
Untangling Threads
Introduction

Brett Searles

Principle Architect / Developer

Attobotics

brett.searles@attobotics.net



Introduction

• To examine all of the components that affect thread management

• To explore what exists already to better utilize

• Create STL container
• Interacts with the OS and Hardware

• This interaction is used to control thread synchronization

• Work on various hardware and memory configurations

• Improve efficiency in processing multiple threads







Prior Art & Current Trends



*nix based C

• Considers threads as lightweight processes

• Creates threads via a pthread_... Method

• Destroys threads via Join or Exit call.

• Can perform stack management; however, still dependent on OS and 
hardware

• Supports synchronization types 
• Mutex
• Condition
• Barrier
• Reader-Writer
• Spin locks



C++ Standard
Thread

Mutex

Condition Variables

wait…(m)

notify…

Futures

class thread {
public:

class id;
typedef implementation-defined native_handle_type; 
// construct/copy/destroy:
thread() noexcept;
template <class F, class ...Args> explicit thread(F&& f, 
Args&&... args);
~thread();
thread(const thread&) = delete;
thread(thread&&) noexcept;
thread& operator=(const thread&) = delete;
thread& operator=(thread&&) noexcept;
// members:
void swap(thread&) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
native_handle_type native_handle(); 
static unsigned hardware_concurrency() noexcept;

};
}



Concurrency

• Latches
• Uses internal counter for blocking threads. When counter reaches 0, all blocked threads 

are released

• Cannot be reused.

• Barriers
• Thread coordination mechanism that optimizes memory access. 

• Once the operation is completed, can be reused



Lock Free

• Lock Free [7] 
• Atomic smart pointers

• Utilizes the hardware to lock with the following commands:
• ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, 

XOR, XADD, and XCHG

• Cache lock rather than a bus lock

• Boost.Lockfree [8]
• Provides data structures or policies to provide nonblocking performance



Parallel

• Multiple Execution Cores for processing

• Architectures
• multiple CPU cores

• SIMD

• MIMD

• MISD

• Etc.

• C++ is developing the language to support the above



Co-Routines

• Basically one process communicates to another process that it 
“yield”s to the other.

• Possible to send also results back to the thread(s) to process 



Design Decisions



Influencers

• Hardware

• Memory

• OS Scheduler

• Process ,i.e., application

• Threads



Hardware

• Platform
• 32 bit 

• x86 
• ARM

• 64 bit
• x64
• ARM

• Multi core
• GPU (Graphics Processing Unit)
• GPGPU (General Purpose Graphics Processing Unit)
• FPGA (Field Programmable Gate Array)
• MIMD (Multiple Instruction Multiple Data)



32 bit

• x86
• Segments

• CS, DS, ES, FS, GS

• Descriptor Tables (DT)
• Global DT

• Local DT

• ARM
• Have different registers

• R13 for stack

• Meant more for multi-tasking



x64

• x64
• Eliminated segments

• 1018 address space 

• ARM
• Added more registers

• More instructions

• Still focused on embedded, 
smartphones and tablets



Execution Units



Multicore
May be any architectures with multiple 
execution units

Need to set affinity for a thread so that it will 
operate only on one processor

Two ways to supervise operations

1) SMT – Symmetric Multi-Processor

2) AMT – Asymmetic Multi-Processor



GPU
Highly parallel processing

Specific to basically doing high speed 
calculations

Configured to  to apply a single instruction to 
multiple data (SIMD)

Uses threading, yet don’t support interrupts 
and exception. 



GPGPU
Combines the controlling features of the CPU 
with the processing power of SIMD of a GPU



FPGA
Field-Programmable Gate Array

Can place ARM or some other parallel 
processing cores onto a gate array.

It may work in conjuction with a controller 
external to the gate array configuration



MIMD
Multiple Instruction Multiple Data

Need to highly synchronize data between 
processors in order to insure correctness of 
results



Memory

• Registers – How many?

• Cache – How Large?

• L1

• L2

• L3
• RAM – How large and fast?

