COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON
Department of Applied Mathematics

Thoughts on
Teaching C++ to Students in the Applied Sciences

NWCPP Meeting, 15 April 2020

To the crew of Apollo 13, and all the members of Mission Control who worked
tirelessly to get the men home safely, 50 years ago this month.

Daniel Hanson NWCPP April 2020

Background

» Single quarter introductory/intermediate course (10 weeks) in C++ for MSc
students in Computational Finance & Risk Management (CFRM) at the University
of Washington

* Emphasis on applications

* ~90% of this material would be transferable to general applied sciences
* Orders of magnitude more efficient than Python

* But can be almost as rapid to develop, thanks to modern C++

* Currently in sixth year of teaching this course

Daniel Hanson NWCPP April 2020

Background

 Companion lecture notes: C++ for the Rest of Us!

A'EFestivus for the restiofius

Daniel Hanson NWCPP April 2020

Background

* Introductory:
» Fundamentals of C++
» Object-Oriented Programming
» Templates
» STL Containers and Algorithms

* Intermediate:
» Prior programming experience in other languages is assumed
* Functions
* Conditional branching
* lteration
* We move very quickly through these topics
» Open source mathematical libraries

» By the end of the quarter, students are able to implement some fairly
sophisticated mathematical routines and models

Daniel Hanson NWCPP April 2020

Goals

* Proficiency in implementing common mathematical models in C++

* Emphasis on modern (through C++17) language and Standard
Library features for problem solving

 “No-cost” abstractions
* Don’t reinvent what we already have

* Don’t discourage students with gratuitously complicated code or
legacy C constructs

* Use modern C++ for practical work!
* Bust the myth that C++ is “too difficult”

Daniel Hanson NWCPP April 2020

We Don’t Care About...

* Clanguage programming
* Not a prerequisite
e std::string, not char*
 std::vector<.>, not dynamic C-arrays

* Minute details about strings and output formatting
 Computational course, so we care more about numerical results
* In practice, results are not output to the console with std: : cout

* The multitude of numerical types in C++; we only require the
following for our work

* double
* int
 size_t and long where necessary

Daniel Hanson NWCPP April 2020

We Don’t Care About...

 Memory allocation with new and delete
* We use std: :unique_ptr<.> instead
* new and delete are covered during the last week

* Implementing sort/search algorithms or doubly-linked lists
* They’re in the Standard, so use them
* Weuse std: :vector<.> anyway

Daniel Hanson NWCPP April 2020

* A brief history of C++
* “The Creator” Bjarne Stroustrup
* Turn of the century heyday (c 1998-2008)
* Stagnation: C++98/C++03 and the emergence of Java
* The Beast is Back (Jon Kalb): C++11 and the post-2011 world

* IDE project setup
* Visual Studio 2019 is preferred
* How to build a simple executable
e Compiler warnings and errors

Daniel Hanson NWCPP April 2020

Week 1 (continued)

* Math
* Numerical variables: int and double
* Math operators
 Mathematical functions in <cmath>

* User-defined functions
* Declaration and implementation
* Write own functions using <cmath>

Daniel Hanson NWCPP April 2020

* Classes and objects
* Caris aclass, a Dino Ferrari 308 GT4 and a Honda Accord are objects

* Member variables and member functions
* UML class diagrams

What it is
Car (name of class)
Wheels
Engine What it has
BOdV {attributes, aka member
Brakes variables)

Accelerator

Move forward

Stop What it does
Turn {methods, aka member
functions)

Daniel Hanson NWCPP April 2020

* Classes and objects (continued)

* std::string as an example
» What it means to create an instance
» Call and use the member functions
« at(.)
 size(.)
* push_back(.)

