
Math and C++
Innovations and Improvement

Presented to the Northwest C++ Users Group

May 2019

Daniel Hanson

Lecturer, Computational Finance & Risk Management

Dept of Applied Mathematics

University of Washington

• Daniel Xia (UW Applied Math/Computational Finance) for
contributions on parallel STL algorithms (completed comprehensive
report as independent study project, Winter Quarter 2019)

• Jared Broad (CEO, QuantConnect – now based in Seattle) for graphics
of random equity price scenarios

Special Thanks To…

Daniel Hanson NWCPP: Math and C++ 2

• Math in the new C++ Standards (C++11 and after)
• Selected features useful in quant finance

• Examples

• Math in the Boost Libraries
• Boost Math Toolkit

• Other Math and Math-Related Libraries

• The Good, the Bad, and the Ugly

Overview

Daniel Hanson NWCPP: Math and C++ 3

MATH IN THE NEW C++ STANDARD
C++11 and After

Daniel Hanson NWCPP: Math and C++ 4

• Random number generation from a wide variety of commonly used
statistical distributions

• Lambda expressions

• Task-based parallelism

• Parallel STL algorithms

Some New Math-Friendly New Features in C++11 and After

Daniel Hanson NWCPP: Math and C++ 5

Random Number Generation

Lambda Expressions

Equity Price Simulation Example

Daniel Hanson NWCPP: Math and C++ 6

• Uniform random number generator + transformation to distribution

• In C++ parlance: Engine + Distribution

• Engine: Generates a random sequence of integers
• A variety of commonly used algorithms available

• Includes Mersenne Twister: state of the art for pseudo-random number
generation; used extensively in computational finance for Monte Carlo
applications

• Distribution:
• Actually transforms uniform variates to random draws from the desired

distribution

• For the normal distribution, uses the well-known Box-Muller method

Random Number Generation

Daniel Hanson NWCPP: Math and C++ 7

Create random numbers by combining an engine with a

distribution:

Engines and Distributions

Daniel Hanson NWCPP: Math and C++ 8

Engine: Generate

uniform positive

integers

Distribution: Transform

uniform positive integers

to random variates from a

statistical distribution

0.0311023, 0.0456431,

0.0816048, -0.0173229,

0.0465678, 0.000628267

-0.123539, 0.0268615,

0.00724549, -0.0826958,

0.0506089, 0.0510445,

0.104862, 0.00807491, -

0.00550648, 0.00505575,

0.0701405, 0.124222,...

• Uniform: typically on [0, 1] for the real number

case – common in statistical applications

• Bernoulli (bernoulli, binomial etc)

• Poisson (poisson, exponential etc)

• Normal family (See next slide)

• Others

Examples of Available Distributions

Daniel Hanson NWCPP: Math and C++ 9

• normal_distribution

• lognormal_distribution

• chi_squared_distribution

• cauchy_distribution

• student_t_distribution

• fisher_f_distribution

Normal (related) Distributions Category

Daniel Hanson NWCPP: Math and C++ 10

#include <random>

#include <iostream>

using std::mt19937_64;

using std::normal_distribution;

// mtre = Mersenne Twister Random Engine, seed = 100:

mt19937_64 mtre(100);

cout << "Look at 1st few numbers in MT sequence: " << endl;

cout << mtre() << " " << mtre() << " " << mtre() << endl;

Output:

Look at 1st few numbers in MT sequence:

17952737041105130042 5969071622678286091 17739577640593830518

Generate standard normal variates

Daniel Hanson NWCPP: Math and C++ 11

normal_distribution<> nd; // see note at bottom of page

cout << "Look at 1st few numbers in standard normal sequence: " << endl;

cout << nd(mtre) << " " << nd(mtre) << " " << nd(mtre) << endl;

Output:

Look at 1st few numbers in standard normal sequence:

0.444734 0.60953 -0.00525884

Remark: Continuous distributions use double as the template parameter default for

template< typename RealType = double >
class normal_distribution;

