COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON
Department of Applied Mathematics

Math and C++
Innovations and Improvement

Presented to the Northwest C++ Users Group
May 2019

Daniel Hanson
Lecturer, Computational Finance & Risk Management
Dept of Applied Mathematics
University of Washington

Special Thanks To...

* Daniel Xia (UW Applied Math/Computational Finance) for
contributions on parallel STL algorithms (completed comprehensive
report as independent study project, Winter Quarter 2019)

 Jared Broad (CEO, QuantConnect — now based in Seattle) for graphics
of random equity price scenarios

Daniel Hanson NWCPP: Math and C++

Overview

 Math in the new C++ Standards (C++11 and after)
» Selected features useful in quant finance
* Examples

 Math in the Boost Libraries
* Boost Math Toolkit
e Other Math and Math-Related Libraries
* The Good, the Bad, and the Ugly

Daniel Hanson NWCPP: Math and C++

MATH IN THE NEW C++ STANDARD
C++11 and After

y herbietiancack

Some New Math-Friendly New Features in C++11 and After

 Random number generation from a wide variety of commonly used
statistical distributions

* Lambda expressions

* Task-based parallelism

Parallel STL algorithms

Daniel Hanson NWCPP: Math and C++

Random Number Generation
Lambda Expressions
Equity Price Simulation Example

2] o 7 'l o L I J - |
Daniel Hanson NWCPP: Math and C++

Random Number Generation

* Uniform random number generator + transformation to distribution
* In C++ parlance: Engine + Distribution

* Engine: Generates a random sequence of integers
e A variety of commonly used algorithms available

* Includes Mersenne Twister: state of the art for pseudo-random number

generation; used extensively in computational finance for Monte Carlo
applications

e Distribution:

* Actually transforms uniform variates to random draws from the desired
distribution

* For the normal distribution, uses the well-known Box-Muller method

Daniel Hanson NWCPP: Math and C++

Engines and Distributions

Create random numbers by combining an engine with a
distribution:

0.0311023, 0.0456431,
0.0816048, -0.0173229,
0.0465678, 0.000628267
-0.123539, 0.0268615,
0.00724549, -0.0826958,
0.0506089, 0.0510445,
0.104862, 0.00807491, -
0.00550648, 0.00505575,
0.0701405, 0.124222,...

Distribution: Transform
uniform positive integers
to random variates from a
statistical distribution

Engine: Generate
_unlform positive .
integers

Daniel Hanson NWCPP: Math and C++

Examples of Available Distributions
* Uniform: typically on [O, 1] for the real number

case — common in statistical applications

 Bernoulli (bernoulli, binomial etc)
* Poisson (poisson, exponential etc)
* Normal family (See next slide)

 Others

NWCPP: Math and C++

Normal (related) Distributions Category
normal distribution

loghormal distribution
chi _squared distribution
cauchy distribution
student _t distribution

fisher_ f distribution

NWCPP: Math and C++

Generate standard normal variates

##tinclude <random>
#tinclude <iostream>

using std::mt19937_64;
using std::normal_distribution;

// mtre = Mersenne Twister Random Engine, seed = 100:
mt19937_64 mtre(100);

cout << "Look at 1st few numbers in MT sequence: " << endl;
cout << mtre() << " " << mtre() << << mtre() << endl;

Look at 1st few numbers in MT sequence:
17952737041105130042 5969071622678286091 17739577640593830518

Daniel Hanson NWCPP: Math and C++

Generate standard normal variates (continued)

normal_distribution<> nd; // see note at bottom of page

cout << "Look at 1st few numbers in standard normal sequence: " << endl;
cout << nd(mtre) << " " << nd(mtre) << " " << nd(mtre) << endl;

Output:

Look at 1st few numbers in standard normal sequence:
0.444734 0.60953 -0.00525884

Remark: Continuous distributions use double as the template parameter default for

template< typename RealType = double >
class normal_distribution;

Thus, we just put normal_distribution<> nd; to accept the default

Daniel Hanson NWCPP: Math and C++

Equity Price Generator

* A very common task in quant finance, and for options pricing in
particular, is to generate random paths of stock prices

* Using what is called the risk neutral measure, we can use the standard
lognormal result:

2

<r—%>At+ Gstm
St = S¢-1€

where S; = underlying (eg equity) price at time t, At = time step year
fraction, r = risk-free rate, o = volatility, and €, ~ N(0, 1) iid.

