
© 2018 Adobe. All Rights Reserved.

Bringing Photoshop to the iPad
Sean Parent | Senior Principal Scientist

© 2019 Adobe. All Rights Reserved.

photoshopishiring.com

2

© 2019 Adobe. All Rights Reserved.

“Could we just put Photoshop on the iPad?”
 – David Howe

3

© 2019 Adobe. All Rights Reserved.

Demo

4

© 2019 Adobe. All Rights Reserved. 5

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

6

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

• There is no explicit model

6

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

• There is no explicit model

• A model in MVC is:

6

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

• There is no explicit model

• A model in MVC is:

• Data

6

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

• There is no explicit model

• A model in MVC is:

• Data

• Constraints and Relationships

6

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

• There is no explicit model

• A model in MVC is:

• Data

• Constraints and Relationships

• Observable

6

© 2019 Adobe. All Rights Reserved.

The UI is the Model

7

© 2019 Adobe. All Rights Reserved.

Solution

8

© 2019 Adobe. All Rights Reserved.

Solution

• Remove the visual representation from the UI elements

8

© 2019 Adobe. All Rights Reserved.

Solution

• Remove the visual representation from the UI elements

• Add the ability to bind to, to observe, UI elements

8

© 2019 Adobe. All Rights Reserved.

Solution

• Remove the visual representation from the UI elements

• Add the ability to bind to, to observe, UI elements

• Lazily instantiate UI elements as needed

8

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

9

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

• Largely Single Threaded

9

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

• Largely Single Threaded

• Except Low Level Image Processing

9

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

• Largely Single Threaded

• Except Low Level Image Processing

• User Input Interleaved with Rendering

9

© 2019 Adobe. All Rights Reserved.

Put Photoshop on a Separate Thread

10

© 2019 Adobe. All Rights Reserved.

Put Photoshop on a Separate Thread

• Free UI thread to be Responsive

10

© 2019 Adobe. All Rights Reserved.

Put Photoshop on a Separate Thread

• Free UI thread to be Responsive

• Runs independently, without blocking

10

© 2019 Adobe. All Rights Reserved.

Put Photoshop on a Separate Thread

• Free UI thread to be Responsive

• Runs independently, without blocking

10

Ps Core

© 2019 Adobe. All Rights Reserved.

Mantle

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

11

Mantle

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

• read-only

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

• read-only

• disableable (dynamic read-only)

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

• read-only

• disableable (dynamic read-only)

• connectable (slot & signal)

11

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

• read-only

• disableable (dynamic read-only)

• connectable (slot & signal)

• auto disconnect on object expiration

11

© 2019 Adobe. All Rights Reserved.

Mantle

12

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

12

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

12

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Mantle

• The Mantle manages high speed communication with Core

• Communication is handled by “sending code”

• No serialization/deserialization overhead

12

core_invoke(
 [file_type](TImageDocument* core_document) {
 core_document->SaveDocument(cSave, cSave, file_type);
 },
 transaction, core_document);

© 2019 Adobe. All Rights Reserved.

Transactions

13

© 2019 Adobe. All Rights Reserved.

Transactions

• Transaction system allows simple speculative execution

13

© 2019 Adobe. All Rights Reserved.

Transactions

• Transaction system allows simple speculative execution

• Self correcting

13

© 2019 Adobe. All Rights Reserved.

Transactions

• Transaction system allows simple speculative execution

• Self correcting

• Similar model to Apple’s CoreAnimation

13

© 2019 Adobe. All Rights Reserved.

Transactions

• Transaction system allows simple speculative execution

• Self correcting

• Similar model to Apple’s CoreAnimation

• Programmer’s view (and user view) is instantaneous

13

© 2019 Adobe. All Rights Reserved.

Transactions

• Transaction system allows simple speculative execution

• Self correcting

• Similar model to Apple’s CoreAnimation

• Programmer’s view (and user view) is instantaneous

• Even with underlying latency

13

© 2019 Adobe. All Rights Reserved.

Transactions

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

• The transaction id is stored in a thread-local scope

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

• The transaction id is stored in a thread-local scope

• Globally available to any notifiers

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

• The transaction id is stored in a thread-local scope

• Globally available to any notifiers

• Notifications from core to mantle echo back the count

14

© 2019 Adobe. All Rights Reserved.

