

Destroy All Memory Corruption

by Walter Bright

Dconf 2020

Memory Corruption

● A pernicious and expensive problem
● Impractical to manually review code for it
● Corruption can easily be introduced by unwary

changes
– (again with the review problems)

#1 Memory corruption problem is buffer overflows

Ending Buffer Overflows

● Array overflow protection
● Attractive to use dynamic arrays rather than

raw pointers
● Use of `ref` rather than raw pointers
● Use of `const` and `immutable`

Ending Stack Corruption
(pointers into expired stack frames)
● ref
● return
● scope

Ending Aliasing Problems

● Casting non-pointers to pointers
● Unions overlaying pointers with other types

Ending Allocation Bugs

● Use the Garbage Collector

But I Don't Want To Use the GC!

● Explicit malloc/free
– Including writing your own allocator

● RAII
– i.e. destructors

● Reference counting

Explicit malloc/free

● malloc without free (memory leaks)
● Use after free
● free more than once
● free without malloc

RAII

● A natural fit for scoped objects
● Not so good for other patterns

Reference Counting

struct S { // ref counting machinery omitted for brevity
 int* p;
}

void fun(ref S s, ref S t) {
 s = S(); // previous contents of s destroyed
 *t.p = 1; // boom!
}

void main() {
 S s;
 int i;
 s.p = &i;
 fun(s, s);
}

Two pointers to the same object, one or both of
which is mutable.

DIP 1021
Argument Ownership and Function

Calls

Disallow more than one reference to the same
memory object being passed to a function's

parameters, if any of them are mutable.

https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md

Generalizing...

Disallow more than one reference
to the same memory object if any
of those references are mutable.

Clarifying

● Allowed
– One mutable reference

– Many const references

● Not Allowed
– More than one mutable reference

– Mixed mutable and const references

Ownership

A single mutable reference to a memory
object is said to “own” the object.

int* f();
int* p = f(); // p now owns the object returned by f()

Moving (Transferring) Ownership

Moving a mutable reference transfers ownership.
The previous reference becomes invalid.

int* p = f(); // p is now the owner
int* q = p; // q is now the owner, p is invalid
*q = 3; // ok, as q owns it
*p = 4; // error, p is invalid

Copying (Borrowing) a Reference

Copying a mutable reference borrows
ownership. When the borrow is done,
ownership is returned. Borrowing is
indicated with `scope`.

int* p = f(); // p is now the Owner
scope int* b = p; // b borrows from p
*b = 3; // ok, as b temporarily owns it
*p = 4; // ok, ownership is returned to p
*b = 5; // error, b is invalid

I Know What You're Thinking!

Wait? Whaaaaaat? When, how does
the borrowed reference q become invalid?

A Borrowed reference ends when
one of the following holds:

● The last use of the borrowed reference
● The borrowed reference goes out of scope
● The owner is used again

From the borrowing to one of those three is called
the lifetime of the borrow. (Also known as “non-

lexical” scoping.)

This is determined using...

Data Flow Analysis

● Decompose a function's structure into a
collection of blocks of code connected by edges
that represent paths from one block of code to
another

● Construct Data Flow Equation for each block in
the form: Output = Transformation(Input)

● Solve the N equations for N unknowns.

In this case, the Input and the Output are the states
of each of the variables being tracked.

Pointer Creation

A pointer is created when a function
is called that returns a pointer.

int* f(); // function returns an owning pointer
int* p = f(); // which is moved to p

Pointer Destruction

A pointer is destroyed when it is moved to a function.

void g(int*);
g(p); // p gives up its ownership
*p = 3; // error, p is invalid

Dangling Pointer

@live void sun()
{
 int* p = f();
} // error, p is live on exit

Functions Taking Ownership

@live void g(int* p)
{
} // Error, p is dangling

@live void h(int* p)
{
 g(p); // transfer to g()
} // ok, p is g()'s problem

Functions Borrowing Pointers

@live void m(scope int* b)
{
} // no error

@live void n(scope int* b)
{
 m(b); // ok
 g(b); // error, borrowed pointer escapes
}

void g(int* p);

Control Flow

int* p = f();

g(p);

p is ?

p is invalid

p is valid

p is valid

Error: cannot be both valid and invalid

In Terms Of malloc() and free()

int* malloc();
void free(int*);

Note that these functions cannot be @live

Memory Leak #1

void star()
{
 int* p = malloc();
} // error, p is live on exit

Note: malloc() and free() are NOT
special to the language, meaning custom
allocators can be written as first class citizens.

Memory Leak #2

int* p = malloc();
p = malloc(); // error, overwrite of live pointer

Double Free

int* p = malloc();
free(p);
free(p); // error, p has undefined value

Use After Free

int* p = malloc();
*p = 3; // ok
free(p); // destroys p
*p = 4; // error, p has invalid value

Destroying Borrowed Pointer

@live void mars(int* p)
{
 scope int* b = p; // b borrows from p
 free(b); // error, cannot turn borrowed pointer into owner
} // error, p is left dangling

Constant Pointers

@live void pluto(int* p)
{
 scope const(int)* c1 = p; // borrow a const reference
 scope const(int)* c2 = c1; // another const reference
 int i = *c1; // c1 is live
 int j = *c2; // c2 is live
 j = *c1; // c1 is still live
 *p = 3; // use p, invalidate c1 and c2
 i = *c1; // error, c1 is invalid
 j = *c2; // error, c2 is invalid
 free(p); // dispose of p
}

Calling Functions

void bar1(scope const int*, scope const int*);
void bar2(scope int*, scope const int*);

@live void neptune(int* p)
{
 bar1(p, p); // compiles
 bar2(p, p); // does not compile
}

Recall the Ref Counting Problem?

struct S { // ref counting machinery omitted for brevity
 int* p;
}

void fun(ref S s, ref S t) {
 s = S(); // previous contents of s destroyed
 *t.p = 1; // boom!
}

@live void main() {
 S s;
 int i;
 s.p = &i;
 fun(s, s); // @live gives error here
}

Global Variables

@live functions cannot access global variables.
They have to come in through the front door,
i.e. the parameter list.

Other Pointer Types

● ref
● out
● Classes
● Implicit this
● Wrapped pointers
● Dynamic arrays
● Delegates
● Associative arrays

GC Allocated Pointers

Handled just like any other pointer.
No distinction is made, or can be made.

@live and Other Functions

● @live relies on non @live functions it interfaces
with respecting the @live interface

● @system, @trusted, @safe can all interface
with @live functions

● Hence @live functions can be added
incrementally

Exceptions

● Cause many complex edges between blocks
● Most data flow optimizers give up when

encountering exception control flow
● @live relies on data flow analysis and can't just

give up
– Therefore, @live functions are nothrow

– Part of why I've pushed for nothrow being the
default

Implementation

@live functions are now available in prototype form
in the latest D compilers.

Conclusion

● Builds on existing successful safety
mechanisms in D

● Large step forward in achieving mechanically
guaranteed memory safety

● Does not break any existing code
– Can be added incrementally

References

● https://dlang.org
● https://github.com/dlang/DIPs/blob/master/DI

Ps/accepted/DIP1021.md
● https://dlang.org/blog/2019/07/15/ownership-an

d-borrowing-in-d

music by Max Bright

https://dlang.org/
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://dlang.org/blog/2019/07/15/ownership-and-borrowing-in-d
https://dlang.org/blog/2019/07/15/ownership-and-borrowing-in-d

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

