
Chapel’s Multiresolution Programming Model
Mixing High-level Parallel Abstractions with Lower-level Control

Brad Chamberlain, Chapel Team, Cray Inc.
Northwest C++ Users Group

February 21, 2018

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

What is Chapel?

3
Copyright 2018 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
● portable
● open-source
● a collaborative effort

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming at scale far more productive

Copyright 2018 Cray Inc.
4

Scalable Parallel Programming Concerns

Copyright 2018 Cray Inc.

Q: What do HPC programmers need from a language?
A: Serial Code: Software engineering and performance

Parallelism: What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?
Separation of Concerns: Decouple these issues

Chapel is a language designed to address these needs
from first principles

5

Chapel and Other Languages

Copyright 2018 Cray Inc.
6

Chapel strives to be as…
…programmable as Python
…fast as Fortran
…scalable as MPI, SHMEM, or UPC
…portable as C
…flexible as C++
…fun as [your favorite programming language]

CLBG Cross-Language Summary
(Oct 2017 standings)

Copyright 2018 Cray Inc.
7

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2018 Cray Inc.
8

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2018 Cray Inc.
9

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Cross-Language Summary
(Oct 2017 standings)

Copyright 2018 Cray Inc.
10

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

Stencil PRK Scalability

Copyright 2017 Cray Inc.
11
0

be
tte

r

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Stencil PRK Performance (weak scaling)

MPI+OpenMP Chapel

Chapel Performance: HPC Benchmarks

Copyright 2018 Cray Inc.
11

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
14
0

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

be
tte

r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

14
1

be
tte

r

Isx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
14
2

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

be
tte

r

LCALS

STREAM

Triad

HPCC RA

PRK

StencilISx

Nightly performance graphs online

at: https://chapel-lang.org/perf

https://chapel-lang.org/perf

Stencil PRK Scalability

Copyright 2017 Cray Inc.
11
0

be
tte

r

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Stencil PRK Performance (weak scaling)

MPI+OpenMP Chapel

Chapel Performance: HPC Benchmarks

Copyright 2018 Cray Inc.
12

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
14
0

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

be
tte

r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

14
1

be
tte

r

Isx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
14
2

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

be
tte

r

LCALS

STREAM

Triad

HPCC RA

PRK

StencilISx

Nightly performance graphs online

at: https://chapel-lang.org/perf

Local loop kernels

Embarrassing/Pleasing
Parallelism

Bucket-Exchange
Pattern

Stencil Boundary
Exchanges

Global Random
Updates

https://chapel-lang.org/perf

The Chapel Team at Cray (May 2017)

Copyright 2018 Cray Inc.
13

14 full-time employees + ~2 summer interns

Chapel Community Partners

Copyright 2018 Cray Inc.

https://chapel-lang.org/collaborations.html
(and several others…)

14

https://chapel-lang.org/collaborations.html

Tonight’s Plan

Copyright 2018 Cray Inc.

● Cover features that we haven’t in this forum before
● base language features of potential interest to C++ users
● multiresolution features for user control over parallel abstractions

● parallel iterators
● domain maps
● locale models

● Review core features along the way
● goal: quicker than in previous talks
● help refresh memories / bring new attendees up-to-speed

● Please ask questions as we go
15

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2018 Cray Inc.

Chapel language feature areas

16

Base Language

Copyright 2018 Cray Inc.

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Lower-level Chapel

17

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2018 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

18

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –-n=1000000

0
1
1
2
3
5
8
…

19

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

CLU-style iteratorsCLU-style iteratorsModern iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

20

Modern iterators

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

21

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

22

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

23

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

24

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2018 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

25

Other Base Language Features
of Potential Interest to C++ Users

26
Copyright 2018 Cray Inc.

Other Base Language Features: OOP

Copyright 2018 Cray Inc.