* Our scenarios are then random realizations of price paths chopped up
into time steps each of length At .

* With the new <random» feature in the Standard Library, this is a snap
» Before this, however, it wasn’t!

Daniel Hanson NWCPP: Math and C++

Equity Price Generator (declaration)

#include <vector>

class EquityPriceGenerator

{

public:
EquityPriceGenerator(double initEquityPrice, unsigned numTimeSteps,
double timeToMaturity, double drift, double volatility);

std: :vector<double> operator()(int seed) const;

private:
double yearFraction_;
const double initEquityPrice_;
const int numTimeSteps_;
const double timeToMaturity_;
const double drift_;
const double volatility_;

}s

Daniel Hanson NWCPP: Math and C++

Equity Price Generator {implementation) |

#include "EquityPriceGenerator.h"

#include <random> using std::vector;

using std::mt19937_64;

using std::normal_distribution;
using std::exp;

#include <algorithm>
#include <ctime>

#tinclude <cmath>

EquityPriceGenerator::EquityPriceGenerator(double initEquityPrice, unsigned numTimeSteps, double timeToMaturity,
double drift, double volatility) : initEquityPrice_(initEquityPrice), numTimeSteps_(numTimeSteps),
timeToMaturity_(timeToMaturity), drift_(drift), volatility_(volatility),
yearFraction_(timeToMaturity/numTimeSteps) {}

vector<double> EquityPriceGenerator::operator()(int seed) const

{
vector<double> v; Where the magic
mt19937_64 mtre(seed); / happens
normal_distribution<> nd;l
auto newPrice = [this](double previousEquityPrice, double norm, double yearFraction) {
double price = 9.0;
double expArgl = (drift_ - ((volatility_ * volatility_) / 2.9)) * yearFraction;
double expArg2 = volatility_ * norm *|sqrt(yearFraction);
price = previousEquityPrice * exp(expArgl + expArg2); \ Lambda Expression
return price; also convenient!
};
v.push_back(initEquityPrice_); // put infitial equity price into the 1st position in the vector
double equityPrice = initEquityPrice_;
for (int i = 1; i <= numTimeSteps_; ++i) // i <= numTimeSteps_ since we need a price at the end of the
{ "// final time step.
equityPrice = newPrice(equityPrice, nd(mtre), yearFraction_); // norm = nd(mtre)
v.push_back(equityPrice);
}
return v;
}

Daniel Hanson NWCPP: Math and C++

Equity Price Path Simulations

 Example: 10,000 simulated paths, initial share price = 100, each evolving over 250 time steps

e Graphically, our results might look something like this:

150 - :
ay,
. “ “"’6 (4
A T DY)
i " ' W AKNHER
A A~ R _ LR BAARRE
140 \ ‘ / DA FIPLRRG
\ , N NSRRI " :'.'w' N
\ " , N ,.'-:.,‘&“\,:“ ~’-’
130 -
g 120
—
o
V4
(&)
S 10|
w
100 -
w .
m .

o-
&
8
&
o
N
o
»
o

steps

Daniel Hanson NWCPP: Math and C++

e
Task-Based Parallelism

Monte Carlo Option Pricing

Daniel Hanson NWCPP: Math and C++

Task-Based Parallelism

* Another common task in quant finance is to use Monte Carlo simulations, as
we saw in the previous discussion, to price option contracts

* The simplest of these cases is a European equity option, which can only be
exercised at the expiration date

* Using a set of equity price paths as shown previously, we only need to check
the terminal price at time T for each scenario and compare it with the strike
price to determine the payoff; viz, for a European call option:

max(S; — K, 0), where S; = the terminal price, and K = the strike price

* The option price is then the mean of the payoffs discounted back to the
value date (t = 0)

N
rl J
e’ Nz max(S; — K, 0)
j=1

where N = number of simulated equity price paths, and r is the risk-free
interest rate

Daniel Hanson NWCPP: Math and C++

Monte Carlo Option Pricing

* We will price a European call option using the Monte Carlo method explained mathematically
in the previous slide.

