

is in their { return types, noexcept specificaLons }.
× Member fctn decl’s are not disLnguishable if they differ

by only the presence/absence of { staLc, ref-qual }.

20C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 4

What’s left?
• Like-named func4on decl’s are dis4nguishable when:
✓ One declares a primary funcLon template and the other

declares an ordinary funcLon, or …
✓ They have different numbers of parameters, or …
✓ Any corresponding param’s have disLnguishable types.

• Examples of indis4nguishable fctn parameters:
× Differ only in name or in default value (not part of type).
× One type is an alias for the other’s (alias is not a new type).
× One type is the decayed form of the other’s type

(e.g., E[⋯] ⇒ E∗ or R (⋯) ⇒ R (∗) (⋯) or T const ⇒ T).

21C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloaded?
• char calc1(char c);

namespace ns { long calc1(unsigned char u); }
✘No; declaraLons are in (inhabit) different scopes.

• char calc2(char c);
char calc2(unsigned char c);
✓ Yes; these parameters’ types are disLnguishable. (While

char might naLvely be an unsigned type, it’s not an alias.)

• char calc3(char c);
char calc3(char d = 'a');
✘No; param names and defaults do not affect the param

types, so the 2nd declaraLon merely redeclares the 1st.

22C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloaded?
• char calc4(char);

template< class T = char > char calc4(T);
✓ Yes; a fctn and a fctn template can overload each other.

• double ∗ calc5(double p (double));
double ∗ calc5(double (∗q) (double));
✘ No; the 2nd redeclares the 1st. A param of fctn type is

indisLnguishable from its decayed (ptr-to-fctn) type.

• float calc6(float);
float calc6(float, double = 3.14);
✓ Yes; a 1-param fctn and a 2-param fctn can overload.

(However, a single-arg call is likely ambiguous here.)

23C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloaded?
• struct B { int calc7(int); }

struct D : B { char calc7(float); };
✘ No; these declaraLons inhabit different scopes.
✘ Further, D::calc7 hides B::calc7; never are both visible.

• struct B { int calc8(int); }
struct D : B { using B::calc8; char calc8(float); };
Yes; D::calc8 is overloaded.

The using declaraLon brings B::calc8 into D’s scope,
where there is also a disLnguishable calc8. However, …

✘ If the two calc8’s were indisLnguishable, B::calc8 would
(despite the using) be hidden by D::calc8.

24C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Selecting among Overloaded Functions

C o p y rig h t © 2 0 2 0 -2 0 2 2 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

Preamble to clause “Overloading” [reformatted]

• “When a func4on name is used in a call,
which func4on declara4on is being referenced
[is] determined by comparing

! “the types of the arguments at the point of use with

! “the types of the parameters
in the declaraLons that are visible [at that point of use].

• “This func4on selec4on process is [termed] overload
resolu,on….”

26C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 5

Overload resolution: compiler’s initial steps
1) Ini4ated from a named func4on use. (Not via fctn ptrs!)

2) Prepare a list of candidate fctn decl’s via appropriate
name lookup(s) (unqualified, qualified, arg-dep, …):
! Found a fctn template? Synthesize a fctn decl from it,

but silently discard that decl if it’s ill-formed (SFINAE).
! C’tor? Consider deducLon guides, too (since C++17).

3) For each candidate c, determine c’s viability, namely:
✓ Do the call’s arg’s match c’s param’s in number (aRer

accounLng for ellipsis param. and default arguments, if any)?
✓ Can each arg (directly, or via promoLon/conversion/decay, or

via reference binding) iniLalize c’s corresponding param?
✓ Are c’s associated constraints saLsfied (since C++20)?

27C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overload resolution: compiler’s remaining steps
4) Seek the best of the viable candidate fctn decl’s.

! (Details on the next page.)

5) Success iff:

! “there is exactly one viable [candidate] that is a be]er
funcLon than all other viable [candidates]” and …

! That candidate is accessible in the context of the use.

6) If overload resolu4on succeeds:

! The fctn def’n (instanLated if necessary) corresponding to
the chosen decl will be applied in the use context.

! Else the program is ill-formed.

28C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Sample criteria to decide the better of two viable candidates
• How many conversion steps are needed to init a param

with its corresponding arg?
Prefer the candidate needing fewer conversion steps.