Two flavors of object-oriented types:
● Value-based:

record Circle {
var radius: real;
proc area() { … }

}

var myCircle = new Circle(radius = 1.0),
myCircle2 = myCircle; // copy for record, alias for class

myCircle.radius = 2.0;
writeln(myCircle2.area()); // 1.0 for record, 4.0 for class

27

● Reference-based:
class Circle {
var radius: real;
proc area() { … }

}

Other Base Language Features: Generics

Copyright 2018 Cray Inc.

● Support for generic types and functions
● w.r.t. types and statically known values (`param`s)

class Arr {
param numDims: int; // number of dimensions
type eltType; // element type
var size: numDims*int; // tuple storing per-dimension size

}

var myArr = new Arr(2, string, (100, 200)),
myArr2 = new Arr(3, real, (500, 500, 500));

28

Other Base Language Features: Generics

Copyright 2018 Cray Inc.

● Support for generic types and functions
● w.r.t. types and statically known values (`param`s)

proc mypow(type t, x: t, param exponent: int) {
var result = 1:t;
for param i in 1..exponent do
result *= x;

return result;
}

var twoSquared = mypow(int, 2, 2);
var piCubed = mypow(real, 3.14159265, 3);

29

note: this is an utterly artificial and

over-engineered way to write this

function in Chapel, done merely to

demonstrate type/param args in

~6 lines…

Other Base Language Features: Meta-Programming

Copyright 2018 Cray Inc.

● Compile-time procedures to compute types / params
proc computePacketSize(type t1, type t2) param {
return numBits(t1) + numBits(t2);

}
proc c_intToChapelInt() type {
return int(numBits(c_int));

}
● Also, support for config types / params

config param bitsPerInt = 16;
config type eltType = int(bitsPerInt);

30

Other Base Language Features: Meta-Programming

Copyright 2018 Cray Inc.

● Ability to unroll loops / fold conditionals or ‘void’ exprs
for param i in (1, 2.3, “hello”, (5,7)) do
writeln(“i: ” , i, “ has type: ”, i.type:string);

● Reflection module:
● “Can this function / method be resolved”
● “Iterate over all fields in this record giving me their names / types”
● …

31

Other Base Language Features

Copyright 2018 Cray Inc.

● Error-handling
● Modules (namespaces)
● Overloading, filtering
● Default args, arg intents, keyword-based arg passing
● Argument type queries / pattern-matching
● …

32

Base Language Features: What’s Missing?

Copyright 2018 Cray Inc.

● better initializer (constructor) features
● currently being implemented and refined

● delete-free programming / borrow-checking
● currently being designed and implemented

● first-class functions
● prototyped, need strengthening

● constrained generics / interfaces / concepts
● proposal drafted but not implemented

● anti-function hijacking features
● currently under consideration

33

Task Parallelism and Locality Control

Copyright 2018 Cray Inc.

Task Parallelism
Base Language

Target
Machine

Locality Control

Domain Maps
Data Parallelism

34

Locales

35

● Unit of the target system useful for reasoning about locality
● Each locale can run tasks and store variables

● Has processors and memory (or can defer to something that does)
● For most HPC systems, locale == compute node

locale locale locale locale

Locales:

0 1 2 3

User’s main() executes on locale #0

Copyright 2018 Cray Inc.

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

36

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

Abstraction of
System Resources

37

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

High-Level
Task Parallelism

38

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}
Control of Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

39

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

Abstraction of
System Resources

40

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

High-Level
Task Parallelism

41

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

Not seen here:

Data-centric task coordination
via atomic and full/empty vars

42

Task Parallelism and Locality, by example

Copyright 2018 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",
tid, numTasks, here.name);

}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033
Hello from task 2 of 2 running on n1032
Hello from task 2 of 2 running on n1033
Hello from task 1 of 2 running on n1032

43

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;

0 1 2 3 4

i

Locales (think: “compute nodes”)

44

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {

0 1 2 3 4

i

Locales (think: “compute nodes”)

45

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;

0 1 2 3 4

i j

Locales (think: “compute nodes”)

46

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

0 1 2 3 4

i j

Locales (think: “compute nodes”)

