
Remedial C++ 
14

Pete Williamson
petewil00@hotmail.com



C++ 14 language changes
C++ 14 library changes
A small block of code modernized

Topics



Original C++
C++ 98
C++ 11 (previously called C++ 0X)
C++ 14
C++ 17
C++ 20 (standard is finalized)
C++ 23 (in planning)

C++ Landscape



C++ 14 wikipedia
Scott Meyers’ Effective Modern C++
Dr Dobbs (C++ 14)
Anthony Calandra C++ 14
https://chromium-cpp.appspot.com/ - chromium allowed 
features
… also check your favorite search engine

Links

https://en.wikipedia.org/wiki/C%2B%2B14#New_standard_library_features
https://www.amazon.com/Effective-Modern-Specific-Ways-Improve/dp/1491903996/ref=asc_df_1491903996/?tag=hyprod-20&linkCode=df0&hvadid=312125971120&hvpos=1o1&hvnetw=g&hvrand=2393200044705222595&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9052182&hvtargid=aud-643191255296:pla-433939821761&psc=1&tag=&ref=&adgrpid=61316180839&hvpone=&hvptwo=&hvadid=312125971120&hvpos=1o1&hvnetw=g&hvrand=2393200044705222595&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9052182&hvtargid=aud-643191255296:pla-433939821761
http://www.drdobbs.com/cpp/the-c14-standard-what-you-need-to-know/240169034
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md
https://chromium-cpp.appspot.com/


● Return type deduction (auto return type)
● decltype(auto) - wha?
● Relaxed constexpr restrictions  - constexpr all the things!
● Templates for variables
● Aggregate member initialization
● Binary literals
● Digit separators
● Generic Lambdas
● Lambda capture expressions
● Deprecated attribute

C++ 14 language changes



● Shared mutexes and locking
● Heterogeneous lookup
● Standard user defined literals
● Tuple addressing via type
● Smaller library features

C++ 14 library changes



Trailing return type



Correction to my last talk, this really is C++11.
std::sort(page_infos->begin(),   

          page_infos->end(),

          [](const PageInfo& a, const 

             PageInfo& b) -> bool {
              return a.last_access_time >  

                     b.last_access_time;

            });

Trailing return type (C++ 11)



Return type deduction (auto)



What it does:
    You can now use “auto” with function return values.

Return type deduction (auto)



auto Correct(int i)

{

  if (i == 1)

    return i; // return type deduced int

  return Correct(i-1)+i;  // ok to call

}

Return type deduction example



Like C++11, use it to save typing, not thinking - you 
should still know what type is being returned.

Can be used with lambdas to get template like behavior.  
(More on that later.)

Return type deduction usage



decltype(auto) - wha?



So we know that decltype returns the type of the 
expression in parenthesis.

We know that auto figures out what the type should be.

So what does it mean when you put them together?

decltype(auto) - wha?



What it does:
    It’s like auto, but it keeps const and ref

Example:
const int x = 0;

auto x1 = x;           // x1 is int

decltype(auto) x2 = x; // x2 is const int

decltype(auto)



When to use it:
    When you would normally use auto, but keeping const 
or ref is important (typically in templates)

decltype(auto)



Relaxed constexpr expressions



What it does: constexpr all the things!*

(* well, more things,  C++ 17 adds even more support)

Relaxed constexpr expressions



Any declarations except:
● static or thread_local variables.
● Variable declarations without initializers.
● The conditional branching statements if and switch.
● Any looping statement, including range-based for.

Relaxed constexpr - what is new(1)



It allows expressions which change the value of an 
object if the lifetime of that object began within the 
constant expression function. This includes calls to any 
non-const constexpr-declared non-static member 
functions.

You can’t use goto in a constexpr function.

Relaxed constexpr - what is new(2)



constexpr int factorial(int n) {

  if (n <= 1) {

    return 1;

  } else {

    return n * factorial(n - 1);

  }

}

factorial(5); // == 120

Relaxed constexpr - example



Anytime you can!

It is usually better to let the work be done at compile 
time instead of runtime if you can.

const data is thread safe, too.

Relaxed constexpr - when to use



Templates for variables



What it does:  Now you can template variables

Example:
template<class T>
constexpr T pi = T(3.1415926535897932385);
template<class T>
constexpr T e  = T(2.7182818284590452353);

Templates for variables



This works well for constants such as e and pi.  

You might use it if the header was used in some places 
where you wanted a double, and others where you 
wanted a float.

Templates for variables - usage



Aggregate member initialiers



What it does:
- It used to be that you couldn’t initialize classes with 

aggregate initialization if you had member initializers.  
Now you can.

- In C++14, some braces can be elided if clear from 
context

Aggregate member initialization



struct S {

    int x;

    struct Foo {

        int i;

        int j;

        int a[3];

    } b;

};

Aggregate member initializers



Example:
    S s1 = { 1, { 2, 3, {4, 5, 6} } };

    S s2 = { 1, 2, 3, 4, 5, 6}; 

      // same, but with brace elision

Aggregate member initializers



When to use:
● Same as when you used member lists to initialize 

classes before.

Aggregate member initializers



Binary literals / digit separators



What it does:
Lets you write binary numbers as binary in source.

Example:
0b1111'1111 // == 255 (0xFF)

When to use it:
Whenever the number makes more sense in binary than 
hex

Binary Literals



What it does:
Lets us break big numbers down into groups.

Example: 
auto one_MILLION_dollars = 1'000'000;

auto ichi_oku_yen = 1'0000'0000;

When to use it:
Up to your tastes.  Makes big numbers readable.

