
Modern Application 
Development

for Any Domain

6/16/2021



› Software Engineer
› 15 years in automation and consumer devices
› 7 years using Qt framework
› Focus on front-end HMIs

› Solutions Engineer
› Sales Support
› Development Workflow
› Qt for MCUs Development

Corey Pendleton
SOLUTIONS ENGINEER



Agenda

Meet Qt1

2

3

Qt Framework

Demos

Qt 6 Roadmap4



Growing and innovating
from day one. 

OUR JOURNEY

Releases

1.0      1995

2.0      1999

3.0      2001

4.0      2005

5.0      2012

6.0      2020



More Than a Collection of Libraries
QT FRAMEWORK

› Frameworks are opinionated
› Consistent APIs and documentation
› Structure
› Best practices – Frameworks provide proven 

solutions
› Dictates how to do things – can be extended

› Frameworks come with a toolbox
› IDE, toolchains, etc.
› Makes it easy to apply best-practices

› A good framework drives structure and consistency

VS

Framework“Collection of libraries”



2020 2021 2022 2023 2024 2025

TODAY

Qt 6 Roadmap

16 June 2021 © The Qt Company6

Qt 6.2 LTS
September 2021

Qt 5.15 LTS
June 2020

Qt 6.0
December 2020

Qt 6.1
April 2021

Qt 6.3
March 2022

Qt 6.4
September 2022

Qt 6.5 LTS
March 2023



16 June 2021 © The Qt Company7

Timeline 2021 – All products
Q4/20 Q1/2021 Q2/2021 Q3/2021 Q4/2021

TODAY

Qt 6.0 Qt 6.1 Qt 6.2

Qt for MCU 1.7 Qt for
MCU1.8

Qt Design Studio 2.0

Qt Creator 4.14 Qt Creator 4.15 Qt Creator 4.16 Qt Creator 4.17

Qt Design Studio 2.1 Qt Design 
Studio 2.2

Qt Design 
Studio 2.3

Qt for
MCU 1.9

Qt for MCU 2.0



Qt Framework



Optimal UI solutions for each use case
QT FRAMEWORK DETAILS

2D/
3D UIs
Qt Quick declarative UI design (QML) for fluid, modern 
touch-based User Experiences

Web / 
Hybrid
Use HTML5 for dynamic web documents, Qt Quick for 
native interaction

Qt Widgets
Customizable C++ UI controls for traditional desktop look-
and-feel or more static embedded UIs for more limited 
devices

Remote UIs
Run headless device UIs remotely in the browser using WebGL or 
WebAssembly



Widgets
QT FRAMEWORK DETAILS

Easy to use, easy to extend, easy to style

Most suitable for desktop

Native desktop look’n’feel – easily stylable

Easy to scale to any display size and orientation

WYSISYG UI design tool
› Create the UI sketch with a custom style in minutes
› Plenty of controls available: buttons, sliders, LCD number, 

tree view, dock widget 

No graphics processor needed => extends the HW base 



Qt and C++



2D / 3D UIs with QML
QT FRAMEWORK DETAILS

Nice modern, phone like UIs for all targets
› Especially for embedded and mobile

WYSISYG UI design tool - Qt Design Studio 
› Generates UI implementation in QML

QML declarative language for creating UIs
› Easy to learn
› Quick to prototype even in the target HW – no 

compilation needed
› Can be compiled to the native code to get the best 

possible performance 
› Great tooling to find rendering bottlenecks 
› HW accelerated on targets with the GPU



Qt and QML/JavaScript



QT FOR PYTHON

Qt for Python (PYSIDE)

16 June 2021 © The Qt Company14

› Easy to extend applications
› Cross platform plugins without recompilation
› Scripting support
› Full control of runtime environment

› Integrate Machine Learning
› Python most used language for ML
› Easily accessible via Qt for Python

› Remove programming language barrier
› 4th most popular language (StackOverflow Insights 2019)
› 2nd most loved language
› 1st most wanted language



{
“id”: “961b276c-40f7-11ea”,
“location”: “b77f-2e728ce88125”,
“rpm”: 6200,
“temp”: 27.4,
…

