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To the crew of Apollo 13, and all the members of Mission Control who worked
tirelessly to get the men home safely, 50 years ago this month.
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Background

» Single quarter introductory/intermediate course (10 weeks) in C++ for MSc
students in Computational Finance & Risk Management (CFRM) at the University
of Washington

* Emphasis on applications

* ~90% of this material would be transferable to general applied sciences
* Orders of magnitude more efficient than Python

* But can be almost as rapid to develop, thanks to modern C++

* Currently in sixth year of teaching this course
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Background

 Companion lecture notes: C++ for the Rest of Us!

A'EFestivus for the restiofius
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Background

* Introductory:
» Fundamentals of C++
» Object-Oriented Programming
» Templates
» STL Containers and Algorithms

* Intermediate:
» Prior programming experience in other languages is assumed
* Functions
* Conditional branching
* lteration
* We move very quickly through these topics
» Open source mathematical libraries

» By the end of the quarter, students are able to implement some fairly
sophisticated mathematical routines and models
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Goals

* Proficiency in implementing common mathematical models in C++

* Emphasis on modern (through C++17) language and Standard
Library features for problem solving

 “No-cost” abstractions
* Don’t reinvent what we already have

* Don’t discourage students with gratuitously complicated code or
legacy C constructs

* Use modern C++ for practical work!
* Bust the myth that C++ is “too difficult”
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We Don’t Care About...

* Clanguage programming
* Not a prerequisite
e std::string, not char*
 std::vector<.>, not dynamic C-arrays

* Minute details about strings and output formatting
 Computational course, so we care more about numerical results
* In practice, results are not output to the console with std: : cout

* The multitude of numerical types in C++; we only require the
following for our work

* double
* int
 size_t and long where necessary
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We Don’t Care About...

 Memory allocation with new and delete
* We use std: :unique_ptr<.> instead
* new and delete are covered during the last week

* Implementing sort/search algorithms or doubly-linked lists
* They’re in the Standard, so use them
* Weuse std: :vector<.> anyway
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* A brief history of C++
* “The Creator” Bjarne Stroustrup
* Turn of the century heyday (c 1998-2008)
* Stagnation: C++98/C++03 and the emergence of Java
* The Beast is Back (Jon Kalb): C++11 and the post-2011 world

* IDE project setup
* Visual Studio 2019 is preferred
* How to build a simple executable
e Compiler warnings and errors
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Week 1 (continued)

* Math
* Numerical variables: int and double
* Math operators
 Mathematical functions in <cmath>

* User-defined functions
* Declaration and implementation
* Write own functions using <cmath>
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* Classes and objects
* Caris aclass, a Dino Ferrari 308 GT4 and a Honda Accord are objects

* Member variables and member functions
* UML class diagrams

What it is
Car (name of class)
Wheels
Engine What it has
BOdV {attributes, aka member
Brakes variables)

Accelerator

Move forward

Stop What it does
Turn {methods, aka member
functions)
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* Classes and objects (continued)

* std::string as an example
» What it means to create an instance
» Call and use the member functions
« at(.)
 size(.)
* push_back(.)

* These also then become more familiar for when we cover STL containers

* Conditional and iterative statements
« if/else if/else
* switch statements
 for/while loops
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Arrays
« std::arrayandstd::vector
* We don’t care about dynamic C-style arrays

Function overloading

Aliases
* using
* preferusing over typedef
* (Ilvalue) references

Pointers
e To variables on the stack

* Only introduced here because we will soon discuss
» The this pointer
» STl iterators
» “Just-in-Time” approach to introducing new concepts
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Week 3: Object-Based Programming and user-defined classes

* Modified version of the Fraction example in Josuttis — Object Oriented
Programming in C++: Incrementally build up a class with

* Private numerator and denominator members, and public accessors and
mutators for each

* Overloaded constructors
* Meaning of the this pointer

» Refactor error checking for zero in the denominator
» Constructor
» Mutator for denominator
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Week 3: Object-Based Programming and user-defined classes

* Fraction example (continued): Incrementally build up a class with

* Operators

» Multiplication * and *=, plus a common private simplifying function (uses
std::gcd(.) in C++17)

» Inequality <

» Equality and non-equality == and !=

» Prefix and postfix increment operators ++
» Using and returning *this

* Functors
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Week 3: Object-Based Programming and user-defined classes

* Fraction example — declaration file

class FractiomFour // ¥Not to be confused with the Jackson 5
{
public:
FractionFour() ;
FractionFour (int n);
FractionFour{int n, int d);
private:
vald print(); void simplify () :
int gecd () const;
FractionFour operator * (const FractionFour& rhs) const; -

voi = i .
guli operator < (CDH:tFFIEE?lD;FUUE& ;hs) i . // mew: private member function to check for a zero in the denominator
ool operator cons ractionFour& rhs) const: . -

