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“Could we just put Photoshop on the iPad?” 
    – David Howe
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• Largely Single Threaded
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Mantle 

• The Mantle is an API layer that presents an observable, shadow, model of the application

• The model is a containment hierarchy

• application contains a collection of documents

• document contains a collection of layers, etc.

• Properties present a rich interface

• read-only

• disableable (dynamic read-only)

• connectable (slot & signal)

• auto disconnect on object expiration
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Transactions 

• Transaction system allows simple speculative execution

• Self correcting

• Similar model to Apple’s CoreAnimation

• Programmer’s view (and user view) is instantaneous

• Even with underlying latency
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Transactions 

• When a property is changed, the change is reflected immediately

• And the property is stamped with a transaction count

• Each property change message from mantle to core is associated the transaction count

• The transaction id is stored in a thread-local scope

• Globally available to any notifiers

• Notifications from core to mantle echo back the count

• If a mantle property receives an update with a 
count less than the property count, the update is 
ignored
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Transactions 

class transaction {
public:
    enum class id_t : std::size_t { initial = 0, none = std::numeric_limits<std::size_t>::max() };

    transaction(id_t id) : _prior{current()} { current() = id; }

    ~transaction() { current() = _prior; }

    static id_t next() {
        static std::atomic<std::size_t> id{0};
        return static_cast<id_t>(++id);
    }

    static id_t& current() {
        thread_local id_t id{id_t::none};
        return id;
    }

private:
    id_t _prior;
};
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• Screen update requests

• Property values changed by a slider

• Painting

• Upon an initial event a coroutine is created and sent 
to be processed on core

• A direct communication channel is established from 
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High Frequency Channels

• The coroutine manages adapting to the performance requirements of the stream

• Take latest value

• Coalesce values

• Process in preview mode

• Cancel operations that are no longer necessary

• Defer low-priority operations to completion

• Strategy is time based to maintain frame rate

• Not user event based (such as finger up/down)
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template <class, class, class>
class latest;

template <class Executor, class Task, class... Args>
class latest<Executor, Task, void(Args...)> { 
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Surface 

• The Surface is a new, thin, UI

• Binds to the Mantle

• Model behaviors driven by the Core
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• Canvas display consists of two layer

• Background is screen resolution of entire document

• Foreground is screen resolution* of visible area

• *Resolution may be adapted to maintain frame rate

22



© 2019 Adobe.  All Rights Reserved. 23



© 2019 Adobe.  All Rights Reserved. 24



© 2019 Adobe.  All Rights Reserved. 25



© 2019 Adobe.  All Rights Reserved. 26



© 2019 Adobe.  All Rights Reserved. 27



© 2019 Adobe.  All Rights Reserved. 28



© 2019 Adobe.  All Rights Reserved. 29



© 2019 Adobe.  All Rights Reserved. 30



© 2019 Adobe.  All Rights Reserved. 31



© 2019 Adobe.  All Rights Reserved. 32



© 2019 Adobe.  All Rights Reserved. 33



© 2019 Adobe.  All Rights Reserved. 34



© 2019 Adobe.  All Rights Reserved. 35



© 2019 Adobe.  All Rights Reserved. 36



© 2019 Adobe.  All Rights Reserved. 37



© 2019 Adobe.  All Rights Reserved. 38



© 2019 Adobe.  All Rights Reserved. 39



© 2019 Adobe.  All Rights Reserved. 40



© 2019 Adobe.  All Rights Reserved.

Photoshop on the iPad

41



© 2019 Adobe.  All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

41



© 2019 Adobe.  All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

• Enabled by just a few, simple, concepts

41



© 2019 Adobe.  All Rights Reserved.

Photoshop on the iPad

• Goal is to bring real photoshop to new devices and new customers

• Fast, fluid, and fully compatible with the desktop product

• Enabled by just a few, simple, concepts

• photoshopishiring.com

41