* These also then become more familiar for when we cover STL containers

* Conditional and iterative statements
« if/else if/else
* switch statements
 for/while loops

Daniel Hanson NWCPP April 2020

Arrays
« std::arrayandstd::vector
* We don’t care about dynamic C-style arrays

Function overloading

Aliases
* using
* preferusing over typedef
* (Ilvalue) references

Pointers
e To variables on the stack

* Only introduced here because we will soon discuss
» The this pointer
» STl iterators
» “Just-in-Time” approach to introducing new concepts

Daniel Hanson NWCPP April 2020

Week 3: Object-Based Programming and user-defined classes

* Modified version of the Fraction example in Josuttis — Object Oriented
Programming in C++: Incrementally build up a class with

* Private numerator and denominator members, and public accessors and
mutators for each

* Overloaded constructors
* Meaning of the this pointer

» Refactor error checking for zero in the denominator
» Constructor
» Mutator for denominator

Daniel Hanson NWCPP April 2020

Week 3: Object-Based Programming and user-defined classes

* Fraction example (continued): Incrementally build up a class with

* Operators

» Multiplication * and *=, plus a common private simplifying function (uses
std::gcd(.) in C++17)

» Inequality <

» Equality and non-equality == and !=

» Prefix and postfix increment operators ++
» Using and returning *this

* Functors

Daniel Hanson NWCPP April 2020

Week 3: Object-Based Programming and user-defined classes

* Fraction example — declaration file

class FractiomFour // ¥Not to be confused with the Jackson 5
{
public:
FractionFour() ;
FractionFour (int n);
FractionFour{int n, int d);
private:
vald print(); void simplify () :
int gecd () const;
FractionFour operator * (const FractionFour& rhs) const; -

voi = i .
guli operator < (CDH:tFFIEE?lD;FUUE& ;hs) i . // mew: private member function to check for a zero in the denominator
ool operator cons ractionFour& rhs) const: . -

P () void checkForZero (int d) const;

/{ WNew: increment operators:
FractionFour& operator ++ ():
FractionFour operator ++ (int motused);

ff mew: private member to move negative sign from denominator to numerator
void checkNegativeDenominator ()

int numer_;

ff New: equality and non-sguality operators: N
int denom ;

kool operator == (const FractionFour& rhs) const;
kool operator != (const FractionFour& rhs) const:

int numer () const;
int denom() const;

wvoid setNumer (int n);
wvoid setDenom(int d);

/f friend operator so that we can output a fractiom with cout
// Take this as given and use it; the mechanics are beyond
/f the scope of the current topic.
friend std::ostream& operator << (std::ostream& os, const FractionFour& rhs);

Daniel Hanson NWCPP April 2020

Week 3 Assighment

* Implement a more complete set of operators on the Fraction class

* + += - -= (andusestd::1lcm(.) from C++17)
-/ /=
e K= > >=

Prefix and postfix decrement

Other member functions

Daniel Hanson NWCPP April 2020

Week 4: Object-Oriented Programming

* |Inheritance

e Virtual functions

 Virtual default destructor on base class
* virtual and override keywords

* Order of instantiation and destruction

* Emphasis on abstract base interface classes
» Pure virtual functions only
» Restrict to one level of derivation
» Pitfalls of extended inheritance chains

* Polymorphism

Daniel Hanson NWCPP April 2020

Week 4: Object-Oriented Programming

* Assignment: inheritance and polymorphism for root-finding

* Implement a pure abstract base class representing a function f(x)
» virtual double operator()(double x) = O const;

* Implement several derived concrete classes; eg
> ax3+bx*+cx+d
» alog(x —b)
* Introduce and use
std: :numeric_limits<double>::epsilon() , infinity(),
and quiet_NaN()
» v sin(ax) —n cos(bx)

* Write a function implementing a root-finding method (eg Secant) that
takes an abstract base object const reference as its argument and
computes the roots for any derived class object

Daniel Hanson NWCPP April 2020

Week 4: Object-Oriented Programming

* Assignment: inheritance and polymorphism for root-finding (continued)

doukle secant{const RealFunctionk rf, doukle x0, doukle xl1, doukle tol, int maxIter)

{
double Nan = std::numeric_limits<double>::quiet NaN();
double root = Nan;
double v0 = rf(x0);
doukle ¥l = rf(xl);
int countIter = O;
for(countIter = 0; countIter <= maxlter; ++countlter)
i
if (std::abks(xl - =x0) > tol)
i
root = ®xl - (xl - =x0)*vyl / (vl - v0);:
S/ Update =1 & =0:
x0 = x1;
xl = root;
yO = rf(=0):
vl = rf(=xl);
1
else
i
break;
1
1
if (countIter < maxIter)
i
return root;
}
else
i
return Han;
}
1