• A param of rvalue type vs. a param of lvalue type:

Prefer the candidate with the rvalue parameter type.

• A param of derived vs. a param of its base class type:

Prefer the candidate with the derived parameter type.

• An ordinary fctn vs. one synthesized from a template:
Prefer the candidate that’s an ordinary funcLon.

29C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

In brief …
• “[T]he candidate func4on whose parameters match

the arguments most closely is the one that is called.”

• But overload resolu4on may be needed wherever a
func4on name may appear, not only in func4on calls:
! As an iniLalizer in an obj or ref declaraLon, or …

! On the right-hand side of an assignment , or …

! As an argument to a funcLon, to a user-defined operator,
or to a staLc or explicit cast , or …

! As the operand of a return statement, or …
! As a non-type template argument.

30C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenarios and Subtleties of Overloading

C o p y rig h t © 2 0 2 0 -2 0 2 2 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

Scenarios ➀

• What if a candidate func4on (or funcLon template
specializaLon) is defined as deleted?
! E.g., double g(double) = delete; // a deleted defini:on

• The overload resolu4on algorithm considers only
declara4ons, not any defini4on, …

! So how (or even whether) a funcLon is defined is not
relevant to the O.R. algorithm.

! But if overload resoluLon selects a deleted definiLon
as its best viable candidate, the program is ill-formed
(analogous to a funcLon that’s declared but not defined).

32C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 6

Scenarios ➁

• What if a candidate member func4on (or member
funcLon template specializaLon) is declared private?
! E.g., class C { double g(double); } // implicitly private g

• Overload resolu4on considers only the declara4on,
not its accessibility:
! So where it’s declared is not relevant to the algorithm.

! But the program is ill-formed if overload resoluLon yields
an inaccessible declaraLon as its best viable candidate.

! (I.e., even private members affect a class’ interface!)

33C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenarios ➂ (adapted from CWG2169)

• Consider:
! struct wrapped long { long k; };

struct wrapped short { short k; };
! void g(wrapped long) { ⋯ }

void g(wrapped short) { ⋯ }
! ⋯ g({ 1'000'000 }) ⋯ // call is ambiguous!

• The wrapped short parameter can’t be ini4alized from
the arg { 1'000'000 } due to the narrowing conversion:
! But overload resoluLon inspects only an arg’s type, not

its value, so the above fact does not affect the outcome.
! (Not all compilers today correctly implement this rule.)

34C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

This rule is being

reconsidered for C++23!

Scenarios ➃
• Valid code?

! int S;
struct S { ⋯ };

! Yes, S is mulLply-declared in a single scope, but
S is not overloaded because no funcLons are declared.

! Nonetheless, it is valid C++ (because it was valid C code).

• This (mis?)feature is termed an elaborated type:
! The variable’s name hides the type’s name.
! But the type name becomes visible when it’s preceded

by struct/class/union (i.e., as an elaborated type specifier).
! (Please avoid such code whenever possible.)

35C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

class S { ⋯ };
S S; // ok, but IMO perverse
S t; // no! S is not a type
class S u; // ok, here S is a type

Scenarios ➄
• Overload resolu4on is some4mes performed twice!

• Example:
! struct copy only { // has no move c’tor, so not movable

copy only(); // default c’tor
copy only(copy only &); // copy c’tor, so no implicit move

};
! copy only go() {

copy only x;
return x; // even if elided: prefer to move, fall back to copy

}
! Treat x as an rvalue during overload resoluLon; if that

fails, treat x as an lvalue and repeat overload resoluLon.

36C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

This rule, too, is being

reconsidered for C++23!

Scenarios ⑥
• Does an explicit specializa4on overload its primary

func4on template?

! No, neither the primary template nor any specializaLon
is ever a candidate for overload resoluLon.

! Overloading considers funcLon declaraLons only: a template
does not declare any funcLon, although funcLon declaraLons
can be synthesized from a primary template.

! When funcLon templates are involved, declaraLons
(not definiLons!) synthesized from the primary template
become candidates considered by overload resoluLon.

37C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenarios ➆
• Suppose overload resolu4on selects a synthesized

(from a funcLon template) declara4on: now what?