* Asimple graphical example is shown below
* Assume the vertical axis represents changes from an underlying asset currently valued at $100/share
* The red line then represents a strike price or $110
* The only positive payoffs at expiration will be the blue (510) and green (S30) scenarios

Positive

Payoffs

Strike = 110

-2 1 fl‘\.,‘h '-"H‘ '1"*‘-__,

M AW Payoffs =0

=
>
1.
e

oy b

T T T T T T
o 2 4 6] 10
time

Daniel Hanson NWCPP: Math and C++

Monte Carlo Option Pricing

* In reality, however, the number of scenarios run can be on the order of 10,000 — 100,000

* In our C++ example, we will treat each scenario as a threaded task, using std: : future and
std: :async

150 1

140
A £ /45 ' . Positive
A Y AN o AR W, {407) X
130 - N "“!”_,;,,; = TS Payoffs
A% "" A OQV ‘\'\ "v'A ") .‘ A 0 n . q v'_'l. \ g
_S 120 -
a & ,
¥ ‘_. 2 « -\ \' .
4§ 10 —Cies : ; Strike =110

100

Payoffs =0

Daniel Hanson NWCPP: Math and C++

Task-Based Parallelism

* As none of the paths “care” about any of the others, this is an
embarrassingly parallelizable problem

* We can therefore generate each path in parallel and have no concern
whatsoever for shared memory issues

* Task-based parallelism using std: : future and std: :async is a no-
nonsense and fairly straightforward solution in C++

* Why mess with threading on one’s own, when task-based parallelism
encapsulates everything for us?

* Quicker to implement
* Less error-prone
e Can actually be more efficient (Meyers: Effective Modern C++)

Daniel Hanson NWCPP: Math and C++

Option Calculations (Declaration)

* First look at the function declarations

* Also note the use of an enum class to indicate whether the option is a call or a put

#include "EquityPriceGenerator.h"
lenum class OptionType

{

| CALL,
. PUT
}

»

/class MCEuroOptPricer

{
public:

MCEuroOptPricer(double strike, double spot, double riskFreeRate, double volatility,

double tau, OptionType optionType, int numTimeSteps, int numScenarios,

: bool runParallel, int initSeed, double quantity);

double operator()() const;

double time() const; // Time required to run calcutions (for comparison using concurrency)
private:

void calculate_(); // Start calculation of option price

: // Private helper functions:
: void computePrice_();

: void generateSeeds_();

- double payoff_(double terminalPrice);

' // Compare results: non-parallel vs in-parallel with async and futures
. void computePriceNoParallel_();

: void computePriceAsync_();

Daniel Hanson NWCPP: Math and C++

Option Calculations (Implementation)

MCEuroOptPricer::computePriceAsync_

EquityPriceGenerator epg(spot_, numTimeSteps_, tau_, riskFreeRate_, volatility);
generateSeeds _();

using realVector = std::vector<double>;
std: :vector<std: :future<realVector> > futures;
futures.reserve(numScenarios_);
for (auto& seed : seeds_)
{
. futures.push_back(std::async(epg, seed));
¥
std: :vector<double> discountedPayoffs;
discountedPayoffs.reserve(numScenarios_);
for (auto& future : futures)
double terminalPrice = future.get().back();

{

" double payoff = payoff_(terminalPrice);

. discountedPayoffs.push_back(discFactor_ * payoff);
¥

{
: double numScens = static_cast<double>(numScenarios_);

E price_ = quantity_ * (1.0 / numScens) *

E std: :accumulate(discountedPayoffs.begin(), discountedPayoffs.end(), ©.0);
¥

Daniel Hanson NWCPP: Math and C++

Option Calculations (Summary and Results)

Expiry (years) m Time — Serial (sec) | Time - Parallel (Task) | Pct Drop in RT

1 10000 0.039 0.039 0%

1 120 50000 0.677 0.423 37.5%
5 120 50000 0.869 0.492 43.4%
5 600 50000 2.755 1.494 45.8%
5 600 100000 5.488 2.865 47.8%
10 600 100000 5.703 2.904 49.1%
10 1200 100000 10.818 5.925 45.2%

Daniel Hanson NWCPP: Math and C++

Option Calculations (Summary and Results

* But wait, a 10-year option?!
* True, not going to find an exchange traded 10-year equity option
 However, 10+ year option products are found in practice in various
forms, and Monte Carlo pricing models are commonly used:
» Interest rate and FX swaptions
» Hybrid exotic interest rate/FX structured products