Thus, we just put normal_distribution<> nd; to accept the default

Generate standard normal variates (continued)

Daniel Hanson NWCPP: Math and C++ 12

• A very common task in quant finance, and for options pricing in
particular, is to generate random paths of stock prices

• Using what is called the risk neutral measure, we can use the standard
lognormal result:

𝑆𝑡 = 𝑆𝑡−1𝑒
𝑟−

𝜎2

2
∆𝑡+ σε

𝑡
√∆𝑡

where 𝑆𝑡 = underlying (eg equity) price at time t, ∆𝑡 = time step year
fraction, r = risk-free rate, σ = volatility, and ε𝑡 ~ N(0, 1) iid.

• Our scenarios are then random realizations of price paths chopped up
into time steps each of length ∆𝑡 .

• With the new <random> feature in the Standard Library, this is a snap

• Before this, however, it wasn’t!

Equity Price Generator

NWCPP: Math and C++ 13Daniel Hanson

#include <vector>

class EquityPriceGenerator

{

public:

EquityPriceGenerator(double initEquityPrice, unsigned numTimeSteps,

double timeToMaturity, double drift, double volatility);

std::vector<double> operator()(int seed) const;

private:

double yearFraction_;

const double initEquityPrice_;

const int numTimeSteps_;

const double timeToMaturity_;

const double drift_;

const double volatility_;

};

Equity Price Generator (declaration)

NWCPP: Math and C++ 14Daniel Hanson

#include "EquityPriceGenerator.h"

#include <random>

#include <algorithm>

#include <ctime>

#include <cmath>

EquityPriceGenerator::EquityPriceGenerator(double initEquityPrice, unsigned numTimeSteps, double timeToMaturity,

double drift, double volatility) : initEquityPrice_(initEquityPrice), numTimeSteps_(numTimeSteps),

timeToMaturity_(timeToMaturity), drift_(drift), volatility_(volatility),

yearFraction_(timeToMaturity/numTimeSteps) {}

vector<double> EquityPriceGenerator::operator()(int seed) const

{

vector<double> v;

mt19937_64 mtre(seed);

normal_distribution<> nd;

auto newPrice = [this](double previousEquityPrice, double norm, double yearFraction) {

double price = 0.0;

double expArg1 = (drift_ - ((volatility_ * volatility_) / 2.0)) * yearFraction;

double expArg2 = volatility_ * norm * sqrt(yearFraction);

price = previousEquityPrice * exp(expArg1 + expArg2);

return price;

};

v.push_back(initEquityPrice_); // put initial equity price into the 1st position in the vector

double equityPrice = initEquityPrice_;

for (int i = 1; i <= numTimeSteps_; ++i) // i <= numTimeSteps_ since we need a price at the end of the

{ // final time step.

equityPrice = newPrice(equityPrice, nd(mtre), yearFraction_); // norm = nd(mtre)

v.push_back(equityPrice);

}

return v;

}

Equity Price Generator (implementation)

using std::vector;
using std::mt19937_64;
using std::normal_distribution;
using std::exp;

NWCPP: Math and C++ 15Daniel Hanson

Where the magic
happens

Lambda Expression
also convenient!

• Example: 10,000 simulated paths, initial share price = 100, each evolving over 250 time steps

• Graphically, our results might look something like this:

Equity Price Path Simulations

Daniel Hanson NWCPP: Math and C++ 16

Task-Based Parallelism

Monte Carlo Option Pricing

Daniel Hanson NWCPP: Math and C++ 17

• Another common task in quant finance is to use Monte Carlo simulations, as
we saw in the previous discussion, to price option contracts

• The simplest of these cases is a European equity option, which can only be
exercised at the expiration date

