
Thoughts on
Teaching C++ to Students in the Applied Sciences

NWCPP Meeting, 15 April 2020

To the crew of Apollo 13, and all the members of Mission Control who worked
tirelessly to get the men home safely, 50 years ago this month.

Dedication

Daniel Hanson NWCPP April 2020 2

• Single quarter introductory/intermediate course (10 weeks) in C++ for MSc
students in Computational Finance & Risk Management (CFRM) at the University
of Washington

• Emphasis on applications

• ~90% of this material would be transferable to general applied sciences

• Orders of magnitude more efficient than Python

• But can be almost as rapid to develop, thanks to modern C++

• Currently in sixth year of teaching this course

Background

Daniel Hanson NWCPP April 2020 3

• Companion lecture notes: C++ for the Rest of Us!

Background

Daniel Hanson NWCPP April 2020 4

• Introductory:
➢ Fundamentals of C++
➢ Object-Oriented Programming
➢ Templates
➢ STL Containers and Algorithms

• Intermediate:
➢ Prior programming experience in other languages is assumed

• Functions

• Conditional branching

• Iteration

• We move very quickly through these topics

➢ Open source mathematical libraries
➢ By the end of the quarter, students are able to implement some fairly

sophisticated mathematical routines and models

Background

Daniel Hanson NWCPP April 2020 5

• Proficiency in implementing common mathematical models in C++

• Emphasis on modern (through C++17) language and Standard
Library features for problem solving
• “No-cost” abstractions

• Don’t reinvent what we already have

• Don’t discourage students with gratuitously complicated code or
legacy C constructs

• Use modern C++ for practical work!

• Bust the myth that C++ is “too difficult”

Goals

Daniel Hanson NWCPP April 2020 6

• C language programming
• Not a prerequisite

• std::string, not char*

• std::vector<.>, not dynamic C-arrays

• Minute details about strings and output formatting
• Computational course, so we care more about numerical results

• In practice, results are not output to the console with std::cout

• The multitude of numerical types in C++; we only require the
following for our work

• double

• int

• size_t and long where necessary

We Don’t Care About…

Daniel Hanson NWCPP April 2020 8

• Memory allocation with new and delete
• We use std::unique_ptr<.> instead

• new and delete are covered during the last week

• Implementing sort/search algorithms or doubly-linked lists
• They’re in the Standard, so use them

• We use std::vector<.> anyway

We Don’t Care About…

Daniel Hanson NWCPP April 2020 9

• A brief history of C++
• “The Creator” Bjarne Stroustrup

• Turn of the century heyday (c 1998-2008)

• Stagnation: C++98/C++03 and the emergence of Java

• The Beast is Back (Jon Kalb): C++11 and the post-2011 world

• IDE project setup
• Visual Studio 2019 is preferred

• How to build a simple executable

• Compiler warnings and errors

Week 1

Daniel Hanson NWCPP April 2020 10

• Math
• Numerical variables: int and double

• Math operators

• Mathematical functions in <cmath>

• User-defined functions
• Declaration and implementation

• Write own functions using <cmath>

Week 1 (continued)

Daniel Hanson NWCPP April 2020 11

• Classes and objects
• Car is a class, a Dino Ferrari 308 GT4 and a Honda Accord are objects

• Member variables and member functions

• UML class diagrams

Week 2

Daniel Hanson NWCPP April 2020 12

• Classes and objects (continued)
• std::string as an example

➢ What it means to create an instance

➢ Call and use the member functions

• at(.)

• size(.)

• push_back(.)

• These also then become more familiar for when we cover STL containers

• Conditional and iterative statements
• if/else if/else

• switch statements

• for/while loops

Week 2

Daniel Hanson NWCPP April 2020 13

• Arrays
• std::array and std::vector
• We don’t care about dynamic C-style arrays

• Function overloading

• Aliases
• using
• prefer using over typedef
• (lvalue) references

• Pointers
• To variables on the stack
• Only introduced here because we will soon discuss

➢ The this pointer
➢ STL iterators
➢ “Just-in-Time” approach to introducing new concepts

Week 2

Daniel Hanson NWCPP April 2020 14

• Modified version of the Fraction example in Josuttis – Object Oriented
Programming in C++: Incrementally build up a class with
• Private numerator and denominator members, and public accessors and

mutators for each

• Overloaded constructors

• Meaning of the this pointer

• Refactor error checking for zero in the denominator

➢ Constructor

➢ Mutator for denominator

Week 3: Object-Based Programming and user-defined classes

Daniel Hanson NWCPP April 2020 15

• Fraction example (continued): Incrementally build up a class with
• Operators

➢ Multiplication * and *=, plus a common private simplifying function (uses
std::gcd(.) in C++17)