» Guaranteed investment products
e Capital guarantees
e Variable annuities
e Fixed index annuities

* The above examples are, in fact, where the power, speed, and
scalability of C++ can become even more advantageous vs other
programming languages

Daniel Hanson NWCPP: Math and C++

Option Calculations (Summary and Results

* On a simple Surface Pro 4 running Windows 10, run time was cut on
the order of 43-49%

* Would expect better on higher-performance machines (additional
investigation in the works — stay tuned)

* Note that the spawning and management of threads is all contained in
the task-based approach using std: : future(s) and std: :async

* Open question: Why do textbooks and reference books on C++, and
classes offered at the undergraduate and graduate level, remain stuck
in the past by ignoring this very powerful new tool?

Daniel Hanson NWCPP: Math and C++

Parallel STL Algorithms
Mathematical Examples

NWCPP: Math and C++

Parallel STL Algorithms

* Introduced with C++17

 Visual Studio is only major C++ compiler with (nearly) full
implementation

 Many STL algorithms can be parallelized by including an execution
policy argument
e std::execution: :seq: the execution may not be parallelized, only
executed sequentially

 std::parallel: :par: the execution may be parallelized, but
executions within the same thread are indeterminately sequenced with
respect to each other

 std::parallel: :par_unseq: the execution may be parallelized and
vectorized, executions within the same thread can be executed
unsequenced with respect to each other

* For some STL algorithms, however, this is not possible; eg,
std::set_intersection, std::set_union, std::accumulate

* New parallelizable algorithms have also been added, such as
std: :reduce, std: :transform_reduce

Daniel Hanson NWCPP: Math and C++

Parallel STL Algorithms

 Additional information:

https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/

e std::transform example (next slides)
e 1st: Same as existing std: :transform by default (sequential)
* Then: Using additional execution policy parameter, set to std: :par
 Compare timing of each

Daniel Hanson NWCPP: Math and C++

https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/

std: :transform

* Example problem
* Have large random sample from a standard normal distribution

* For each value in the sample, compute the approximation of the
exponential function using the power series

n
xk
=) T
for n “sufficiently large”
* Replace each element (in a std: :vector) with its transformed value
* After stopping the timer, calculate the average to verify identical results

IIZ

 Compare results using std: :transform in serial (default) and parallel
(std::parallel: :par)

Daniel Hanson NWCPP: Math and C++

std: :transform

// Exponential power series approximation
// as lambda expression expSeries. The terms
// parameter in the capture is taken as input.
// Start from k = 2 for simplicity and efficiency.
auto expSeries = [terms](double x) {
double num = x;
double den = 1.0;
double res = 1.0 + x;

for (int k = 2; k < terms; ++k)

{
num *= x;
den *= static_cast<double>(k);
res += num / den;

}

return res;

}s
Daniel Hanson NWCPP: Math and C++

std: :transform

// u and v are identical vectors of standard
// random normal random variates

// Use std::transform to run exponential power series
// on each element in v:
Etd::clock_t begin = std::clock();// begin time with threads

td::transform(u.begin(), u.end(), u.begin(), expSeries);
td::clock_t end = std::clock(); // end transform time with no par

// std::reduce is a parallelized alternative for std::accumulate(.)
auto mean = (1.0 / u.size())*std::reduce(u.cbegin(), u.cend(), 0.0);
auto time = (end - begin) / CLOCKS_PER_SEC;

// Use std::transform with std::par execution policy

[/ to run exponential power series on each element in v:

begin = std::clock();// begin time with threads

std:: transform(std::execution::par,v.begin(),v.end(),v.begin(),expSeries);
end = std::clock(); // end transform time with par

auto meanPar = (1.0 / v.size())*std::reduce(v.cbegin(), v.cend(), 0.0);
time = (end - begin) / CLOCKS_PER_SEC;

Daniel Hanson NWCPP: Math and C++

std: :transform

* Some results (Microsoft Surface Pro)
* Two identical pairs of normal variates for each elems/terms combination
* 50% cut or better in run time for parallel vs sequential

Num Termsin | SeqorPar | Time Elapsed Mean of Percent Drop in
(Seconds) Transformed Elem’s | Run Time