P ( ) void checkForZero (int d) const;

/{ WNew: increment operators:
FractionFour& operator ++ ():
FractionFour operator ++ (int motused);

ff mew: private member to move negative sign from denominator to numerator
void checkNegativeDenominator ()

int numer_;

ff New: equality and non-sguality operators: N
int denom ;

kool operator == (const FractionFour& rhs) const;
kool operator != (const FractionFour& rhs) const:

int numer () const;
int denom() const;

wvoid setNumer (int n);
wvoid setDenom(int d);

/f friend operator so that we can output a fractiom with cout
// Take this as given and use it; the mechanics are beyond
/f the scope of the current topic.
friend std::ostream& operator << (std::ostream& os, const FractionFour& rhs);
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Week 3 Assighment

* Implement a more complete set of operators on the Fraction class

* + += - -= (andusestd::1lcm(.) from C++17)
-/ /=
e K= > >=

Prefix and postfix decrement

Other member functions
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Week 4: Object-Oriented Programming

* |Inheritance

e Virtual functions

 Virtual default destructor on base class
* virtual and override keywords

* Order of instantiation and destruction

* Emphasis on abstract base interface classes
» Pure virtual functions only
» Restrict to one level of derivation
» Pitfalls of extended inheritance chains

* Polymorphism
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Week 4: Object-Oriented Programming

* Assignment: inheritance and polymorphism for root-finding

* Implement a pure abstract base class representing a function f(x)
» virtual double operator()(double x) = O const;

* Implement several derived concrete classes; eg
> ax3+bx*+cx+d
» alog(x —b)
* Introduce and use
std: :numeric_limits<double>::epsilon() , infinity(),
and quiet_NaN()
» v sin(ax) —n cos(bx)

* Write a function implementing a root-finding method (eg Secant) that
takes an abstract base object const reference as its argument and
computes the roots for any derived class object

Daniel Hanson NWCPP April 2020



Week 4: Object-Oriented Programming

* Assignment: inheritance and polymorphism for root-finding (continued)

doukle secant{const RealFunctionk rf, doukle x0, doukle xl1, doukle tol, int maxIter)

{
double Nan = std::numeric_limits<double>::quiet NaN();
double root = Nan;
double v0 = rf(x0);
doukle ¥l = rf(xl);
int countIter = O;
for(countIter = 0; countIter <= maxlter; ++countlter)
i
if (std::abks(xl - =x0) > tol)
i
root = ®xl - (xl - =x0)*vyl / (vl - v0);:
S/ Update =1 & =0:
x0 = x1;
xl = root;
yO = rf(=0):
vl = rf(=xl);
1
else
i
break;
1
1
if (countIter < maxIter)
i
return root;
}
else
i
return Han;
}
1
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Week 4: Object-Oriented Programming

 Composition with a member object, and avoid object copy

* Pass by and store as const /value reference
» Avoid object copy

» But not flexible
e Lack control over lifetime of the member variable
* Can’t modify member object after containing object initialized
* Or copy the containing object

* Pass by move/rvalue reference and store the actual object
» Containing object has full control over member object lifetime
» Can be modified after containing object construction
» Deep copy of containing object possible by default
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Week 4: Composition Example

* An Apollo moon landing mission has-a command module and a

lunar module

I h S-tand steerable antenna
'm i %Rmatmm radar antenna
n Command Module
S-band

crew compartment
Eectrical power
system radiators
SM reaction control
system quad

LY .
P ;-

TR
TITTIT

[/

Docking target.
LM overhead hatch.

i )
l——lumr module descent m—-l——‘umr module ascent mge--|‘t.‘omrmx module: { Service mody {

* Case 1: Store CM and LM as const /value reference
* (Case 2: Store CM and LM by value, pass with move semantics
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Week 4: Composition Examples

Header file: Ivalue case

$#include "CommandModuale.h"™
#$include "LunarModule.h™

cla=zz ApolloRef

{
public:
ApolloRef (const CommandModuled cm, const LunarModule& 1m)
vold printModuleNames () const;
private:
const CommandModule& commandModule ;
const LunarModule& lunarModule ;
}:
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Week 4: Composition Examples

Header file: rvalue case

#include "CommandModals.h"™
#include "LunarModule.h"™

clazs Apollo

{

public:
Apollo{CommandModule&d cm, LunarModule&& 1lm) ;
vold printModuleNames () const;

private:
S S5tored by waluese; Zpollo object now has sole ownership
S of these member obijscts. They and their state can also
Ff be modified as they are not restricted as const.
CommandModule commandModule ;
LunarModule lunarModule ;
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Week 4: Object-Oriented Programming

* Composition with a polymorphic member object

* Pass by and store as const /value reference (but again, has limitations)