➢ Inequality <

➢ Equality and non-equality == and !=

➢ Prefix and postfix increment operators ++

➢ Using and returning *this

• Functors

Week 3: Object-Based Programming and user-defined classes

Daniel Hanson NWCPP April 2020 16

• Fraction example – declaration file

Week 3: Object-Based Programming and user-defined classes

Daniel Hanson NWCPP April 2020 17

• Implement a more complete set of operators on the Fraction class
• + += - -= (and use std::lcm(.) from C++17)

• / /=

• <= > >=

• Prefix and postfix decrement

• Other member functions

Week 3 Assignment

Daniel Hanson NWCPP April 2020 18

• Inheritance

• Virtual functions

• Virtual default destructor on base class

• virtual and override keywords

• Order of instantiation and destruction

• Emphasis on abstract base interface classes

➢ Pure virtual functions only

➢ Restrict to one level of derivation

➢ Pitfalls of extended inheritance chains

• Polymorphism

Week 4: Object-Oriented Programming

Daniel Hanson NWCPP April 2020 19

• Assignment: inheritance and polymorphism for root-finding

• Implement a pure abstract base class representing a function 𝑓(𝑥)

➢ virtual double operator()(double x) = 0 const;

• Implement several derived concrete classes; eg

➢ 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

➢ 𝑎 log(𝑥 − 𝑏)

• Introduce and use

std::numeric_limits<double>::epsilon() , infinity(),

and quiet_NaN()

➢ 𝛾 sin(𝑎𝑥) − 𝜂 cos(𝑏𝑥)

• Write a function implementing a root-finding method (eg Secant) that
takes an abstract base object const reference as its argument and
computes the roots for any derived class object

Week 4: Object-Oriented Programming

Daniel Hanson NWCPP April 2020 20

• Assignment: inheritance and polymorphism for root-finding (continued)

Week 4: Object-Oriented Programming

Daniel Hanson NWCPP April 2020 21

• Composition with a member object, and avoid object copy
• Pass by and store as const lvalue reference

➢ Avoid object copy

➢ But not flexible

• Lack control over lifetime of the member variable

• Can’t modify member object after containing object initialized

• Or copy the containing object

• Pass by move/rvalue reference and store the actual object

➢ Containing object has full control over member object lifetime

➢ Can be modified after containing object construction

➢ Deep copy of containing object possible by default

Week 4: Object-Oriented Programming

Daniel Hanson NWCPP April 2020 22

• An Apollo moon landing mission has-a command module and a

lunar module

• Case 1: Store CM and LM as const lvalue reference

• Case 2: Store CM and LM by value, pass with move semantics

Week 4: Composition Example

Daniel Hanson NWCPP April 2020 23

Header file: lvalue case

Week 4: Composition Examples

Daniel Hanson NWCPP April 2020 24

Header file: rvalue case

Week 4: Composition Examples

Daniel Hanson NWCPP April 2020 25

• Composition with a polymorphic member object

• Pass by and store as const lvalue reference (but again, has limitations)

• Pass by move/std::unique_ptr<.> and store as unique_ptr<.>

➢ Full control over lifetime of member

➢ Can replace old clone() methods that required object copy

➢ Blessed by The Creator (A Tour of C++, 2E)

➢ Google coding standards

Week 4: Object-Oriented Programming

Daniel Hanson NWCPP April 2020 26

• A Mercury mission (first NASA manned missions with single astronaut) was
comprised of

• A capsule

• And a booster rocket

➢ Redstone, for the first up-and-down missions

➢ Atlas, with more power for the later orbital missions

➢ The booster rocket is therefore a polymorphic member

Week 4: Composition Examples (polymorphic member)

Daniel Hanson NWCPP April 2020 27

• Header file:

Week 4: Composition Examples (polymorphic member)

Daniel Hanson NWCPP April 2020 28

• A gentle introduction to templates
• functions
• classes

• STL containers
• sequential

• associative

• std::vector<.>
➢ Is our sequential container of choice

➢ In-depth coverage of member functions

➢ push_back(.) vs emplace_back(.) - avoid object copy

• std::map<.> is useful for handling data input and reporting out results,
with enum key types

• STL iterators and iterator-based for loops

• Range-based for loops

Week 5 – STL Containers

Daniel Hanson NWCPP April 2020 29

• STL Algorithms
• Focus on for_each(.) and transform(.) to start

• Algorithms in <numeric>

• More from <algorithm>

• Assignment: Use various algorithms to avoid loops (including calculations of
means and dot products)

• Lambda Expressions
• Very convenient for math!