Daniel Hanson NWCPP April 2020

Week 4: Object-Oriented Programming

 Composition with a member object, and avoid object copy

* Pass by and store as const /value reference
» Avoid object copy

» But not flexible
e Lack control over lifetime of the member variable
* Can’t modify member object after containing object initialized
* Or copy the containing object

* Pass by move/rvalue reference and store the actual object
» Containing object has full control over member object lifetime
» Can be modified after containing object construction
» Deep copy of containing object possible by default

Daniel Hanson NWCPP April 2020

Week 4: Composition Example

* An Apollo moon landing mission has-a command module and a

lunar module

I h S-tand steerable antenna
'm i %Rmatmm radar antenna
n Command Module
S-band

crew compartment
Eectrical power
system radiators
SM reaction control
system quad

LY .
P ;-

TR
TITTIT

[/

Docking target.
LM overhead hatch.

i)
l——lumr module descent m—-l——‘umr module ascent mge--|‘t.‘omrmx module: { Service mody {

* Case 1: Store CM and LM as const /value reference
* (Case 2: Store CM and LM by value, pass with move semantics

Daniel Hanson NWCPP April 2020

Week 4: Composition Examples

Header file: Ivalue case

$#include "CommandModuale.h"™
#$include "LunarModule.h™

cla=zz ApolloRef

{
public:
ApolloRef (const CommandModuled cm, const LunarModule& 1m)
vold printModuleNames () const;
private:
const CommandModule& commandModule ;
const LunarModule& lunarModule ;
}:

Daniel Hanson NWCPP April 2020

Week 4: Composition Examples

Header file: rvalue case

#include "CommandModals.h"™
#include "LunarModule.h"™

clazs Apollo

{

public:
Apollo{CommandModule&d cm, LunarModule&& 1lm) ;
vold printModuleNames () const;

private:
S S5tored by waluese; Zpollo object now has sole ownership
S of these member obijscts. They and their state can also
Ff be modified as they are not restricted as const.
CommandModule commandModule ;
LunarModule lunarModule ;

Daniel Hanson NWCPP April 2020

Week 4: Object-Oriented Programming

* Composition with a polymorphic member object

* Pass by and store as const /value reference (but again, has limitations)

* Pass by move/std: :unique_ptr<.> and store as unique_ptr<.>
» Full control over lifetime of member
» Can replace old clone() methods that required object copy
» Blessed by The Creator (A Tour of C++, 2E)
» Google coding standards

Daniel Hanson NWCPP April 2020

Week 4: Composition Examples (polymorphic member)

* A Mercury mission (first NASA manned missions with single astronaut) was
comprised of

* A capsule

* And a booster rocket
» Redstone, for the first up-and-down missions =

» Atlas, with more power for the later orbital missions —

VMA>P S OM4=-IC

» The booster rocket is therefore a polymorphic member b

MercuryPir Mercar terRacket A t i

-capsule : string +operator) : void const '

|[-astronaut : string .':
-booster_: unique_ptr<MercuryBoosterRocket> [“——] - s
[+missionDetails{) : void const B f;l
i i R Ak

Atlas
[+operator() | void const +operator() : woid const

Daniel Hanson NWCPP April 2020

Week 4: Composition Examples (polymorphic member)

* Header file:

class Mercury

{
public:

Mercury(std: :unigue ptr<MercuryBoosterRocket> booster,

const std::string& capsule,

// Bule of Five:
Ff Explicitly disakle copy operations:

Mercury(const Mercuryg& rhs) =
Mercury& operator =

delete;
({const Mercury& rhs) =

delete;

i/

const std::string& astronaut);

1

Ff Since we explicitly declared copy ctor and assignment
/f should also explicitly allow default move operations:

Mercury (Mercury&& rhs) =
Mercurv& operator =
~Mercurv() =

defanlt;
(Mercurvk& rhs) =
defanlt;

defanlt;

vold missionDetails () const;

private:
std:
std:
std:

}:

