
Remedial C++
11

Now that we can actually use it…
Pete Williamson

(petewil00@hotmail.com)

● auto
● lambdas
● nullptr
● = default, = delete
● shared_ptr
● Range based for loops

Overview (1)

● Uniform initialization = { , , };
● Moving objects (the move ctor) - see my

other presentation on the NWCPP
website.

● override
● using
● constexpr

Overview (2)

● Decltype
● Threading library
● Variadic templates
● Strongly typed enums
● Delegating c’tors
● static_assert

Overview (3) - Stuff I haven’t used

auto

A Challenger for long type names

What it does
Figure out what type to use for a variable

Example
 for (auto& item : items) { … }

auto

std::vector<NetworkPacket> packets;

const auto& bar = packets.rbegin();

-vs-
const reverse_iterator<

 std::vector<NetworkPacket>>& bar =

 packets.begin();

auto - why does it help?

When to use it
- You need to know what type it makes
- To make the code easier to read, instead of easier to

type

You can use it with const and ‘&’

auto

I rode through the desert on a function with
no name...

lambda

What they are
A way to define a function with no name.

Example (no capture)
auto glambda = [](auto a, auto&& b) {

 return a < b;

};

bool b = glambda(3, 3.14);

lambdas

int i = 3; int j = 5;

function<int (void)> f = [i, &j] {

 return i + j;

};

cout << f() << endl;

Lambda example (capture)

When to use
- Writing async code inline
- Passing comparators / find criteria
- Link to Herb’s presentation

from 2011.
https://vimeo.com/23975522

Lambdas

https://vimeo.com/23975522

std::sort(page_infos->begin(),

 page_infos->end(),

 [](const PageInfo& a, const

 PageInfo& b) -> bool {

 return a.last_access_time >

 b.last_access_time;

 });

Lambdas - comparator example

void RequestQueueTaskTestBase::InitializeStore() {

 store_.Initialize(base::BindOnce([](bool success) {

 ASSERT_TRUE(success); }));

 PumpLoop();

}

Lambda - async completion ex

When not to use them
- Careful, can make code harder to read instead of

easier if overused.
- Personally, I think that if it needs a function, a name

helps. You may disagree.

Lambdas

public static boolean saveAndSharePage(final Activity activity, Tab tab, final Callback<ShareParams> shareCallback) {

 ...

 offlinePageBridge.getPagesByNamespace(OfflinePageBridge.LIVE_PAGE_SHARING_NAMESPACE,

 new Callback<List<OfflinePageItem>>() {

 @Override public void onResult(List<OfflinePageItem> items) {

 offlinePageBridge.savePage(webContents,

 new ClientId(OfflinePageBridge.LIVE_PAGE_SHARING_NAMESPACE, Integer.toString(tab.getId())),

 new OfflinePageBridge.SavePageCallback() {

 @Override public void onSavePageDone(int savePageResult, String url, long offlineId) {

 offlinePageBridge.getPageByOfflineId(

 offlineId, new Callback<OfflinePageItem>() {

 @Override public void onResult(OfflinePageItem page) {

 sharePublishedPage(page, activity, shareCallback);

 }

 });

 }

 });

 }

 });

 return true;

 }

Lambda bad example (from java)

< no picture here, nothing to see, move along
now >

nullptr

What it does
Replaces NULL with a typed pointer.

Example
vector<Item>* items = nullptr;

When to use it
Always, everywhere you would have used NULL. It’s
just better.

nullptr

What it does
- Explicitly state that you rely on the default

constructor, destructor, or assignment (with default)
- explicitly remove the default ctor, dtor, or assignment

operator (with ‘delete’).

= default, = delete

Example
- MyUncopyableClass(

 MyUncopyableClass& other) =

 delete;

- MyNormalClass() = default;

=default, = delete

When to use it
We always use it whenever we want default
behavior.

=default, =disabled

unique_ptr

What it does
RAII (not RIAA). Pointer scoping to prevent memory
leaks

When to use it
All heap allocations (with some exceptions)

unique_ptr

Example 1:
{

 std::unique_ptr<Foo> foo =

 std::make_unique<Foo>;

 // use foo

 ...