• Stack

• Heap

• GPU configuration – Fast?



Registers

• Memory units that are closest to the execution unit

• Very fast to access

• Yet very limited in number



Intel (CISC based)
(e)ax, (e)bx, (e)cx, (e)dx, 
(e)bp, (e)si, (e)di, (e)sp, 
(e)flags (32)

r.. (64)

Mmx… for multi-media

Xmm… for SIMD

Fpr… for floating point
))



ARM (RISC based)
r1 – r15 for both user and 
supervisor modes

Have r13-r14 for monitor, 
abort, undefined modes 
and IRQ

FIQ contains R8, 9, 10, 11, 
12, 13, and 14

The last two points 
require to be in supervisor 
mode



Stack

• Usually top down (subtracting) 

• Each process is allocated a 
segment of the stack (OS-
dependent)

• Each Thread has allocated space

• very fast access

• Variables are deallocated when 
function or process ends

• space is managed efficiently by 
CPU 





Heap

• Size limitation is size of memory 
minus the size of stack, code and 
possibly other variable 
placeholders.

• May contain large memory for 
single variables

• Accessible throughout the 
lifetime of the process

• Need to be explicitly deleted

• Can lead to fragmentation



Cache

• L1 – local to Processor core

• L2- shared between two cores 
on the same die

• L3 – shared between all core

• Uses Read and Write fences to 
synchronize data flow

• Hit-Miss Ratio



GPU configuration

• Local on chip
• Register

• Shared

• Reside Off Chip
• Local

• Constant

• Texture

• Global



OS Scheduler

• Various algorithms to handle process and thread execution
• 1st come, 1st serve
• Round Robin
• Priority
• Multi-Level Feedback Queues
• Lottery

• Want to avoid deadlocks, even livelocks, so most use Preemptive 
scheduling

• Three types of scheduling
• Long Term
• Medium Term
• Short Term



Long
If the OS uses pre-emptive scheduling, the 
long term scheduler does not exist.

However, if does exists, all new processes will 
be determined for admittance to the process 
queue. 

This scheduler balances the jobs between I/O 
and processor based processes. 

Loads the process by allocating memory and 
setting variables used by the process.



Medium 
Removes processes from memory



Short
Used to change the state of the process from 
“Ready” to “Running”



Execution Scenarios



Process
Is the main execution unit for an application

Stores all of the information to successfully 
operate an application

Stores thread information, interrupts and 
other information that will be used by the 
app.

In Linux and Windows, that information is 
stored in a struct 

counter
Timeout

id



Process continued
Windows contains an overall structure of 
EProcess that is a wrapper for everything 
about a process.

Inside that is another struct called KProcess.

Linux 

• basically operates in user space 

• uses syscall. 

• It also considers threads as lightweight 
processes



Thread
Each thread has stack memory allocated 
to it.

Threads contain information as follows:

The I/O devices that will be used by the 
thread

Whether the thread is synchronous or 
asynchronous

Contains information about the two 
access levels

Kernel - protected access

User - general access



Kernel
Slower to create and manage

OS creates them

Specific to OS

Can be multithreaded

Descriptor Priviledge Level 0 - 2

typedef struct _KPROCESS {
DISPATCHER_HEADER Header; 
LIST_ENTRY ProfileListHead, ReadyListHead, ThreadListHead, ProcessListEntry; 
KGDTENTRY LdtDescriptor; 
KIDTENTRY Int21Descriptor; 
WORD IopmOffset; 
UCHAR Iopl, Unused, State, ThreadSeed, PowerState, IdealNode, Visited; 
ULONG ActiveProcessors, KernelTime, UserTime, ProcessLock, Affinity, 
StackCount, DirectoryTableBase, Unused0;
SINGLE_LIST_ENTRY SwapListEntry; 
PVOID VdmTrapcHandler; 
union { ULONG AutoAlignment: 1; ULONG DisableBoost: 1; ULONG 
DisableQuantum: 1; ULONG ReservedFlags: 29; LONG ProcessFlags; }; 
CHAR BasePriority, QuantumReset; 
union { KEXECUTE_OPTIONS Flags; UCHAR ExecuteOptions; };
UINT64 CycleTime; 
} KPROCESS, *PKPROCESS;