Daniel Hanson NWCPP April

iunigue ptr<MercuryBoosterRocket> booster ;
istring capsule ;
istring astronaut_;

i3

-

£/

4

Week 5 — STL Containers

* A gentle introduction to templates
e functions
e classes

* STL containers
e sequential
* associative
« std::vector<.>
» |s our sequential container of choice
» In-depth coverage of member functions
» push_back(.) vs emplace_back(.) - avoid object copy
* std: :map<.> is useful for handling data input and reporting out results,
with enum key types
e STL iterators and iterator-based for loops

* Range-based for loops

Daniel Hanson NWCPP April 2020

Week 6 — STL Algorithms

e STL Algorithms
* Focus on for_each(.) and transform(.) to start

* Algorithms in <numeric>

* More from <algorithm>
* Assignment: Use various algorithms to avoid loops (including calculations of
means and dot products)

* Lambda Expressions
* Very convenient for math!
* As auxiliary functions in STL algorithms

* Exceptions

Daniel Hanson NWCPP April 2020

Week 7: Numerical C++

 Random number generation with <random>
* Engines: We use Mersenne Twister 64 bit

e Distributions: We mainly use
» Uniform
» Normal
» Student’s t

* Parallel STL algorithms from C++17

Daniel Hanson NWCPP April 2020

Week 7: Numerical C++

* Task-based concurrency with std: : future and std: :async(.)
e Concurrency vs Parallelism
* std::async(.) gets a bad rap sometimes, but
» The performance improvement is fantastic...
» Considering how easy and fool-proof it is to use
» 90%+ cut in run-time on a 20-processor virtual server
» Commonly available in modern practice

Daniel Hanson NWCPP April 2020

Week 7: Assighment (<random>)

 The Monty Hall Paradox (Let’s Make a Deal)
* Three doors marked number 1, 2, and 3
e Behind one of the doors would be the prize, such as a new car
* Behind the other two doors were “zonk” prizes (ie, you lose), eg a goat

Daniel Hanson NWCPP April 2020

Week 7: Assighment

* The Monty Hall Paradox (continued)

* When the contestant would make a choice, say Door #1, Monty would have one of
the other doors opened eg Door #3, revealing a goat

* He would then ask the contestant whether s/he would like to switch the choice to
the remaining door

* The “Paradox”: If you were given the chance to switch, should you?
* It turns out the answer is yes!

* The assignment is to implement a model of the outcomes in C++, using simulations
of a uniform distribution on {1, 2, 3}, available in <random>

Daniel Hanson NWCPP April 2020

* Eigen: Matrix Algebra Library
» Templated/header only
* Dynamic MatrixXd and VectorXd objects

» All standard matrix and vector operations are supported
» STL compliant
* Matrix decompositions
» LU (Lower/Upper Triangular)
» Cholesky
» SVD (Singular Value Decomposition)

Daniel Hanson NWCPP April 2020

* Examples and exercises (Eigen: Matrix Algebra Library)
» Solve system of linear equations (LU)
e Correlated random scenarios (Cholesky + Monte Carlo)
 Calculation of regression coefficients (SVD)
* Rolling window predictions of portfolio returns (matrix algebra)

Daniel Hanson NWCPP April 2020

* Math-related components in the Boost Libraries

* Boost Math Toolkit
» Probability Distributions: cdf, pdf, quantile functions
» Numerical Integration
» Root Solving
* Circular Buffers
» Useful for time series and live data feeds
» STL compliant
* Assignment: EGARCH(1, 1) “live” simulation of market volatility
» Circular buffer
» std::normal_distribution<> from <random>

Daniel Hanson NWCPP April 2020

Week 9: Option Pricing

* Confluence of topics covered: Use these to code realistic examples

* Pricing of financial option contracts

* Closed form models (Derived from Black-Scholes)
» European options
» Single barrier options
» Calculate implied volatility (Boost root finding)
» Boost Math Library: Statistical Distributions (N(O, 1) cdf)

Profit from butterfly spread using call options

Daniel Hanson NWCPP April 2020

Week 9: Option Pricing

* Pricing of financial option contracts (continued)

* Monte Carlo-based models
» European options (compare results with closed form)
» Single barrier options (compare results with closed form)
» Featured concepts:
* Projection of asset price simulations using <random>
* Generation of these simulations in parallel using std: :async and std: : future
* STL algorithms (including parallel algorithms)