Transactions

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

• The transaction id is stored in a thread-local scope

• Globally available to any notifiers

• Notifications from core to mantle echo back the count

• If a mantle property receives an update with a
count less than the property count, the update is
ignored

14

© 2019 Adobe. All Rights Reserved.

Transactions

class transaction {
public:
 enum class id_t : std::size_t { initial = 0, none = std::numeric_limits<std::size_t>::max() };

 transaction(id_t id) : _prior{current()} { current() = id; }

 ~transaction() { current() = _prior; }

 static id_t next() {
 static std::atomic<std::size_t> id{0};
 return static_cast<id_t>(++id);
 }

 static id_t& current() {
 thread_local id_t id{id_t::none};
 return id;
 }

private:
 id_t _prior;
};

15

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

• Property values changed by a slider

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

• Property values changed by a slider

• Painting

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

• Property values changed by a slider

• Painting

• Upon an initial event a coroutine is created and sent
to be processed on core

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

• Property values changed by a slider

• Painting

• Upon an initial event a coroutine is created and sent
to be processed on core

• A direct communication channel is established from
sender to coroutine

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• A high frequency event is any event expected to occur faster than the events can be processed

• Screen update requests

• Property values changed by a slider

• Painting

• Upon an initial event a coroutine is created and sent
to be processed on core

• A direct communication channel is established from
sender to coroutine

• Subsequent messages are sent direct to the coroutine

16

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

• Cancel operations that are no longer necessary

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

• Cancel operations that are no longer necessary

• Defer low-priority operations to completion

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

• Cancel operations that are no longer necessary

• Defer low-priority operations to completion

• Strategy is time based to maintain frame rate

17

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

• Cancel operations that are no longer necessary

• Defer low-priority operations to completion

• Strategy is time based to maintain frame rate

• Not user event based (such as finger up/down)

17

template <class, class, class>
class latest;

template <class Executor, class Task, class... Args>
class latest<Executor, Task, void(Args...)> {

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());
 }
 std::apply(_task, std::move(value));
 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());
 }
 std::apply(_task, std::move(value));
 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());
 }
 std::apply(_task, std::move(value));
 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());
 }
 std::apply(_task, std::move(value));
 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

 struct receiver {
 Task _task;
 std::mutex _mutex;
 bool _queued{false}; // is a task queued already
 std::optional<std::tuple<Args...>> _value; // message value

 template <class F>
 explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

 template <class... T>
 bool send(T&&... arg) {
 bool queued = true;
 std::unique_lock<std::mutex> lock(_mutex);
 _value = std::make_tuple(std::forward<T>(arg)...);
 std::swap(queued, _queued);
 return queued;
 }

 void invoke() {
 std::tuple<Args...> value;
 {
 std::unique_lock<std::mutex> lock(_mutex);
 _queued = false;
 value = std::move(_value.get());
 }
 std::apply(_task, std::move(value));
 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

public:
 template <class T, class F>
 latest(T&& executor, F&& task)
 : _executor{std::forward<T>(executor)}, _shared{std::make_shared<receiver>(
 std::forward<F>(task))} {}

 template <class... T>
 void operator()(T&&... arg) const {
 if (!_shared->send(std::forward<T>(arg)...)) {
 _executor([_shared = _shared] { _shared->invoke(); });
 }
 }
};

template <class T, class Executor, class Task>
inline auto make_latest(Executor&& executor, Task&& task) {
 return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
}

 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

public:
 template <class T, class F>
 latest(T&& executor, F&& task)
 : _executor{std::forward<T>(executor)}, _shared{std::make_shared<receiver>(
 std::forward<F>(task))} {}

 template <class... T>
 void operator()(T&&... arg) const {
 if (!_shared->send(std::forward<T>(arg)...)) {
 _executor([_shared = _shared] { _shared->invoke(); });
 }
 }
};

template <class T, class Executor, class Task>
inline auto make_latest(Executor&& executor, Task&& task) {
 return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
}