}

{
“id”: “961b276c-40f7-11ea”,
“location”: “b77f-2e728ce88125”,
“rpm”: 6200,
“temp”: 27.4,
…

}

Attach to peripherals

Control external hardware via any
protocol. 
CANbus, Modbus, Serial
Port, Bluetooth, BTLE,…

Data Serialization

Store and export data to industry
standard formats. 
JSON, CBOR, XML,…

Cloud synchronization

Publish telemetry data, visualize 
health status, database storage.
Protocol layer: MQTT, CoAP, OpcUA, 
KNX, HTTP,…
Transport layer: TCP, UDP, 
Websockets, Local sockets,…

QT FRAMEWORK DETAILS

Connectivity



Platforms

Dev host

Embedded device

Phone, tabletWebAssembly
(Browser)

Deploy, debug, profile



Qt for MCU



Qt on microcontroller hardware
TARGETS

› Declarative UI and OOP – the best of both worlds

› Re-use and deploy same QML based UI  while 
implementing Application logic in standard C/C++

› Ultimate Performance. Tiny Footprint.

› A new rendering engine uses HW 2D accelerators to 
achieve good graphical performance. The runtime itself has 
a very small footprint (starting from ~80KB)

› Supports on a wide range of MCUs and RTOSs

› MCUs from ST, NXP, Renesas, Cypress/Infineon, Xilinx 
UltraScale+

› Bare Metal or FreeRTOS (on selected boards)

MCU

Graphics Runtime 
utilizing on-chip 2D graphics 

accelerator

Application

Qt Quick 
Ultralite

C/C++ Logic 
backend

freeRTOS 
(optional)

Qt
 fo

r M
CU

s



Qt 6.0 Highlights



Ecosystem

C++ 17

> Update to latest standards

> Improved code readablility

> Better performance

> Easier to maintain

C++ 17

> Update to latest standards

> Improved code readablility

> Better performance

> Easier to maintain

CMAKE

> Industry standard build system

> Now used to build Qt as well

> Harmonized environment, no more 
custom tools

> Wide feature set

> Large developer ecosystem

> QMake still supported for Qt-based 
projects

CMAKE

> Industry standard build system

> Now used to build Qt as well

> Harmonized environment, no more 
custom tools

> Wide feature set

> Large developer ecosystem

> QMake still supported for Qt-based 
projects



Qt RHI
RENDERING HARDWARE INTERFACE

› Create hardware-accelerated user-interfaces on 
any rendering platform

› OpenGL, Vulkan, Direct 3D, Metal

› New Qt Shader Tools

› Write rendering code once, deploy to any hardware

› Add new hardware targets in no time

UX Future Scale



Qt Quick 3D
NEXT-GEN HMI

› Merge 2D and 3D content

› One technology stack instead of two concurrent 
requiring synchronization

› Many improvements and new features

UX Future Scale



Qt Quick Controls 2
Desktop Styling

NATIVE LOOK & FEEL

› Pixel-perfect, native looking controls

› Seamlessly integrate into underlying OS

› Streamlined behavior in your UIs

UX Future Scale



HiDPI support
NATIVE LOOK & FEEL

DP
R:

 0
.5

NATIVE LOOK & FEEL

› New: Fractal scaling

› Allows for monitors with e.g. 125% setup

› Settings per display

› Forward size calculations to Qt

UX Future Scale

DP
R:

 1
DP

R:
 2



New QProperty System
HIGH PERFORMANCE, LOW MEMORY

› Binding support in C++
› Bring the best part of QML to Qt

› Seamless integration with QObject

› Lazy evaluation
› Spare non-required calculations

› Much faster code

› Compatible with Qt5
› Source compatible

› Only port where needed

UX Future Scale

M
em

or
y 

us
ag

e
(b

yt
es

/e
nt

ry
)

Be
nc

hm
ar

k 
re

su
lts

(lo
w

er
 is

 b
et

te
r)



Qt 6 and C++



Thank you!

Corey Pendleton – Solutions Engineer
corey.pendleton@qt.io

Amir Alvarez – Account Manager
amir.alvarez@qt.io