} // <- foo gets deleted here.

unique_ptr example

Example 2:
std::unique_ptr<Foo> foo_ptr(new Foo());

int MyFunction(std::unique_ptr<Foo>) { …
}

// takes ownership of foo, called as:

int bar = MyFunction(std::move(foo_ptr));

unique_ptr example

shared_ptr

What it does
Reference counted smart pointer

shared_ptr

void AsyncCompileJob::AsyncCompileFailed(Handle<Object> error_reason)
{

 // {job} keeps the {this} pointer alive.

 std::shared_ptr<AsyncCompileJob> job =

 isolate_->wasm_engine()->RemoveCompileJob(this);

 resolver_->OnCompilationFailed(error_reason);

}

shared_ptr example 1 (use)

 // Abstraction over the storage of the wire bytes. Held in a
shared_ptr so

 // that background compilation jobs can keep the storage alive while

 // compiling.

 std::shared_ptr<WireBytesStorage> wire_bytes_storage_;

shared_ptr example 2 (decl)

// Using shared pointers with functions

 void SetWireBytesStorage(

 std::shared_ptr<WireBytesStorage> wire_bytes_storage) {

 base::MutexGuard guard(&mutex_);

 wire_bytes_storage_ = wire_bytes_storage;

 }

 std::shared_ptr<WireBytesStorage> GetWireBytesStorage() const {

 base::MutexGuard guard(&mutex_);

 return wire_bytes_storage_;

 }

 From https://cs.chromium.org/chromium/src/v8/src/wasm/module-compiler.cc

shared_ptr example 3 (accessors)

https://cs.chromium.org/chromium/src/v8/src/wasm/module-compiler.cc

// Start the code section.

bool AsyncStreamingProcessor::ProcessCodeSectionHeader(

 size_t functions_count, uint32_t offset,

 std::shared_ptr<WireBytesStorage> wire_bytes_storage) {

...

 job_->native_module_->compilation_state()->SetWireBytesStorage(

 std::move(wire_bytes_storage)); …

}

Shared_ptr example 4 (use)

// What is being pointed at

class WireBytesStorage {

 public:

 virtual ~WireBytesStorage() = default;

 virtual Vector<const uint8_t> GetCode(WireBytesRef) const = 0;

};

shared_ptr example 5 (pointed at)

When to use it
We avoid it whenever possible, easier to reason
about unique pointers.

Multithreading: you can give each thread or callback
a shared pointer to keep object alive (assuming you
do proper thread mutexes on refcount changes).

When to use shared_ptr

Range based for loops

For people who are home on the range

What it does
An easier to read syntax for for loops

Example
 for (auto& item : container) {…}

When to use it
This is good, use it always.

Range based for loops

Uniform initialization

Yes, Captain Tyler Sir, my
uniform is properly initialized.

What it does
A way to initialize variables, objects, and arrays.

Uniform Initialization - with { }

Why we need it: C++ before it is inconsistent
// ok: initialize array variable

string a[] = { "foo", " bar" };

// error: initializer list for non-aggregate vector

vector<string> v = { "foo", " bar" };

void f(string a[]);

// syntax error: block as argument

f({ "foo", " bar" });

Uniform Initialization - with { }

int* pi = new int[5]{ 1, 2, 3, 4, 5 }; // Dynamic.

int arr[] { 1,2,3,4,5 };

std::vector<int> v { 1,2,3,4,5 };

std::set<int> s { 1,2,3,4,5 };

std::map<int,std::string> m { {0,"zero"}, {1,"one"},
{2,"two"} };

int total = totalElementsInVector({10,20,30,40});

Uniform Initialization - examples

 X x1 = X{1,2};

X x2 = {1,2}; // the = is optional

X x3{1,2};

X* p = new X{1,2};

struct D : X {

D(int x, int y) :X{x,y} { /* ... */ };

};

struct S {

int a[3];

S(int x, int y, int z) :a{x,y,z} { /* ... */ }; // solution to old problem

};

Uniform Initialization - examples

When to use it

Array elements:
std::vector<int> v{ 10, 20, 30 };

Objects:
X x1 { “string”, 4.0 };

Uniform Initialization - with { }

When not to use it
Sometimes it doesn’t do what you expect.

A template may not know whether the argument inside
curlies refers to a value or a number of elements.
https://probablydance.com/2013/02/02/the-problems-with-uniform-initialization/

Uniform Initialization - with { }

https://probablydance.com/2013/02/02/the-problems-with-uniform-initialization/

template<typename T>

std::vector<T> create_ten_elements()

{

 return std::vector<T>{10};

}

int main()

{

 create_ten_elements<std::string>(); // create ten elements

 create_ten_elements<int>(); // create one element

 create_ten_elements<Widget>(); // Creates one element (for some Widget defn)

 create_ten_elements<char>(); // create one element

 create_ten_elements<std::vector<int>>(); // create ten elements

}

Uniform Initialization - surprises

Google style guide allows it.

Bad:
Be careful when using a braced initialization list {...} on a
type with an std::initializer_list constructor.