• Using a set of equity price paths as shown previously, we only need to check
the terminal price at time 𝑇 for each scenario and compare it with the strike
price to determine the payoff; viz, for a European call option:

max 𝑆𝑇 − 𝐾, 0 , where 𝑆𝑇 = the terminal price, and 𝐾 = the strike price

• The option price is then the mean of the payoffs discounted back to the
value date (𝑡 = 0)

𝑒−𝑟𝑇
1

𝑁

𝑗=1

𝑁

max(𝑆𝑇
𝑗
− 𝐾, 0)

where 𝑁 = number of simulated equity price paths, and 𝑟 is the risk-free
interest rate

Task-Based Parallelism

Daniel Hanson NWCPP: Math and C++ 18

• We will price a European call option using the Monte Carlo method explained mathematically
in the previous slide.

• A simple graphical example is shown below

• Assume the vertical axis represents changes from an underlying asset currently valued at $100/share

• The red line then represents a strike price or $110

• The only positive payoffs at expiration will be the blue ($10) and green ($30) scenarios

Monte Carlo Option Pricing

Daniel Hanson NWCPP: Math and C++ 19

Positive
Payoffs

Payoffs = 0

Strike = 110

• In reality, however, the number of scenarios run can be on the order of 10,000 – 100,000

• In our C++ example, we will treat each scenario as a threaded task, using std::future and
std::async

Monte Carlo Option Pricing

Daniel Hanson NWCPP: Math and C++ 20

Positive
Payoffs

Payoffs = 0

Strike = 110

• As none of the paths “care” about any of the others, this is an
embarrassingly parallelizable problem

• We can therefore generate each path in parallel and have no concern
whatsoever for shared memory issues

• Task-based parallelism using std::future and std::async is a no-
nonsense and fairly straightforward solution in C++

• Why mess with threading on one’s own, when task-based parallelism
encapsulates everything for us?
• Quicker to implement

• Less error-prone

• Can actually be more efficient (Meyers: Effective Modern C++)

Task-Based Parallelism

Daniel Hanson NWCPP: Math and C++ 21

• First look at the function declarations

• Also note the use of an enum class to indicate whether the option is a call or a put

Option Calculations (Declaration)

NWCPP: Math and C++ 22Daniel Hanson

Option Calculations (Implementation)

NWCPP: Math and C++ 23Daniel Hanson

Expiry (years) Time Steps Scenarios Time – Serial (sec) Time - Parallel (Task) Pct Drop in RT

1 12 10000 0.039 0.039 0%

1 120 50000 0.677 0.423 37.5%

5 120 50000 0.869 0.492 43.4%

5 600 50000 2.755 1.494 45.8%

5 600 100000 5.488 2.865 47.8%

10 600 100000 5.703 2.904 49.1%

10 1200 100000 10.818 5.925 45.2%

Option Calculations (Summary and Results)

Daniel Hanson NWCPP: Math and C++ 24

• But wait, a 10-year option?!
• True, not going to find an exchange traded 10-year equity option

• However, 10+ year option products are found in practice in various
forms, and Monte Carlo pricing models are commonly used:
➢ Interest rate and FX swaptions

➢Hybrid exotic interest rate/FX structured products

➢Guaranteed investment products
• Capital guarantees

• Variable annuities

• Fixed index annuities

• The above examples are, in fact, where the power, speed, and
scalability of C++ can become even more advantageous vs other
programming languages

Option Calculations (Summary and Results)

Daniel Hanson NWCPP: Math and C++ 25

• On a simple Surface Pro 4 running Windows 10, run time was cut on
the order of 43-49%

• Would expect better on higher-performance machines (additional
investigation in the works – stay tuned)

• Note that the spawning and management of threads is all contained in
the task-based approach using std::future(s) and std::async

• Open question: Why do textbooks and reference books on C++, and
classes offered at the undergraduate and graduate level, remain stuck
in the past by ignoring this very powerful new tool?