• As auxiliary functions in STL algorithms

• Exceptions

Week 6 – STL Algorithms

Daniel Hanson NWCPP April 2020 30

• Random number generation with <random>
• Engines: We use Mersenne Twister 64 bit

• Distributions: We mainly use

➢ Uniform

➢ Normal

➢ Student’s t

• Parallel STL algorithms from C++17

Week 7: Numerical C++

Daniel Hanson NWCPP April 2020 31

• Task-based concurrency with std::future and std::async(.)
• Concurrency vs Parallelism

• std::async(.) gets a bad rap sometimes, but

➢ The performance improvement is fantastic…

➢ Considering how easy and fool-proof it is to use

➢ 90%+ cut in run-time on a 20-processor virtual server

➢ Commonly available in modern practice

Week 7: Numerical C++

Daniel Hanson NWCPP April 2020 32

• The Monty Hall Paradox (Let’s Make a Deal)
• Three doors marked number 1, 2, and 3

• Behind one of the doors would be the prize, such as a new car

• Behind the other two doors were “zonk” prizes (ie, you lose), eg a goat

Week 7: Assignment (<random>)

Daniel Hanson NWCPP April 2020 33

• The Monty Hall Paradox (continued)
• When the contestant would make a choice, say Door #1, Monty would have one of

the other doors opened eg Door #3, revealing a goat

• He would then ask the contestant whether s/he would like to switch the choice to
the remaining door

• The “Paradox”: If you were given the chance to switch, should you?

• It turns out the answer is yes!

• The assignment is to implement a model of the outcomes in C++, using simulations
of a uniform distribution on {1, 2, 3}, available in <random>

Week 7: Assignment

Daniel Hanson NWCPP April 2020 34

• Eigen: Matrix Algebra Library
• Templated/header only

• Dynamic MatrixXd and VectorXd objects

➢ All standard matrix and vector operations are supported

➢ STL compliant

• Matrix decompositions

➢ LU (Lower/Upper Triangular)

➢ Cholesky

➢ SVD (Singular Value Decomposition)

Week 8

Daniel Hanson NWCPP April 2020 35

• Examples and exercises (Eigen: Matrix Algebra Library)
• Solve system of linear equations (LU)

• Correlated random scenarios (Cholesky + Monte Carlo)

• Calculation of regression coefficients (SVD)

• Rolling window predictions of portfolio returns (matrix algebra)

Week 8

Daniel Hanson NWCPP April 2020 36

• Math-related components in the Boost Libraries
• Boost Math Toolkit

➢ Probability Distributions: cdf, pdf, quantile functions

➢ Numerical Integration

➢ Root Solving

• Circular Buffers

➢ Useful for time series and live data feeds

➢ STL compliant

• Assignment: EGARCH(1, 1) “live” simulation of market volatility

➢ Circular buffer

➢ std::normal_distribution<> from <random>

Week 8

Daniel Hanson NWCPP April 2020 37

• Confluence of topics covered: Use these to code realistic examples

• Pricing of financial option contracts
• Closed form models (Derived from Black-Scholes)

➢ European options

➢ Single barrier options

➢ Calculate implied volatility (Boost root finding)

➢ Boost Math Library: Statistical Distributions (N(0, 1) cdf)

Week 9: Option Pricing

Daniel Hanson NWCPP April 2020 38

• Pricing of financial option contracts (continued)
• Monte Carlo-based models

➢ European options (compare results with closed form)

➢ Single barrier options (compare results with closed form)

➢ Featured concepts:

• Projection of asset price simulations using <random>

• Generation of these simulations in parallel using std::async and std::future

• STL algorithms (including parallel algorithms)

Week 9: Option Pricing

Daniel Hanson NWCPP April 2020 39

• Rcpp: An R package that provides interfaces to C++ (Dirk Eddelbuettel)
• RcppEigen

• BH (Boost Headers)

• Interface to

➢ One-off C++ code as a faster alternative to R

➢ Reusable C++ code and libraries

• For R users, calling a function in C++ is the same as calling an R function

• Can use the powerful visualization capabilities available in R

Week 10

Daniel Hanson NWCPP April 2020 40

Week 10 (Rcpp Interface)

Daniel Hanson NWCPP April 2020 41

Independent and
specialized

applied
C++ Library Other

Scientific
Libraries

C++ Standard
Library

Boost

EigenRcpp

R Code C++ Function

Week 10 (Rcpp Interface - Example)

Daniel Hanson NWCPP April 2020 42

• At the end of the course, students can
program in modern C++:

• Object-oriented code

• Efficient iterative code with STL
algorithms

• Distribution-based random number
generation

• Probability functions

• Standard numerical methods

• Parallelized code

• Matrix algebra and decompositions

• Regression models

• Reusable library code with graphics
capabilities in R

• Real world scientific applications

➢ Faster than Python

➢ But not much more difficult

Summary

Daniel Hanson NWCPP April 2020 43

• Without ever needing:

• *char

• new and delete

• Dynamic C arrays

• Implementation of a doubly-linked list

• Coding a binary search

• Manual thread management or non-
standard threading library

• Students are encouraged vs
discouraged

• Thus making C++ a more attractive go-
to language for programming scientific
and mathematical applications

Thank you very much for attending!

hansondj (at) uw.edu

Sample code will also be made available on GitHub

Summary

Daniel Hanson NWCPP April 2020 44