Uniform Initialization - when

Good:
The brace form prevents narrowing of integral types.
This can prevent some types of programming errors.

int pi(3.14); // OK -- pi == 3.

int pi{3.14}; // Compile error:
narrowing conversion.

Uniform Initialization - when

Moving instead of copying

What it does
Allow you to prevent copying as you move through
layers - make something only once, and pass it up
through the layers.

For example, the windows networking stack wants to
prevent copying at every interface.

Moving instead of copying

Example
crunch_data(std::move(my_data));

When to use it
We try to use it as much as possible.
Also good for functional programming.

Moving instead of copying

Presentation:
https://www.youtube.com/watch?v=KcBmR05DU7o&feat
ure=youtu.be

Moving instead of copying

https://www.youtube.com/watch?v=KcBmR05DU7o&feature=youtu.be
https://www.youtube.com/watch?v=KcBmR05DU7o&feature=youtu.be

override

What it does
Make explicit that we intend to override a virtual
function, so we can get compile warnings if we
messed up somewhere.

override keyword

In the base class .h file:
class Task

{ public: virtual void Run() = 0; }

In the derived class .h file:
class TestTask : public Task {

 public:

 void Run() override;

}

override example

When to use it
Good idea, we always use it on the chromium
project.

override keyword

What it does
- Implies const
- Lets compiler know we can evaluate this function or

variable at compile time

constexpr

Examples
static constexpr size_t kVendorNameSize =

 3 * sizeof(cpu_info[1]);

V8_INLINE static constexpr int SizeFor(

 int length) {

 return kHeaderSize + length *

 kTaggedSize;

}

constexpr

When to use it
Use constexpr to specify true constants and the
functions that support their definitions. Avoid
complexifying function definitions to enable their use
with constexpr. Do not use constexpr to force
inlining.

constexpr

What it does
Sets up an alias for a more complicated typename,
similar to typedef.

using

namespace mynamespace {

// Used to store field measurements. DataPoint may

// change from Bar* to some internal type.

// Client code should treat it as an opaque pointer.

using DataPoint = foo::Bar*;

// A set of measurements. Just an alias for user

// convenience.

using TimeSeries = std::unordered_set<DataPoint,
std::hash<DataPoint>, DataPointComparator>;

} // namespace mynamespace

using - example

When to use it
Use with classes, not with entire namespaces.
std::string is OK, std:: is not.

using

In new code, using is preferable to typedef, because it
provides a more consistent syntax with the rest of C++
and works with templates.

using vs typedef:

Although I can tell you how it works, I don’t have
personally based wisdom on how and when to use them.

Warning - stuff I haven’t used yet.

What it is
An expression to return the type of its argument
without evaluating it (like sizeof).

decltype

Example (with typedef/using)

typedef decltype(&nvmlInit) INITPROC;

using Unwrapped =
decltype(Unwrap(std::declval<ForwardType>
()));

Decltype

Decltype

Example

template <class T>

 const decltype(T::list_.get())

 list(const T& iter) {

 return iter.list_.get();

 }

When to use it
Sometimes when writing templates, we need to know
the type of something, and can’t just use “T”.

decltype

Thread Support Library

Some nice
threads...

What it does
Supports writing multithreaded and async programs
at the C++ level. There’s enough here for a lecture
on its own.
Thread class, Mutexes, futures, etc.

Thread Support Library

#include <iostream>
#include <thread>
void call_from_thread() {
 std::cout << "Hello, World" << std::endl;
}

int main() {
 //Launch a thread
 std::thread t1(call_from_thread);
 //Join the thread with the main thread
 t1.join();
 return 0;
}

Thread Support Library - example

When to use it
We don’t use it in Chromium because we have an
older alternative that is already everywhere in the
code base.

It is more a bit simpler than Posix, and can be
portable.

Thread Support Library

New containers: unordered

What it does
Like a hash map but with no ordering, good for sets.

● unordered_map
● unordered_set
● unordered_multimap
● unordered_multiset

New containers: unordered

#include <iostream>

#include <unordered_set>

#include <algorithm>

int main() {

// Creating an Unoredered_set of type string

std::unordered_set<std::string> setOfStrs;

// Insert strings to the set

setOfStrs.insert("first");

setOfStrs.insert("second");

setOfStrs.insert("third");

unordered_set - example (1)

// Try to Insert a duplicate string in set

setOfStrs.insert("second");

// Iterate Over the Unordered Set and display it

for (std::string s : setOfStrs)

std::cout << s << std::endl;

}

Output:

third

second

first

Unordered_set example (2)

When to use it

These containers maintain average constant-time
complexity for search, insert, and remove operations.
In order to achieve constant-time complexity, they
sacrifice order for speed by hashing elements into
buckets.