Option Calculations (Summary and Results)

Daniel Hanson NWCPP: Math and C++ 26

Parallel STL Algorithms

Mathematical Examples

Daniel Hanson NWCPP: Math and C++ 27

• Introduced with C++17

• Visual Studio is only major C++ compiler with (nearly) full
implementation

• Many STL algorithms can be parallelized by including an execution
policy argument
• std::execution::seq: the execution may not be parallelized, only

executed sequentially

• std::parallel::par: the execution may be parallelized, but
executions within the same thread are indeterminately sequenced with
respect to each other

• std::parallel::par_unseq: the execution may be parallelized and
vectorized, executions within the same thread can be executed
unsequenced with respect to each other

• For some STL algorithms, however, this is not possible; eg,
std::set_intersection, std::set_union, std::accumulate

• New parallelizable algorithms have also been added, such as
std::reduce, std::transform_reduce

Parallel STL Algorithms

Daniel Hanson NWCPP: Math and C++ 28

• Additional information:

https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/

• std::transform example (next slides)
• 1st: Same as existing std::transform by default (sequential)

• Then: Using additional execution policy parameter, set to std::par

• Compare timing of each

Parallel STL Algorithms

Daniel Hanson NWCPP: Math and C++ 29

https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/

• Example problem
• Have large random sample from a standard normal distribution

• For each value in the sample, compute the approximation of the
exponential function using the power series

𝑒𝑥 ≅

𝑘=0

𝑛
𝑥𝑘

𝑘!

for 𝑛 “sufficiently large”

• Replace each element (in a std::vector) with its transformed value

• After stopping the timer, calculate the average to verify identical results

• Compare results using std::transform in serial (default) and parallel
(std::parallel::par)

std::transform

Daniel Hanson NWCPP: Math and C++ 30

// Exponential power series approximation

// as lambda expression expSeries. The terms

// parameter in the capture is taken as input.

// Start from k = 2 for simplicity and efficiency.

auto expSeries = [terms](double x) {

double num = x;

double den = 1.0;

double res = 1.0 + x;

for (int k = 2; k < terms; ++k)

{

num *= x;

den *= static_cast<double>(k);

res += num / den;

}

return res;

};

std::transform

Daniel Hanson NWCPP: Math and C++ 31

// u and v are identical vectors of standard
// random normal random variates

// Use std::transform to run exponential power series
// on each element in v:
std::clock_t begin = std::clock();// begin time with threads
std::transform(u.begin(), u.end(), u.begin(), expSeries);
std::clock_t end = std::clock(); // end transform time with no par

// std::reduce is a parallelized alternative for std::accumulate(.)
auto mean = (1.0 / u.size())*std::reduce(u.cbegin(), u.cend(), 0.0);
auto time = (end - begin) / CLOCKS_PER_SEC;

// Use std::transform with std::par execution policy
// to run exponential power series on each element in v:
begin = std::clock();// begin time with threads
std:: transform(std::execution::par,v.begin(),v.end(),v.begin(),expSeries);
end = std::clock(); // end transform time with par

auto meanPar = (1.0 / v.size())*std::reduce(v.cbegin(), v.cend(), 0.0);
time = (end - begin) / CLOCKS_PER_SEC;

std::transform

Daniel Hanson NWCPP: Math and C++ 32

• Some results (Microsoft Surface Pro)
• Two identical pairs of normal variates for each elems/terms combination

• 50% cut or better in run time for parallel vs sequential

std::transform

Daniel Hanson NWCPP: Math and C++ 33

Num Elements Num Terms in
Sum

Seq or Par Time Elapsed
(Seconds)