47

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
…

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

48

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

OK to access i, j, and k
wherever they live k = 2*i + j;

49

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

here, i and j are remote, so
the compiler + runtime will

transfer their values
k = 2*i + j;

(j)

(i)

50

0 1 2 3 4

Chapel: Locality queries

Copyright 2018 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
…here… // query the locale on which this task is running
…j.locale… // query the locale on which j is stored
…here.physicalMemory(…)… // query system characteristics
…here.runningTasks()… // query runtime characteristics

}
}

} i j kkkkk

Locales (think: “compute nodes”)

51

Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2018 Cray Inc.

Data Parallelism in Chapel

Higher-level
Chapel

Domain Maps
Data Parallelism

52

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

53

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chplDomains (Index Sets)

54

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Arrays

55

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Data-Parallel Forall Loops

56

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

57

This is a shared memory program
Nothing has referred to remote

locales, explicitly or implicitly

Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

58

This is a shared memory program
Nothing has referred to remote

locales, explicitly or implicitly

Distributed Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}

dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Domain Maps
(Map Data Parallelism to the System)

59

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}

dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

60

magic!

descriptive!

HPF-like!

Not at all…
• Lowering of code is well-defined
• User can control details
• Part of Chapel‘s multiresolution

philosophy…

Chapel’s Multiresolution Design: Motivation

Copyright 2018 Cray Inc.
61

MPI
OpenMP
Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs trivially port
to new systems?”

“Why don’t I have more control?”

ZPL
HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit users to intermix layers arbitrarily

Copyright 2018 Cray Inc.

Chapel’s Multiresolution Philosophy

62

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Distributed Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

63

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl
forall (i,j) in D do…

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

default domain map
• create a task per local core
• block indices across tasks

Chapel’s prescriptive approach:

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}

dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2018 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

64

forall (i,j) in D do…

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create a task per core
• block local indices across

tasks

Chapel’s prescriptive approach:

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}

dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;
writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2018 Cray Inc.
65

forall (i,j) in D do…
Chapel’s prescriptive approach:

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

What if I don’t like D’s
iteration strategy?

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create task per core
• block local indices across

tasks

● Write and call your own parallel iterator:

● Or, use a different domain map:

● Or, write and use your own domain map:

forall (i,j) in myParIter(D) do…

var D = {1..n, 1..n} dmapped Block(…);

var D = {1..n, 1..n} dmapped MyDomMap(…);

Write and Call Your Own Parallel Iterator

66
Copyright 2018 Cray Inc.

Authoring Parallel Iterators

Copyright 2018 Cray Inc.

● Similar to serial iterators, but invoked by `forall` loops
● Unlike serial iterators, these can contain parallel constructs

forall i in myParIter(D) { … }

invokes:
iter myParIter(dom: domain, … /* tag as a parallel iterator */) {
coforall tid in 0..#numTasks {
const myChunk = computeChunk(dom, tid, numTasks);
for i in myChunk do
yield i;

}
}

67

Authoring Zippered Parallel Iterators

Copyright 2018 Cray Inc.

● Parallel iterators can also support zippered iteration
forall (i,j) in zip(myParIter(D), A) { … }

● defined in terms of leader…
iter myParIter(dom: domain, …) {
coforall tid in 0..#numTasks do
yield computeChunk(dom, tid, numTasks);

}

…and follower iterators:
iter myParIter(dom: domain, followThis, …) {
for i in followThis do yield i;

}

68

Use a Different Domain Map

69
Copyright 2018 Cray Inc.

Domain Maps: A Multiresolution Feature

Copyright 2018 Cray Inc.

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:
A = B + alpha * C;

70

Domain Maps: A Multiresolution Feature

Copyright 2018 Cray Inc.

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:
A = B + alpha * C;

71

Domain Maps specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…core operations on arrays / domains

1

Sample Domain Maps: Block and Cyclic

Copyright 2018 Cray Inc.

var Dom = {1..4, 1..8} dmapped Block({1..4, 1..8});

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

72

Write and Use Your Own Domain Map

73
Copyright 2018 Cray Inc.

Chapel’s Domain Map Philosophy

Copyright 2018 Cray Inc.