• Then we need that declara4on’s corresponding
specializa4on (definiLon):

! Either the programmer has explicitly provided such a
corresponding explicit specializaLon, or …

! Else the compiler must instanLate such a specializaLon
from the definiLon of the primary template.

38C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 7

Scenarios ➇
• What if overload resolu4on yields a 4e between

candidate declara4ons that were each synthesized,
but from dis4nct func4on templates?

• Such 4es are resolved via a par4al ordering algorithm:
! E.g.: a more specialized candidate is be]er than one

that is less specialized.

! E.g.: a constrained candidate (C++20) is be]er than one
that is unconstrained or less constrained. (Applies iff all
corresponding parameters have iden8cal type.)

• (The algorithm is termed par4al because not all 4es
can be broken.)

39C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenarios ⑨
• Suppose some declara4ons originate elsewhere:

! double calc9(double);

! extern long calc9(long);
! using yonder :: calc9;

• Is this a valid set of overloaded calc9 declara4ons?
! Yes, provided that …

! Each calc9 declaraLon from namespace yonder is of a
funcLon (or fctn template) that is disLnguishable from
the first two declaraLons.

40C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenarios ⑩
• Compare use of a default argument vs. overloading:

1) ⋯ calc10(string s = "Hello"s) { ⋯ }

2) ⋯ calc10(string s) { ⋯ } // 1st of two overloads
⋯ calc10() { return calc10("Hello"s); } // forwards

• Recall that a default argument, like every argument,
is supplied at each call site:
! I.e., default arguments are always inlined.
! Thus, if you have many calls to calc10(), …

! You potenLally have many copies of the default arg …

! But just one (out-of-line) copy in the overload set.

41C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

From The Design & Evolution of C++ [reformatted]

• “Given general func4on overloading, …
! default [funcLon] arguments are logically redundant …
! and at best a minor notaLonal convenience.

• “However, C with Classes …
! had default argument lists for years …
! before general overloading became available in C++.”

• Another reason to prefer overloading:
✘ template< class T > void g(T = 0) { }

// won’t infer T as int when defaulted!
template< class T = int > void g(T = 0) { }

42C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Default arguments interact with virtual [A. Tomazos]

• struct B {
virtual void g(int x = 42) = 0;

};

• struct D : B {
void g(int x = 43) override { std::cout << x; }

};

• int main() {
D d; d.g(); // no vtable involved; displays 43

• B & b = d; b.g(); // vtable dispatch; displays 42 (!)
}

43C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenario adapted from recent posted question
• Which func4on g will be called in each case?

! void g(int p1) { ⋯ }
void g(int const && p2) { ⋯ }

! int k = 0;
g(k); // #1
g(std::move(k)); // #2

! Hint: consider the type of each call’s argument.

• At #1, argument k has type int, which can equally well
ini4alize param’s p1 and p2, ∴ call #1 is ambiguous.

• At #2, the argument expression std::move(k) also
has type int (not int &&), ∴ #2 is iden4cally ambiguous.

44C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Recall that
C++ expressions never
have a reference type!

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 8

Scenario excerpted from [over.ics.list] Example 1
• struct A { int x, y; };

struct B { int y, x; };
• void g(A a);

void g(B b);
• g({ .x = 1, .y = 2 }); // aggregate ini:aliza:on; uses

// a (C++20) designated-ini:alizer-list
• Ambiguous: “Aggregate ini4aliza4on does not require

that the members are declared in designa4on order.”
! But: “If, aRer overload resoluLon, the order does

not match for the selected overload, the iniLalizaLon
of the parameter will be ill-formed.”

! (Not all compilers yet correctly implement this rule.)

45C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Scenario adapted from a recent compiler bug report
• Start with:

! template< class > void foo() { } // #1
void use1() { foo<int>(); }

! InstanLates foo<int> from primary template #1, right?

• Later in the same transla4on unit, con4nue with:
! template< class > requires true void foo() { } // #2

void use2() { foo<int>(); } // which foo<int>?

! O.R. selects foo<int> from template #2 — its constraint
breaks the Le with unconstrained #1.

! But “you can't change the result of O.R. for a given call”,
so this “program is ill-formed, no diagnos4c required.”