 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

public:
 template <class T, class F>
 latest(T&& executor, F&& task)
 : _executor{std::forward<T>(executor)}, _shared{std::make_shared<receiver>(
 std::forward<F>(task))} {}

 template <class... T>
 void operator()(T&&... arg) const {
 if (!_shared->send(std::forward<T>(arg)...)) {
 _executor([_shared = _shared] { _shared->invoke(); });
 }
 }
};

template <class T, class Executor, class Task>
inline auto make_latest(Executor&& executor, Task&& task) {
 return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
}

 }
 };

 Executor _executor;
 std::shared_ptr<receiver> _shared;

public:
 template <class T, class F>
 latest(T&& executor, F&& task)
 : _executor{std::forward<T>(executor)}, _shared{std::make_shared<receiver>(
 std::forward<F>(task))} {}

 template <class... T>
 void operator()(T&&... arg) const {
 if (!_shared->send(std::forward<T>(arg)...)) {
 _executor([_shared = _shared] { _shared->invoke(); });
 }
 }
};

template <class T, class Executor, class Task>
inline auto make_latest(Executor&& executor, Task&& task) {
 return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
}

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n != 3000; ++n) {
 f(n);
}

19

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n != 3000; ++n) {
 f(n);
}

19

470
1066
1143
1347
1454
1507
1698
1930
2219
2649
2999

© 2019 Adobe. All Rights Reserved.

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n != 3000; ++n) {
 f(n);
}

19

470
1066
1143
1347
1454
1507
1698
1930
2219
2649
2999

© 2019 Adobe. All Rights Reserved.

Mantle

20

© 2019 Adobe. All Rights Reserved.

Mantle

• All communication with client on client thread

20

© 2019 Adobe. All Rights Reserved.

Mantle

• All communication with client on client thread

• The core and mantle are packaged as a library

20

© 2019 Adobe. All Rights Reserved.

Surface

21

© 2019 Adobe. All Rights Reserved.

Surface

• The Surface is a new, thin, UI

21

Surface

© 2019 Adobe. All Rights Reserved.

Surface

• The Surface is a new, thin, UI

• Binds to the Mantle

21

© 2019 Adobe. All Rights Reserved.

Surface

• The Surface is a new, thin, UI

• Binds to the Mantle

• Model behaviors driven by the Core

21

© 2019 Adobe. All Rights Reserved.

Display System

22

© 2019 Adobe. All Rights Reserved.

Display System

• Canvas display consists of two layer

22

© 2019 Adobe. All Rights Reserved.

Display System

• Canvas display consists of two layer

• Background is screen resolution of entire document

22

© 2019 Adobe. All Rights Reserved.

Display System

• Canvas display consists of two layer

• Background is screen resolution of entire document

• Foreground is screen resolution* of visible area

22

© 2019 Adobe. All Rights Reserved.

Display System

• Canvas display consists of two layer

• Background is screen resolution of entire document

• Foreground is screen resolution* of visible area

• *Resolution may be adapted to maintain frame rate

22

© 2019 Adobe. All Rights Reserved. 23

© 2019 Adobe. All Rights Reserved. 24

© 2019 Adobe. All Rights Reserved. 25

© 2019 Adobe. All Rights Reserved. 26

© 2019 Adobe. All Rights Reserved. 27

© 2019 Adobe. All Rights Reserved. 28

© 2019 Adobe. All Rights Reserved. 29

© 2019 Adobe. All Rights Reserved. 30

© 2019 Adobe. All Rights Reserved. 31

© 2019 Adobe. All Rights Reserved. 32

© 2019 Adobe. All Rights Reserved. 33

© 2019 Adobe. All Rights Reserved. 34

© 2019 Adobe. All Rights Reserved. 35

© 2019 Adobe. All Rights Reserved. 36

© 2019 Adobe. All Rights Reserved. 37

© 2019 Adobe. All Rights Reserved. 38

© 2019 Adobe. All Rights Reserved. 39

© 2019 Adobe. All Rights Reserved. 40

© 2019 Adobe. All Rights Reserved.

Photoshop on the iPad

41

© 2019 Adobe. All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

41

© 2019 Adobe. All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

• Enabled by just a few, simple, concepts

41

© 2019 Adobe. All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

• Enabled by just a few, simple, concepts

• photoshopishiring.com

41