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
● to cope with any shortcomings in our standard library

3. Chapel’s standard domain maps are written using the end-user framework
● to avoid a performance cliff between “built-in” and user-defined cases
● in fact every Chapel array is implemented using this framework

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

74

Domain Map Descriptors

Copyright 2018 Cray Inc.

75

Represents: a domain

map value

Generic w.r.t.: index type

State: the domain map’s

representation

Typical Size: Θ(1) →
Θ(numLocales)

Required Interface:
● create new domains

● which locale owns index i?

Domain Map

Represents: a domain

Generic w.r.t.: index type

State: representation of

index set

Typical Size: Θ(1) →

Θ(numIndices)

Required Interface:
• create new arrays

• queries: size, members

• iterators: serial, parallel

• domain assignment

• index set operations

Domain

Represents: an array

Generic w.r.t.: index type,

element type

State: array elements

Typical Size:
Θ(numIndices)

Required Interface:
• (re-)allocation of elements

• random access

• iterators: serial, parallel

• get/set of sparse “zero”

values

• …

Array

Chapel and Performance Portability

Copyright 2018 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout?
● Sparse storage format?
● Parallel loop policies?

76

Chapel and Performance Portability

Copyright 2018 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout? not defined by Chapel
● Sparse storage format? not defined by Chapel
● Parallel loop policies? not defined by Chapel
● Abstract node architecture? not defined by Chapel

● Instead, permit users to specify these in Chapel itself
● support performance portability through…

…a separation of concerns
…abstractions—known to the compiler, and therefore optimizable

● goal: make Chapel a future-proof language

77

Classic Locales

78

locale locale locale locale

● Historically, Chapel’s locales were black boxes
● Intra-node concerns handled by compiler, runtime, OS

● This was sufficient when compute nodes were simple

Copyright 2018 Cray Inc.

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory
cpu

cpu

cpu
…

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory
cpu

cpu

cpu
…

locale

m
em

ory

cpu

cpu

cpu

…

Classic Locales

79

locale locale locale locale

Copyright 2018 Cray Inc.

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory

cpu

cpu

cpu

…

locale

m
em

ory
cpu

cpu

cpu
…

locale

m
em

ory

cpu

cpu

cpu

…

Classic Locales

80

locale locale locale locale

● Classic model breaks down for more complex cases
● E.g. multiple flavors of memory or processors

Copyright 2018 Cray Inc.

Could hope compilers will “simply get smart enough”

…but seems naïve and doesn’t match Chapel’s philosophy locale

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

accelerator

m
em

cpu cpu

cpu cpu

cpu cpu

cpu cpu

…

Hierarchical Locales

81

locale locale locale locale

Copyright 2018 Cray Inc.

● So, we made locales hierarchical

Hierarchical Locales

82

locale locale locale locale

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B
C C D E C C D E C C D E C C D E

● So, we made locales hierarchical
● Locales can now themselves contain locales

● E.g., an accelerator sub-locale, a scratchpad memory sub-locale

● Target sub-locales with on-clauses, as before
on Locales[0].GPU do computationThatLikesGPUs();

● Ideally, hide such logic in abstractions: domain maps, parallel iterators
● Introduced a new multiresolution type: locale models

Copyright 2018 Cray Inc.

Chapel’s Locale Models

Copyright 2018 Cray Inc.

● User-specified type representing locales
● Similar goals to domain maps:

● Support user implementation of key high-level abstractions
● Make language future-proof (w.r.t. emerging architectures)

83

Authoring a Locale Model

Copyright 2018 Cray Inc.

● Creating a locale model:
● Create a top-level locale object type

● In turn, it can contain fields representing sub-locales
● Each locale / sub-locale type must meet a required interface:

● Memory: How is it managed? (malloc, realloc, free)
● Tasking: How do I launch and synchronize tasks?
● Communication: How are data & control transferred between locales?