5,000,000 1.64821

5,000,000 400 Par 4 1.64821 55.6%
5,000,000 400 Seq 9 1.64967

5,000,000 400 Par 4 1.64967 55.6%
50,000,000 200 Seq 58 1.64878

50,000,000 200 Par 28 1.64878 51.7%
50,000,000 200 Seq 60 1.64894

50,000,000 200 Par 29 1.64894 51.7%
100,000,000 200 Seq 153 1.64865

100,000,000 200 Par 66 1.64865 56.9%
100,000,000 200 Seq 144 1.6488

100,000,000 200 Par 66 1.6488 54.2%

Daniel Hanson NWCPP: Math and C++

MATH IN THE BOOST LIBRARIES
The Good, the Bad, and the Ugly

Daniel Hanson NWCPP: Math and C++

Math in Boost: An Overview

* Boost Math Toolkit (2.9.0):
https://www.boost.org/doc/libs/1 70 0/libs/math/doc/html/index.html

 Statistical Distributions
* Mathematical Constants
* Numerical Integration

* Others...

* Additional Math-Related Boost Libraries (not in Math Toolkit)
Circular Buffers

MultiArray

Accumulators

Odeint (ODE Solver)

uBLAS (Matrices and very basic linear algebra)

* Some features have been migrated to recent versions of the C++ Standard
Library

 Random number generation from parameterized statistical distributions (as we
saw previously)

* Special math functions: Bessel Functions, Laguerre Polynomials, others
* GCD and LCD functions

Daniel Hanson NWCPP: Math and C++

https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/index.html

Math in Boost —an Opinion

* The Good: There are some very useful libraries and contents in Boost
for quantitative models development and general mathematical
research

 The Bad: There are also math libraries and functions that are so
poorly designed, or simply dated or neglected, as to be practically
useless

* The Ugly: Overdesigned to the point that it takes way too much time
to figure out how to use them; quants and researchers aren’t
interested in, nor do they have time for, gratuitously complex and
esoteric design patterns ' °

Daniel Hanson NWCPP: Math and C++

Math in Boost — Brief Tour

* Not enough time to present in detail (might require a half-day)

* Will focus primarily on “The Good”, and how math in Boost could be
“even better”

Daniel Hanson NWCPP: Math and C++

Boost Math Toolkit: Selected Features

* In Boost:
 Mathematical Constants (m, etc; far preferable to C macros!)
e Statistical Distributions and Functions (pdf, cdf, quantile)
e Quadrature (Integration) and Differentiation

* Migrated from Boost Math Toolkit to recent C++ Standard Library
releases:

* Integer Utilities (GCD and LCD, etc, now available in C++17)
e Special Functions (C++14) — Bessel Functions, Laguerre Polynomials, etc

Daniel Hanson NWCPP: Math and C++

Mathematical Constants
1

* Examples: 1, 2m, e, e™, \/e, e 2, etc
e Consistent definitions
* Avoids C-style macro definitions
* Clear to programmers what they mean (no guessing about fixed numbers)

* Constants determined at compile time; one doesn’t have to call a function each
time to get a particular value.

#include <boost/math/constants/constants.hpp>
using boost::math::double_constants::pi;

using boost::math::double_constants::two_pi;

* The comprehensive list may be found here:
https://www.boost.org/doc/libs/1 70 0/libs/math/doc/html/math toolkit/constants.html

Daniel Hanson NWCPP: Math and C++

https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/constants.html

Mathematical Constants (selected)

Rational fractions and related Euler's e and related
half 112 oi pi e e
third 113 half_pi 2 exp_minus_half e 1?2
two_thirds 2/3 i m
- third_pi /3 e_pow_pi e
three_quarters 3/4 . . root_e Ve
sixth_pi e -
two and related log10_e log10(e)
two_pi 2m
root_two 2 one div_log10 e 1/log10(e)
. two_thirds_pi 213
root_three V3 Trigonometric
) three_quarters_pi 34w i
half_root_two V2 12 degree radians =1/ 180
In_two In(2) four_thirds_pi a3 radian degrees = 180/
In_ten In(10) one_div_two_pi 1/(2m) sin_one sin(1)
In_In_two In(In(2)) root_pi AL cos_one cos(1)
root_In_four \In(4) root_half _pi /2 sinh_one sinh(1)
one_div_root_two 12 root_two_pi V2 cosh_one cosh(1)

Daniel Hanson NWCPP: Math and C++

Boost Statistical Distributions

* Distributions are Objects
* Each kind of distribution in this library is a class type - an object.