46C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

[over.match.best.general]/4 and Example 8 (excerpted)
• “If … mul4ple declara4ons were found [in] different

scopes and specify a default argument that made the
func4on viable, the program is ill-formed.”

• I.e., default arguments can affect viability, if used:
! namespace A { extern "C" void g(int = 5); }

namespace B { extern "C" void g(int = 5); }

! using A::g, B::g; // bring both g declara:ons into our scope
! void use() {

g(3); // OK: no default argument was used for viability
g(); // error: default argument found twice

}

47C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

An Advanced Case Study

C o p y rig h t © 2 0 2 0 -2 0 2 2 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

Can we overload callables that aren’t functions?
• I.e., given several func4on objects:

! Each of whose type has the form*:
struct ⋯ { ⋯ R operator () (⋯) { ⋯ } ⋯ };

! Can we provide them under some common name …

! So as to allow overload resoluLon to apply to their call?

• auto go = overload{ your, func:on, object, instances, ⋯ };

• ⋮
go(⋯); // aXer overload resolu:on of go’s operators (),

// will call the corresponding func:on object instance

*Note that all lambdas’ closure types have this form, as do
all funcLon objects of class type (e.g., std::funcLon)!

49C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Yes, via parameter packs, inheritance, and using
• We’ll ➀ inherit from each of the func4on objects,

and ➁ bring each of their call operators into our scope:
! template< class... Fs > // treat the fctn objs’ types as a pack

struct overload
: Fs ... // ➀ inherit from each fctn obj’s type
{ // no c’tor needed — rely on aggregate ini@aliza@on

using Fs::operator() ... ; // ➁ bring call op’s into this scope
};

• Example (being careful to ensure disLnguishability):
! auto go = overload{ [] (int k) { return k + 1; }

, [] (string s) { return s + s; }
} ;

50C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading 2022-06-15

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 9

Can we overload, yet control the order of consideration?
• I.e., given the same kinds of func4on obj’s as before:

! Can we provide them under some common name …

! So that, of the funcLon objects that we provide,
we will call the first-listed one that’s viable?

• Yes; let’s design a class template first viable:
! We’ll disLnguish its first parameter, f of type F,

from the rest of its parameters, a pack fs of types Fs….

! (It’s a rather Lisp-like approach, treaLng our list of
funcLon object parameters as having a head and a tail.)

! If f is viable when supplied with arg’s, we’ll call f(args…).
! Else, we’ll call first viable<Fs…>{fs…}(args…).

51C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

The big picture
• First, an empty primary template to handle cases

when nothing is viable, so we call nothing:
! template< class… > class first viable { };

• Then a specializa4on that will check viability in order:
! template< class F, class… Fs >

class first viable<F, Fs…> {
private:

using Rest = first viable<Fs...>;
F first; // head of the list
Rest rest; // tail of the list

public:
⡆

52C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Fleshing out details
• We need a c’tor:

! constexpr first viable(F f, Fs... fs)
: first(move(f)), rest(move(fs)...) { }

• Let Case1 denote the call first(forward<Args>(args)…):
! template< class... Args >

constexpr auto operator () (Args && ... args) const
noexcept(noexcept(Case1)) −> decltype(Case1)
requires requires { Case1; } // sa:sfied iff a viable call

{ return Case1; }

• Let Case2 denote the call rest(forward<Args>(args)…):
! As above, changing all Case1 −> Case2, except …
! requires (not requires { Case1; })

53C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

A few last touches
• A deduc4on guide can be useful:

! template< class... Fs >
first viable(Fs...) −> first viable <Fs...>;

• Could consolidate the operator () overloads:
! { if constexpr(requires { Case1; }) return Case1;

else return Case2; }
! But the return type and the noexcept(⋯) clauses become

messier (although certain type traits can help with these).

• Finally, consider using std::invoke instead of bare calls:
! Understands calling members (both funcLons and data),

and reference wrappers as well as funcLon objects.

54C opyrigh t © 2020-2022 by W a lte r E . B row n . A ll righ ts rese rved .

Overloading in C++:
How Does It Really Work?

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Copyright © 2020-2022 by Walter E. Brown. All rights reserved.

FIN