● gets, puts, active messages
● widening of pointers

84

An Example: The numa Locale Model

Copyright 2018 Cray Inc.
85

class NumaDomain : AbstractLocaleModel {
const sid: chpl_sublocID_t;

}

// The node model
class LocaleModel : AbstractLocaleModel {
const numSublocales: int;
var childSpace: domain(1);
var childLocales: [childSpace] NumaDomain;

}

// support for memory management
proc chpl_here_alloc(size:int, md:int(16)) { … }

// support for "on" statements
proc chpl_executeOn

(loc: chpl_localeID_t, // target locale
fn: int, // on-body func idx
args: c_void_ptr, // func args
args_size: int(32) // args size
) { … }

// support for tasking stmts: begin, cobegin, coforall
proc chpl_taskListAddCoStmt

(subloc_id: int, // target subloc
fn: int, // body func idx
args: c_void_ptr, // func args
ref tlist: _task_list, // task list
tlist_node_id: int // task list owner
) { … }

$CHPL_HOME/modules/…/numa/LocaleModel.chpl

NUMA compute node

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

conceptualphysical

http://w
w

w
1.pcm

ag.com
/m

edia/im
ages/337192-intel-xeon-e5-chip.jpg?thum

b=y

Locale Models: Status

Copyright 2018 Cray Inc.

● All Chapel compilations use a locale model
● Set via environment variable or compiler flag

● Current locale models:
● flat: the default, has no sublocales (as in the classic model)
● numa: supports a sub-locale per NUMA domain within the node
● knl: for Intel® Xeon Phi™: numa w/ sublocale for HBM/MCDRAM

86

Wrapping Up

87
Copyright 2018 Cray Inc.

Summary

Copyright 2018 Cray Inc.

● Chapel’s design uses a multiresolution philosophy
● High-level for productivity
● Low-level for control
● User-extensible for flexibility, future-proof design

● Three key examples of multiresolution features:
● Parallel iterators: specify the implementation of forall loops
● Domain maps: specify the implementation of domains and arrays
● Locale models: specify the capabilities of the target architecture

88

CHIUW 2017 Keynote

Copyright 2018 Cray Inc.
89

Chapel’s Home in the Landscape of
New Scientific Computing Languages
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

Quote from CHIUW 2017 keynote

Copyright 2018 Cray Inc.
90

“My opinion as an outsider…is that Chapel is important,
Chapel is mature, and Chapel is just getting started.
“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.
“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”

–Jonathan Dursi
Chapel’s Home in the New Landscape of Scientific Frameworks

(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://ljdursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

https://ljdursi.github.io/CHIUW2017/
https://www.youtube.com/watch?v=xj0rwdLOR4U

Chapel Resources

91
Copyright 2018 Cray Inc.

Chapel Central: https://chapel-lang.org/

Copyright 2018 Cray Inc.
92

https://chapel-lang.org/

How to Track Chapel

Copyright 2018 Cray Inc.

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/
chapel-announce@lists.sourceforge.net

93

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Suggested Reading (healthy attention spans)

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● published by MIT Press, November 2015
● edited by Pavan Balaji (Argonne)
● chapter is now also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

Copyright 2018 Cray Inc.
94

https://mitpress.mit.edu/programming
https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/papers.html

Suggested Reading (short attention spans)

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.

● a run-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.

● a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.

● a series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

● a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2018 Cray Inc.
95

http://www.cray.com/blog/chiuw-2017-surveying-chapel-landscape/
http://blog.cray.com/
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-2/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-3/
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
https://www.ieeetcsc.org/activities/blog
http://chapel-lang.org/media.html

Chapel StackOverflow and GitHub Issues

Copyright 2018 Cray Inc.
96

Where to..

Copyright 2018 Cray Inc.
97

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

Questions?

98
Copyright 2018 Cray Inc.

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

99