* Examples: Construct objects of Student’s t and Standard Normal
distribution types:

// Avoid potential ambiguity

// Safer to declare specific functions with using statement(s):
#include <boost/math/distributions/students_t.hpp>

#include <boost/math/distributions/normal.hpp>

using boost::math::students_t;

using boost::math::normal;

// Construct a students_t distribution with 4 degrees of freedom:

students_t di1(4);

// Construct a normal distribution with mean © and variance 1:
normal std _normal(0.0, 1.0);

// See http://www.boost.org/doc/libs/1 70 0/libs/math/doc/html/math toolkit/stat tut/overview/objects.html

Daniel Hanson NWCPP: Math and C++

http://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/stat_tut/overview/objects.html

Boost Statistical Distributions

* We are then able to use the cumulative distribution functions,
probability density functions, and quantiles etc for these distributions.

* Generic operations common to all distributions are non-member
functions

* Want to calculate the PDF (Probability Density Function) of a
distribution? No problem, just use:
»pdf (my dist, x); // Returns PDF (density) at point x
// of distribution my dist.

* Or how about the CDF (Cumulative Distribution Function):
»cdf (my dist, x); // Returns CDF (integral from -
// infinity to point x)
// of distribution my dist.

* And quantiles are just the same:

»quantile (my dist, p); // Returns the value of the
// random variable x such that
// cdf(my dist, x) == p.

Daniel Hanson NWCPP: Math and C++

Statistical Distributions in Boost

. Arcsine Distribution

. Bernoulli Distribution

. Beta Distribution

. Binomial Distribution

. Cauchy-Lorentz Distribution

. Chi Squared Distribution

. Exponential Distribution

. Extreme Value Distribution

. F Distribution

. Gamma (and Erlang) Distribution

. Geometric Distribution

. Hyperexponential Distribution

. Hypergeometric Distribution

. Inverse Chi Squared Distribution L
: Inverse Gamma Distribution A wide selection of univariate statistical
" Inverse Gaussian (or Inverse Normal) Distribution distributions and functions that operate on them.
. Laplace Distribution

. Logistic Distribution

. Log Normal Distribution

. Negative Binomial Distribution

. Noncentral Beta Distribution

. Noncentral Chi-Squared Distribution
. Noncentral F Distribution

. Noncentral T Distribution

. Normal (Gaussian) Distribution

. Pareto Distribution

. Poisson Distribution

. Rayleigh Distribution

. Skew Normal Distribution

. Students t Distribution

. Triangular Distribution

. Uniform Distribution

. Weibull Distribution

Daniel Hanson NWCPP: Math and C++

Boost Statistical Distributions

* For mathematical and statistical modeling, we typically need the
following for any given distribution:

e pdf

e cdf

e gquantile

* random sampling

* Boost gives us the first three
* The last one is in <random> in C++11
* Might we also see the first three make it into the Standard Library?

Daniel Hanson NWCPP: Math and C++

Integration and Differentiation

 Example: Trapezoid Rule to evaluate integral that computes m:
auto f = [](double x)

{
return 4.0 / (1.0 + x * x);
}s
double appPi = trapezoidal(f, 0.0, 1.0); // Boost function (default)

// Boost function (user supplied parameters):

double tol = le-6;

int max_refinements = 20;

double appPi2 = trapezoidal(f, 0.0, 1.0, tol, max_refinements);

cout << appPi << ", " << appPi2 << endl; EREEEES-INEEEE

* Trapezoid Rule: Will also accept a function object (very convenient, and uses
modern C++)

. Diff_elreb?tiation using first finite difference, and Monte Carlo integration also
available

* These will also accept a lambda or a function object to represent the
mathematical function

* This is an example of a very well designed math library!