Mean of
Transformed Elem’s

Percent Drop in
Run Time

5,000,000 400 Seq 9 1.64821

5,000,000 400 Par 4 1.64821 55.6%

5,000,000 400 Seq 9 1.64967

5,000,000 400 Par 4 1.64967 55.6%

50,000,000 200 Seq 58 1.64878

50,000,000 200 Par 28 1.64878 51.7%

50,000,000 200 Seq 60 1.64894

50,000,000 200 Par 29 1.64894 51.7%

100,000,000 200 Seq 153 1.64865

100,000,000 200 Par 66 1.64865 56.9%

100,000,000 200 Seq 144 1.6488

100,000,000 200 Par 66 1.6488 54.2%

MATH IN THE BOOST LIBRARIES

The Good, the Bad, and the Ugly

Daniel Hanson NWCPP: Math and C++ 34

• Boost Math Toolkit (2.9.0):
https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/index.html
• Statistical Distributions
• Mathematical Constants
• Numerical Integration
• Others…

• Additional Math-Related Boost Libraries (not in Math Toolkit)
• Circular Buffers
• MultiArray
• Accumulators
• Odeint (ODE Solver)
• uBLAS (Matrices and very basic linear algebra)

• Some features have been migrated to recent versions of the C++ Standard
Library
• Random number generation from parameterized statistical distributions (as we

saw previously)
• Special math functions: Bessel Functions, Laguerre Polynomials, others
• GCD and LCD functions

Math in Boost: An Overview

Daniel Hanson NWCPP: Math and C++ 35

https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/index.html

• The Good: There are some very useful libraries and contents in Boost
for quantitative models development and general mathematical
research

• The Bad: There are also math libraries and functions that are so
poorly designed, or simply dated or neglected, as to be practically
useless

• The Ugly: Overdesigned to the point that it takes way too much time
to figure out how to use them; quants and researchers aren’t
interested in, nor do they have time for, gratuitously complex and
esoteric design patterns

Math in Boost – an Opinion

Daniel Hanson NWCPP: Math and C++ 36

• Not enough time to present in detail (might require a half-day)

• Will focus primarily on “The Good”, and how math in Boost could be
“even better”

Math in Boost – Brief Tour

Daniel Hanson NWCPP: Math and C++ 37

• In Boost:
• Mathematical Constants (π, etc; far preferable to C macros!)

• Statistical Distributions and Functions (pdf, cdf, quantile)

• Quadrature (Integration) and Differentiation

• Migrated from Boost Math Toolkit to recent C++ Standard Library
releases:
• Integer Utilities (GCD and LCD, etc, now available in C++17)

• Special Functions (C++14) – Bessel Functions, Laguerre Polynomials, etc

Boost Math Toolkit: Selected Features

Daniel Hanson NWCPP: Math and C++ 38

• Examples: π, 2π, 𝑒, 𝑒𝜋, 𝑒, 𝑒−
1

2, etc
• Consistent definitions

• Avoids C-style macro definitions

• Clear to programmers what they mean (no guessing about fixed numbers)

• Constants determined at compile time; one doesn’t have to call a function each
time to get a particular value.

#include <boost/math/constants/constants.hpp>

using boost::math::double_constants::pi;

using boost::math::double_constants::two_pi;

• The comprehensive list may be found here:

https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/constants.html

Mathematical Constants

Daniel Hanson NWCPP: Math and C++ 39

https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/constants.html

Mathematical Constants (selected)

Daniel Hanson NWCPP: Math and C++ 40

• Distributions are Objects

• Each kind of distribution in this library is a class type - an object.

• Examples: Construct objects of Student’s t and Standard Normal
distribution types:

// Avoid potential ambiguity

// Safer to declare specific functions with using statement(s):

#include <boost/math/distributions/students_t.hpp>

#include <boost/math/distributions/normal.hpp>

using boost::math::students_t;

using boost::math::normal;

// Construct a students_t distribution with 4 degrees of freedom:

students_t d1(4);

// Construct a normal distribution with mean 0 and variance 1:

normal std_normal(0.0, 1.0);

// See http://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/stat_tut/overview/objects.html

Boost Statistical Distributions

Daniel Hanson NWCPP: Math and C++ 41

http://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/stat_tut/overview/objects.html

• We are then able to use the cumulative distribution functions,
probability density functions, and quantiles etc for these distributions.