Digit Separators



Generic Lambdas



What it does:
Lets you write lambdas with auto types.

Examples:
auto lambda = [](auto x, auto y) {return x + y;};

auto identity = [](auto x) { return x; };

int three = identity(3); // == 3

std::string foo = identity("foo"); // == "foo"

When to use it:
Can replace templates!

Generic Lambdas



These can be used a lot like templates.
They can be used at smaller scope than templates to 
avoid name collisions.

They are good for visiting syntax:
boost::variant<int, double> value;

apply_visitor(value, [&](auto&& e){

  std::cout << e;

});

Generic Lambdas - when to use



The are actually implemented using templates, but a lot 
of the type ugliness is hidden from the code.

Generic Lambdas



What it does:
When a lambda does a capture, you can initialize it with 
“=”

Example:
auto lambda = 

    [value = 1] {return value;};

Lambda Capture Expressions



When to use:
  This is how to get move only expressions into a 
lambda.
std::unique_ptr<int> ptr(new int(10));

auto lambda = [value = std::move(ptr)] {

    return *value;

 };

Lambda Capture Expressions



Deprecated attribute



What it does:
  Mark code as deprecated so we can give compile 
warnings

Deprecated attribute



[[deprecated]] int f();
[[deprecated("g() is thread-unsafe. Use h() instead")]]
void g( int& x );

void test()
{
  int a = f(); // warning: 'f' is deprecated
  g(a); // warning: 'g' is deprecated: g() is thread-unsafe. Use h() instead
}

Deprecated example



When you are moving to a new API and want to get folks 
to stop using the old one.

Deprecated - when to use it



C++14 library changes



● Shared mutexes and locking
● Heterogeneous lookup
● Standard user defined literals
● Tuple addressing via type
● Smaller library features

C++ 14 Library changes



shared_timed_mutex in C++14 
For multiple readers, single writer.
The timed part means we can put a timeout on the 
attempt to get the mutex.

Library: Shared mutexes and locks



If you have a map full of std::string, and you want to look 
up a char*, this allows you to let your container compare 
different types of keys together.

It works with any types the comparison operator 
supports.  std::less and std::greater are modified to work 
for types that can convert to each other.

Library - Heterogeneous lookup



Std library now supports declaring types string, duration, 
and complex by adding a letter to specify the type:

auto str = "hello world"s; // auto deduces string

auto dur = 60s; // auto deduces chrono::seconds

auto z   = 1i;  // auto deduces complex<double>

Library - Std literals with type



You can ask for a type from a tuple instead of having to 
supply the proper index, as long as it is unambiguous.

tuple<string, string, int> t("foo", "bar", 7);

int i = get<int>(t);        // i == 7

int j = get<2>(t);          // Same as before: j == 7

string s = get<string>(t);  // Compile-time error due

                            // to ambiguity

Library - tuple addressing via type



Library - smaller features



● std::make_unique<> - builds smart pointers
● std::integral_constant - new overload of operator() 

which returns constant types (think type traits)
● std::integer_sequence added for compile time use of 

sequences 
● const iter support:  

std::cbegin/std::cend/std::crbegin/std::crend
● New overloads of std::equals and others taking a 

second pair of ranges - you can skip length check.

Library - smaller features



● std::is_final type trait to detect if a class is final.
● std::quoted stream IO manipulator to preserve 

spaces in a string on output/input by quoting them.

Library smaller features



Coding in the modern style



auto
rvalue references and moving
for(each)
constexpr
const iter
lambda

Coding in the modern style



constexpr int Fibbonachi(int n) { … };
const int limit = Fibbonachi(11);  // Calculated at compile time.

std::vector<BigComplicatedVector> varlist;
std::vector<Subcomponent> matches;

for(const auto var : varlist) {
  auto result = std::find_if(std::begin(var), std::end(var),
                    [var]() { var.size() < 10 });
  If (result != var.end())
     matches.emplace_back(std::move(var.contents));
}

Modern style example (11 and 14)



const int limit = 89;  // We calculated it by hand offline

std::vector<BigComplicatedVector> varlist;
std::vector<Subcomponent> matches;

for(BigComplicatedVector.const_iterator it; 
      it = std::begin(varlist); it != std::end(varlist)) {
  BigComplicatedVector.const_iterator result = 
      std::find_if(std::begin(var), std::end(var), &sizeLessThanTenFunction); // lambda
  If (result != var.end())
     matches.push_back(var.contents);  // Makes a copy instead of a move
}

Without modern style (89)



Links to learn more



Wikipedia - https://en.wikipedia.org/wiki/C%2B%2B14#New_standard_library_features

Anthony Calandra - 
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md

CPP Reference - https://en.cppreference.com/w/

Effective Modern C++ by Scott Meyers - 
https://www.aristeia.com/books.html

Links to learn more

https://en.wikipedia.org/wiki/C%2B%2B14#New_standard_library_features
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md
https://en.cppreference.com/w/
https://www.aristeia.com/books.html


https://www.youtube.com/watch?v=i1zNN_U6tEQ

Link to my Remedial C++ 11 talk

https://www.youtube.com/watch?v=i1zNN_U6tEQ


Spread your wings and soar



C++ 17 is big, maybe bigger than 11 and 14 combined.  
It will get it’s own slide deck.

C++ 20 is shaping up to be bigger than 17 with 
Reflection, Coroutines, Concepts, Ranges, and more.

Some features (contracts) have been postponed to C++ 
23
CppCast.com (podcast) covers the latest developments.

A look ahead



Any questions?

Thanks for listening!