Daniel Hanson NWCPP: Math and C++

Some Additional Math-Related Boost Libraries (outside Math Toolkit)

Circular Buffers (Good)
e Similar to std: :deque, but with fixed capacity
* Very useful for managing dynamic time series data
* Old data popped off at capacity as new data pushed back
e STL compliant

MultiArray (Good)
* Templated multidimensional array
* Very useful for lattice models for pricing options
* Not as robust as TensorFlow etc for hard core machine learning models

Accumulators (Good)
* |deal for managing data columns
* Functions for descriptive statistics (mean, median, etc) included

Odeint Ordinary Differential Equations Solver (Good reputation)
* Next step to investigate
* Might we also get a PDE solver sometime (very big for finance)?

uBLAS (Ugly)
e Matrices and very basic linear algebra
* Very outdated and overdesigned
* More modern, highly performant, and robust open source libraries are available
» Eigen
» Armadillo

Daniel Hanson NWCPP: Math and C++

SUMMARY AND CONCLUSION

CHASE

PERFECTION

CATCH -4gms

The Way We Were

* From about 1992-2006, C++ was the go-to language for model
implementation in quant finance

: STREISAND
* Java and C# moved in S REDRORD
e “Fast enough”
* More rapid development
 Easier (and fast) database connections ———g
* Less (perceived) risk of memory leaks and program crashes el o

* Open source math libraries became available
* Apache and NIST libraries for Java "'-'_!;'"_w_
e Math.NET and Iridium for C# and .NET (have since merged). I——
* Python: NumPy, SciPy, Pandas, Scikit-Learn are all de facto standard libraries
* C++ libraries were often incomplete, difficult to integrate, overdesigned, and
lacked sufficient documentation (Eigen, Armadillo, CNTK etc came later)
* .NET platform grew in popularity

* Some functional programming features, and other math/finance friendly
capabilities added to C# over time

Full functional programming available in F#, with easy integration with C#

C# even had an easy to use Excel-based Date class, which most quants used
anyway when prototyping or calling external libraries in production

Very fast database connections and much less time consuming to integrate
ML.NET machine learning library now published as open source by Microsoft

Daniel Hanson NWCPP: Math and C++

The Way We Are Now

* C++11: The Beast is Back
e <random>
Task-based parallelism
std: :unique_ptr
Lambda expressions
* Move semantics — all of these were great additions for quant work

 C++14/17/20
* Math special functions
* Parallel STL algorithms
* Proper date class coming in C++20 (finally!)
* GPU-enabled parallel STL algorithms also planned for C++20

e Greater availability of quality math libraries
* Eigen and Armadillo for linear algebra
e CNTK (C++, Microsoft), TensorFlow (C++/Python, Google)

* Boost: Good, Bad, and Ugly

Daniel Hanson NWCPP: Math and C++

The Way We Are Now

* However:

* Very rare to have C++ specifically for quant dev skills requested in job
descriptions for our students

» C# & Java more common as platform languages

» Python also big for general purpose + quant development
« Common gripes from quants and hiring managers

» Too many different ways to do the same thing in C++

» C# or Java can be sufficiently optimized; developing in C++ first would be a
premature optimization

» Still afraid of the dangers of pointers and memory leaks; don’t want to deal
with the bugs

* Many data science and machine learning platforms are dominated by
Java/JVM (eg Spark/Hadoop); Microsoft also is ascendant and C#/.NET-

focused

e C++is dominant in trading/order/execution systems, but this is less about
math and more about raw speed and communication

* Very little emphasis on quantitative programming at C++ conferences, books
on modern C++ or in the blogosphere

e “C++ has a public relations problem” -Bjarne Stroustrup

Daniel Hanson NWCPP: Math and C++

How to Get our Mojo Back — Some Ideas
* Modernize and expand math/statistics libraries in Boost
* Eliminate old and highly unused components of the Boost Math Library

* Replace with a comprehensive numerical library with integrated features and
functionality, rather than being separate and fragmented as now

* Look to de facto Python standard math libraries as a good example (NumPy,
SciPy, Pandas, Scikit-Learn) and support similar C++ implementations

* Rumblings of adding matrix algebra to a future C++ release: make it so

e Establish a subgroup of the Committee that is specifically focused on
mathematical and scientific computing

* More emphasis during conferences on language and library features that will
help solve problems (rather than sophisticated solutions in search of
problems)

* Promote and distribute integration with scientific languages such as R and
Python for visualization of results and user-friendly function calls (de facto
standard interfaces — robust and maintained — would be a big plus for C++;
could also put in Boost)

* Centralized repository for peer-reviewed and standardized open source C++
math libraries, a la CRAN for R packages (including cutting edge research)

Daniel Hanson NWCPP: Math and C++

End