Unordered

What it does
Lets you make templates with any number of
arguments.

Variadic templates - what it does

#define TYPELIST_1(T1) \

::Loki::Typelist<T1, ::Loki::NullType>

#define TYPELIST_2(T1, T2) \

::Loki::Typelist<T1, TYPELIST_1(T2) >

#define TYPELIST_3(T1, T2, T3) \

::Loki::Typelist<T1, TYPELIST_2(T2, T3) >

#define TYPELIST_4(T1, T2, T3, T4) \

 ::Loki::Typelist<T1, TYPELIST_3(T2, T3, T4) >

Variadic Templates - why we need

template<typename T, typename... Args>

T adder(T first, Args... args) {

 return first + adder(args...);

}

long sum = adder(1, 2, 3, 8, 7);

Variadic Templates - example

When to use it

Remember we used to have to do this by making one
overload for every possible number of args? Modern
C++ design’s loki library had to do that.

Variadic templates - when to use

What it does
As it says, adding strong typing to enums

Strongly typed enums

enum Selection

{

 None,

 Single,

 Multiple

};

Selection sel = Single;

Enums - the old way

enum class Selection

{

 None,

 Single,

 Multiple,

};

Selection s = Selection::Multiple;

Strongly typed enums - example

When to use it
Using these is more type safe, and they don’t get
converted to int automatically. Chromium uses them.

Also, you can specify the underlying type now in both
kinds:

enum class Selection : unsigned char

enum Selection : unsigned char

Strongly typed enums

Delegating constructors

What it does
Lets one constructor call another ctor to do the work,
then fixup the state.

Delegating constructors

 A() {

 x = 0;

 y = 0;

 z = 0;

 }

 // Constructor delegation

 A(int z) : A() {

 this->z = z; // Only update z

 }

Delegating Constructors - example

When to use them
For classes with const members, using an Init()
method to init the members is impossible.

Even for non-const members, most classes'
constructors need to do simple work "call[ing] virtual
functions or attempt[ing] to raise non-fatal failures" --
and delegated constructors eliminate copies of that
boilerplate.

Delegating constructors

<static electricity in action - Imagine a photo
of a balloon with hair here>

static_assert

What it does
Compile time asserts. Break at compile time if
something is wrong, always easier than catching at
runtime

static_assert

 static_assert(

 param_is_forwardable ||

 !std::is_constructible<Param,

 std::decay_t<Unwrapped>&&>::value,

 "Bound argument |i| is move-only but”

 “will be forwarded by copy. "

 "Ensure |Arg| is bound using”

 “base::Passed(), not std::move().");

static_assert example

When to use
Very helpful deep inside libraries to check
assumptions and communicate to programmer what
is wrong.

static_assert

Lots of additions to the std lib not covered here, we’re
concentrating on language features tonight.

https://github.com/AnthonyCalandra/modern-cpp-feature
s/blob/master/CPP11.md#c11-library-features

New library additions

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#c11-library-features
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#c11-library-features

std::move
std::forward
std::thread
std::to_string
std::tie
std::weak_ptr
std::chrono

Library additions:

std::array
std::async
Memory Model
Type traits
Tuples
Smart ptr
Unordered containers

The Biggest Changes in C++11 (and Why You Should
Care)
https://smartbear.com/blog/develop/the-biggest-changes
-in-c11-and-why-you-should-care/

The 15 C++11 features you must really use in your C++
projects.
http://cppdepend.com/blog/?p=319

Links (1)

https://smartbear.com/blog/develop/the-biggest-changes-in-c11-and-why-you-should-care/
https://smartbear.com/blog/develop/the-biggest-changes-in-c11-and-why-you-should-care/
http://cppdepend.com/blog/?p=319

Complete list of features:
https://github.com/AnthonyCalandra/modern-cpp-feature
s/blob/master/CPP11.md

Features for other new C++ versions (stay tuned)
https://github.com/AnthonyCalandra/modern-cpp-feature
s

Links (2)

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md
https://github.com/AnthonyCalandra/modern-cpp-features
https://github.com/AnthonyCalandra/modern-cpp-features

Official C++ 11 website:
https://isocpp.org/wiki/faq/cpp11

Chromium style guide for C++ 11

https://chromium-cpp.appspot.com/

Links (3)

https://isocpp.org/wiki/faq/cpp11
https://chromium-cpp.appspot.com/

CPP Reference:
https://en.cppreference.com/w/

Links (4)

https://en.cppreference.com/w/

Let me know if you are interested in
Remedial C++ 14 or 17, or the library
additions to C++11.

Thanks for Listening!