2
)
r——|At+ og, VAt
S = St—le(2 t

Daniel Hanson NWCPP April 2020

Week 10

* Rcpp: An R package that provides interfaces to C++ (Dirk Eddelbuettel)
* RcppEigen
BH (Boost Headers)

Interface to
» One-off C++ code as a faster alternative to R

» Reusable C++ code and libraries
For R users, calling a function in C++ is the same as calling an R function

Can use the powerful visualization capabilities available in R

Daniel Hanson NWCPP April 2020

eek 10 (Rcpp Interface)

(5] RStudio [y
Fle Edt Code \lew Plots Session Buld Debug Profie Tools Help
°.% - W n Sy
o Dunte o) wienment By Coxmctons —
i Oosmsatim | Q %+ S | 59| Shoum = o gDt - o ™
i 8 Gkl vt
3 x < daca.feas(nuciEnorm(Sed, cnorm(Sed, meansd)|, cecrepi’a’, Sed), cep('b'. Sed
. saca 4
5 library guchemes values
- T | oo o
7 guplot (x
o geom_density mesix-n, fili-ci, alpha-0.3
Chens._cutce 16

> Libracy (gothemes)

Quplotixi +
geom_desaity (aes (xem)| +

theme_tutte (10)
X <- date,frame (nec(rnorm(Sed), rmorm(Sed, mean~

» guplot (x| +

+ geom_densityaes(xen, £iilec)) o

4 theme_tutee(10)

data. trame

xen, Eillec)) +

(xvn, fillee), alphav.s) +

+ theme_tutee (16

[Home]

Download
CRAN

R Project
About R

Lego
Contributors
What's New?
Reporting
Bugs
Conferences
Search

Gel Involved
Malling Lists
Developer
Pages.

R Blog

Daniel Hanson

< (xnorm(Se4), rorm(5ed, mean=3)),

L sed), rep('ht, sed))

The R Project for
Statistical Computing

Getting Started

R s a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX
plaiforms, Windows and MacOS. To download R, please choose
your preferred CRAN mirror

If you have questions about R like how ta download and install
the software, or what the license terms are, please read our
answers 1o requently asked questions before you send an email

News

« R version 4.0.0 (Arbor Day) prerelease versions will appear
starting Tuesday 2020-03-24. Final release is scheduled for
Friday 2020-04-24

+ R version 3.6.2 (Holding the Windsock) has been released
on 2020-02-29

« useR! 2020 will take place in St. Louis, Missourl, USA.

Independent and
specialized

applied
C++ Library

NWCPP April 2020

C++ Standard

Library

Boost

Eigen

Other
Scientific
Libraries

Week 10 (Rcpp Interface - Example)

R Code

pdxe—menrtyHalllParadox (seedCarPos = 106,

seedChoicePos = &74,

C++ Function

// [[Rcpp::export]]
vector<int> montyHallParadox(int seedCarPos,

nsim = 1000)
sat up the plot:
Tibryry(plotly)
names \«- c("stay", "Change")

X <- names
y <— pdx[2:3]
fig <- plot_ly(x = X, v = ¥,

type = "bar", color = ~x)

(fig == fig %% Tlayout(title = "Monty Hall Paradox'))

int seedChoicePos, int nsim)

Monty Hall Paradox

700 M Change
W Stay

600
500
400
300
200

100

Stay

Daniel Hanson

NWCPP April 2020

* At the end of the course, students can * Without ever needing:
program in modern C++: « *char
e Object-oriented code * newanddelete
* Efficient iterative code with STL * Dynamic C arrays
algorithms

* Implementation of a doubly-linked list
* Distribution-based random number

generation * Coding a binary search

* Manual thread management or non-

* Probability functions standard threading library

e Standard numerical methods
e Students are encouraged vs

* Parallelized code)
discouraged

* Matrix algebra and decompositions
* Regression models * Thus making C++ a more attractive go-

* Reusable library code with graphics to language for programming scientific
capabilities in R and mathematical applications

* Real world scientific applications
» Faster than Python
» But not much more difficult

Daniel Hanson NWCPP April 2020

Thank you very much for attending!
hansondj (at) uw.edu

Sample code will also be made available on GitHub

Daniel Hanson NWCPP April 2020