* Pass by move/std: :unique_ptr<.> and store as unique_ptr<.>
» Full control over lifetime of member
» Can replace old clone() methods that required object copy
» Blessed by The Creator (A Tour of C++, 2E)
» Google coding standards
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Week 4: Composition Examples (polymorphic member)

* A Mercury mission (first NASA manned missions with single astronaut) was
comprised of

* A capsule

* And a booster rocket
» Redstone, for the first up-and-down missions =

» Atlas, with more power for the later orbital missions —

VMA>P S OM4=-IC

» The booster rocket is therefore a polymorphic member b

MercuryPir Mercar terRacket A t i

-capsule : string +operator) : void const '

|[-astronaut : string .':
-booster_: unique_ptr<MercuryBoosterRocket>  [“——] - s
[+missionDetails{) : void const B f;l
i i R Ak

Atlas
[+operator() | void const +operator() : woid const
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Week 4: Composition Examples (polymorphic member)

* Header file:

class Mercury

{
public:

Mercury(std: :unigue ptr<MercuryBoosterRocket> booster,

const std::string& capsule,

// Bule of Five:
Ff Explicitly disakle copy operations:

Mercury(const Mercuryg& rhs) =
Mercury& operator =

delete;
({const Mercury& rhs) =

delete;

i/

const std::string& astronaut);

1

Ff Since we explicitly declared copy ctor and assignment
/f should also explicitly allow default move operations:

Mercury (Mercury&& rhs) =
Mercurv& operator =
~Mercurv() =

defanlt;
(Mercurvk& rhs) =
defanlt;

defanlt;

vold missionDetails () const;

private:
std:
std:
std:

}:
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iunigue ptr<MercuryBoosterRocket> booster ;
istring capsule ;
istring astronaut_;
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-
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Week 5 — STL Containers

* A gentle introduction to templates
e functions
e classes

* STL containers
e sequential
* associative
« std::vector<.>
» |s our sequential container of choice
» In-depth coverage of member functions
» push_back(.) vs emplace_back(.) - avoid object copy
* std: :map<.> is useful for handling data input and reporting out results,
with enum key types
e STL iterators and iterator-based for loops

* Range-based for loops

Daniel Hanson NWCPP April 2020



Week 6 — STL Algorithms

e STL Algorithms
* Focus on for_each(.) and transform(.) to start

* Algorithms in <numeric>

* More from <algorithm>
* Assignment: Use various algorithms to avoid loops (including calculations of
means and dot products)

* Lambda Expressions
* Very convenient for math!
* As auxiliary functions in STL algorithms

* Exceptions
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Week 7: Numerical C++

 Random number generation with <random>
* Engines: We use Mersenne Twister 64 bit

e Distributions: We mainly use
» Uniform
» Normal
» Student’s t

* Parallel STL algorithms from C++17
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Week 7: Numerical C++

* Task-based concurrency with std: : future and std: :async(.)
e Concurrency vs Parallelism
* std::async(.) gets a bad rap sometimes, but
» The performance improvement is fantastic...
» Considering how easy and fool-proof it is to use
» 90%+ cut in run-time on a 20-processor virtual server
» Commonly available in modern practice
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Week 7: Assighment ( <random> )

 The Monty Hall Paradox (Let’s Make a Deal)
* Three doors marked number 1, 2, and 3
e Behind one of the doors would be the prize, such as a new car
* Behind the other two doors were “zonk” prizes (ie, you lose), eg a goat

Daniel Hanson NWCPP April 2020



Week 7: Assighment

* The Monty Hall Paradox (continued)

* When the contestant would make a choice, say Door #1, Monty would have one of
the other doors opened eg Door #3, revealing a goat

* He would then ask the contestant whether s/he would like to switch the choice to
the remaining door

* The “Paradox”: If you were given the chance to switch, should you?
* It turns out the answer is yes!

* The assignment is to implement a model of the outcomes in C++, using simulations
of a uniform distribution on {1, 2, 3}, available in <random>
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* Eigen: Matrix Algebra Library
» Templated/header only
* Dynamic MatrixXd and VectorXd objects

» All standard matrix and vector operations are supported
» STL compliant
* Matrix decompositions
» LU (Lower/Upper Triangular)
» Cholesky
» SVD (Singular Value Decomposition)
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* Examples and exercises (Eigen: Matrix Algebra Library)
» Solve system of linear equations (LU)
e Correlated random scenarios (Cholesky + Monte Carlo)
 Calculation of regression coefficients (SVD)
* Rolling window predictions of portfolio returns (matrix algebra)
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* Math-related components in the Boost Libraries

* Boost Math Toolkit
» Probability Distributions: cdf, pdf, quantile functions
» Numerical Integration
» Root Solving
* Circular Buffers
» Useful for time series and live data feeds
» STL compliant
* Assignment: EGARCH(1, 1) “live” simulation of market volatility
» Circular buffer
» std::normal_distribution<> from <random>
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Week 9: Option Pricing