• Generic operations common to all distributions are non-member
functions

• Want to calculate the PDF (Probability Density Function) of a
distribution? No problem, just use:
➢pdf(my_dist, x); // Returns PDF (density) at point x

// of distribution my_dist.

• Or how about the CDF (Cumulative Distribution Function):
➢cdf(my_dist, x); // Returns CDF (integral from –

// infinity to point x)

// of distribution my_dist.

• And quantiles are just the same:
➢quantile(my_dist, p); // Returns the value of the

// random variable x such that
// cdf(my_dist, x) == p.

Boost Statistical Distributions

Daniel Hanson NWCPP: Math and C++ 42

• Arcsine Distribution

• Bernoulli Distribution

• Beta Distribution

• Binomial Distribution

• Cauchy-Lorentz Distribution

• Chi Squared Distribution

• Exponential Distribution

• Extreme Value Distribution

• F Distribution

• Gamma (and Erlang) Distribution

• Geometric Distribution

• Hyperexponential Distribution

• Hypergeometric Distribution

• Inverse Chi Squared Distribution

• Inverse Gamma Distribution

• Inverse Gaussian (or Inverse Normal) Distribution

• Laplace Distribution

• Logistic Distribution

• Log Normal Distribution

• Negative Binomial Distribution

• Noncentral Beta Distribution

• Noncentral Chi-Squared Distribution

• Noncentral F Distribution

• Noncentral T Distribution

• Normal (Gaussian) Distribution

• Pareto Distribution

• Poisson Distribution

• Rayleigh Distribution

• Skew Normal Distribution

• Students t Distribution

• Triangular Distribution

• Uniform Distribution

• Weibull Distribution

A wide selection of univariate statistical
distributions and functions that operate on them.

Daniel Hanson NWCPP: Math and C++ 43

Statistical Distributions in Boost

• For mathematical and statistical modeling, we typically need the
following for any given distribution:
• pdf

• cdf

• quantile

• random sampling

• Boost gives us the first three

• The last one is in <random> in C++11

• Might we also see the first three make it into the Standard Library?

Boost Statistical Distributions

Daniel Hanson NWCPP: Math and C++ 44

• Example: Trapezoid Rule to evaluate integral that computes π:
auto f = [](double x)

{

return 4.0 / (1.0 + x * x);

};

double appPi = trapezoidal(f, 0.0, 1.0); // Boost function (default)

// Boost function (user supplied parameters):

double tol = 1e-6;

int max_refinements = 20;

double appPi2 = trapezoidal(f, 0.0, 1.0, tol, max_refinements);

cout << appPi << ", " << appPi2 << endl;

__

• Trapezoid Rule: Will also accept a function object (very convenient, and uses
modern C++)

• Differentiation using first finite difference, and Monte Carlo integration also
available

• These will also accept a lambda or a function object to represent the
mathematical function

• This is an example of a very well designed math library!

Integration and Differentiation

Daniel Hanson NWCPP: Math and C++ 45

• Circular Buffers (Good)
• Similar to std::deque, but with fixed capacity
• Very useful for managing dynamic time series data
• Old data popped off at capacity as new data pushed back
• STL compliant

• MultiArray (Good)
• Templated multidimensional array
• Very useful for lattice models for pricing options
• Not as robust as TensorFlow etc for hard core machine learning models

• Accumulators (Good)
• Ideal for managing data columns
• Functions for descriptive statistics (mean, median, etc) included

• Odeint Ordinary Differential Equations Solver (Good reputation)
• Next step to investigate
• Might we also get a PDE solver sometime (very big for finance)?

• uBLAS (Ugly)
• Matrices and very basic linear algebra
• Very outdated and overdesigned
• More modern, highly performant, and robust open source libraries are available

➢ Eigen
➢Armadillo

Some Additional Math-Related Boost Libraries (outside Math Toolkit)

Daniel Hanson NWCPP: Math and C++ 46

SUMMARY AND CONCLUSION

Daniel Hanson NWCPP: Math and C++ 47

• From about 1992-2006, C++ was the go-to language for model
implementation in quant finance

• Java and C# moved in
• “Fast enough”
• More rapid development
• Easier (and fast) database connections
• Less (perceived) risk of memory leaks and program crashes

• Open source math libraries became available
• Apache and NIST libraries for Java
• Math.NET and Iridium for C# and .NET (have since merged).
• Python: NumPy, SciPy, Pandas, Scikit-Learn are all de facto standard libraries
• C++ libraries were often incomplete, difficult to integrate, overdesigned, and

lacked sufficient documentation (Eigen, Armadillo, CNTK etc came later)

• .NET platform grew in popularity
• Some functional programming features, and other math/finance friendly

capabilities added to C# over time
• Full functional programming available in F#, with easy integration with C#
• C# even had an easy to use Excel-based Date class, which most quants used

anyway when prototyping or calling external libraries in production
• Very fast database connections and much less time consuming to integrate
• ML.NET machine learning library now published as open source by Microsoft

The Way We Were

Daniel Hanson NWCPP: Math and C++ 48

• C++11: The Beast is Back
• <random>

• Task-based parallelism
• std::unique_ptr

• Lambda expressions

• Move semantics – all of these were great additions for quant work

• C++14/17/20
• Math special functions

• Parallel STL algorithms

• Proper date class coming in C++20 (finally!)

• GPU-enabled parallel STL algorithms also planned for C++20

• Greater availability of quality math libraries
• Eigen and Armadillo for linear algebra

• CNTK (C++, Microsoft), TensorFlow (C++/Python, Google)

• Boost: Good, Bad, and Ugly

The Way We Are Now

Daniel Hanson NWCPP: Math and C++ 49

• However:
• Very rare to have C++ specifically for quant dev skills requested in job

descriptions for our students
➢C# & Java more common as platform languages
➢ Python also big for general purpose + quant development

• Common gripes from quants and hiring managers
➢ Too many different ways to do the same thing in C++
➢C# or Java can be sufficiently optimized; developing in C++ first would be a

premature optimization
➢ Still afraid of the dangers of pointers and memory leaks; don’t want to deal

with the bugs

• Many data science and machine learning platforms are dominated by
Java/JVM (eg Spark/Hadoop); Microsoft also is ascendant and C#/.NET-
focused

• C++ is dominant in trading/order/execution systems, but this is less about
math and more about raw speed and communication

• Very little emphasis on quantitative programming at C++ conferences, books
on modern C++ or in the blogosphere

• “C++ has a public relations problem” -Bjarne Stroustrup

The Way We Are Now

Daniel Hanson NWCPP: Math and C++ 50

• Modernize and expand math/statistics libraries in Boost
• Eliminate old and highly unused components of the Boost Math Library

• Replace with a comprehensive numerical library with integrated features and
functionality, rather than being separate and fragmented as now

• Look to de facto Python standard math libraries as a good example (NumPy,
SciPy, Pandas, Scikit-Learn) and support similar C++ implementations

• Rumblings of adding matrix algebra to a future C++ release: make it so

• Establish a subgroup of the Committee that is specifically focused on
mathematical and scientific computing

• More emphasis during conferences on language and library features that will
help solve problems (rather than sophisticated solutions in search of
problems)

• Promote and distribute integration with scientific languages such as R and
Python for visualization of results and user-friendly function calls (de facto
standard interfaces – robust and maintained – would be a big plus for C++;
could also put in Boost)

• Centralized repository for peer-reviewed and standardized open source C++
math libraries, a la CRAN for R packages (including cutting edge research)

How to Get our Mojo Back – Some Ideas

Daniel Hanson NWCPP: Math and C++ 51

End

Daniel Hanson NWCPP: Math and C++ 52