* Confluence of topics covered: Use these to code realistic examples

* Pricing of financial option contracts

* Closed form models (Derived from Black-Scholes)
» European options
» Single barrier options
» Calculate implied volatility (Boost root finding)
» Boost Math Library: Statistical Distributions (N(O, 1) cdf)

Profit from butterfly spread using call options
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Week 9: Option Pricing

* Pricing of financial option contracts (continued)

* Monte Carlo-based models
» European options (compare results with closed form)
» Single barrier options (compare results with closed form)
» Featured concepts:
* Projection of asset price simulations using <random>
* Generation of these simulations in parallel using std: :async and std: : future
* STL algorithms (including parallel algorithms)

2
)
r——|At+ og, VAt
S = St—le( 2 t
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Week 10

* Rcpp: An R package that provides interfaces to C++ (Dirk Eddelbuettel)
* RcppEigen
BH (Boost Headers)

Interface to
» One-off C++ code as a faster alternative to R

» Reusable C++ code and libraries
For R users, calling a function in C++ is the same as calling an R function

Can use the powerful visualization capabilities available in R
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eek 10 (Rcpp Interface)

(5] RStudio [y
Fle Edt Code \lew Plots Session Buld Debug Profie Tools Help
°.% - W n Sy
o Dunte o) wienment By Coxmctons —
i Oosmsatim | Q %+ S | 59| Shoum = o gDt - o ™
i 8 Gkl vt
3 x < daca.feas(nuciEnorm(Sed, cnorm(Sed, meansd)|, cecrepi’a’, Sed), cep('b'. Sed
. saca 4
5 library guchemes values
- T | oo o
7 guplot (x
o geom_density mesix-n, fili-ci, alpha-0.3
Chens._cutce 16

> Libracy (gothemes)

Quplotixi +
geom_desaity (aes (xem)| +

theme_tutte (10)
X <- date,frame (nec(rnorm(Sed), rmorm(Sed, mean~

» guplot (x| +

+ geom_densityaes(xen, £iilec)) o

4 theme_tutee(10)

data. trame

xen, Eillec)) +

(xvn, fillee), alphav.s) +

+  theme_tutee (16

[Home]

Download
CRAN

R Project
About R

Lego
Contributors
What's New?
Reporting
Bugs
Conferences
Search

Gel Involved
Malling Lists
Developer
Pages.

R Blog
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< (xnorm(Se4), rorm(5ed, mean=3)),

L sed), rep('ht, sed))

The R Project for
Statistical Computing

Getting Started

R s a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX
plaiforms, Windows and MacOS. To download R, please choose
your preferred CRAN mirror

If you have questions about R like how ta download and install
the software, or what the license terms are, please read our
answers 1o requently asked questions before you send an email

News

« R version 4.0.0 (Arbor Day) prerelease versions will appear
starting Tuesday 2020-03-24. Final release is scheduled for
Friday 2020-04-24

+ R version 3.6.2 (Holding the Windsock) has been released
on 2020-02-29

« useR! 2020 will take place in St. Louis, Missourl, USA.

Independent and
specialized

applied
C++ Library
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Library

Boost

Eigen

Other
Scientific
Libraries




Week 10 (Rcpp Interface - Example)

R Code

pdxe—menrtyHalllParadox (seedCarPos = 106,

seedChoicePos = &74,

C++ Function

// [[Rcpp::export]]
vector<int> montyHallParadox(int seedCarPos,

nsim = 1000)
# sat up the plot:
Tibryry(plotly)
names \«- c("stay", "Change")

X <- names
y <— pdx[2:3]
fig <- plot_ly(x = X, v = ¥,

type = "bar", color = ~x)

(fig == fig %% Tlayout(title = "Monty Hall Paradox'))

int seedChoicePos, int nsim)

Monty Hall Paradox

700 M Change
W Stay

600
500
400
300
200

100

Stay
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* At the end of the course, students can * Without ever needing:
program in modern C++: « *char
e Object-oriented code * newanddelete
* Efficient iterative code with STL * Dynamic C arrays
algorithms

* Implementation of a doubly-linked list
* Distribution-based random number

generation * Coding a binary search

* Manual thread management or non-

* Probability functions standard threading library

e Standard numerical methods
e Students are encouraged vs

* Parallelized code )
discouraged

* Matrix algebra and decompositions
* Regression models * Thus making C++ a more attractive go-

* Reusable library code with graphics to language for programming scientific
capabilities in R and mathematical applications

* Real world scientific applications
» Faster than Python
» But not much more difficult
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Thank you very much for attending!
hansondj (at) uw.edu

Sample code will also be made available on GitHub
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