User
Run on any operating system

Operates only on one processor

Run independent of the Kernel 

Uses cooperative multitasking, which means 
one thread blocks the others

Descriptor Priviledge Level 3



Relationship
Between kernel and user

• Many to Many

• Many to One

• One to One



Many to Many
Multiple user level threads multiples with the 
same or smaller amount of kernel level 
threads.

The number of kernel level threads are 
managed by the OS.



Many to One
Multiple user threads access the only one 
kernel.

More secure and eliminate race conditions, 
yet may cause deadlocks



One to One
Better concurrency and support of 
parallelism.

Disadvantage is that two threads need to be 
created

Also for large tasks will only rely on one 
thread to do the work



Synchronization



Locks

• Semaphore

• Mutex

• Barrier

• Auto Locks

• Spin Lock



Semaphore

function V(semaphore S, integer I): 
[S ← S + I] 

function P(semaphore S, integer I): 
repeat:

[if S ≥ I: S ← S − I break]

Uses a counting process to make sure that 
there is enough resources for each thread to 
execute.

Main purpose is to control I/O access in 
Operating Systems.

Portable and usually efficient



Producer-Consumer Application

Produce

P(emptyCount) 

P(useQueue) 

putItemIntoQueue(item) 

V(useQueue) 

V(fullCount)

Consume

P(fullCount) 

P(useQueue) 

item ← getItemFromQueue() 

V(useQueue) 

V(emptyCount) 



Mutex

semaphore mutex = 1.

while (1) {

{0<=mutex<=1}

P(mutex); -- entry protocol

{mutex==0}

CS

V(mutex); -- exit protocol

{0<=mutex<=1}

}

Binary Semaphore

Mutual Exclusion

Only has two states

Only one thread will have 
access 

Others will wait



T1 T2

Shared 
Data

T1 completes and yields control

T1 T2

Shared 
Data

Blocks



Barrier

• Optimizes the access to shared memory.

• Threads are required to wait until all threads have reached a certain 
point, the barrier.



semaphore here=0, go[1:2] = {0,0}
co

while 1 {
beforebarrier1;
V(here); P(go[1]);

}
//
while 1 {

beforebarrier2;
V(here); P(go[2]);

}
// -- coordinator
while 1 {

for [i=1,2] {
P(here)

};
for [i=1,2] {

V(go[i])
}

}
oc



Auto Locks

• Abstracted Mutex

• Locks once ownership comes 
into scope and unlocks when it 
goes out of scope

class AutoLock

{ 

public:

AutoLock(Mutex *mutex)

{ 

if (mutex) 

{

m_mutex = mutex; m_mutex->lock(); 

} 

}

~AutoLock() 

{ 

if(m_mutex) 

{ 

m_mutex->unlock(); 

} 

} 

private: 

Mutex* m_mutex; 

}; 



Spin Locks

• If the resource is taken by one 
thread, the second thread will 
be put in a loop to test when 
that resource is available.

• Require fewer resources to block 
a thread

• Better than putting the thread in 
suspended state

#include <pthread.h> 
pthread_spinlock_t lock; 

int pshared; 

int ret; 

/* initialize a spin lock */

ret = pthread_spin_init(&lock, 
pshared); 



Proposed Solution

• Thread

• DynamicLock

• STL



Thread

• Additional Features from C++ Standard
• volatile unsigned int cpu_affinity

• unsigned long code_size;

• volatile unsigned long stack_size;

• unsigned int priority;

• volatile int thread_state;

• volatile double threshold;

• volatile double _ticks, _duration;

• Many more



DynamicLock
template< … Args volatile>

public class ILock

{

…Args variables;  // example unsigned int cpu_cores
struct _secAttr;

public:

// do not want to copy or move for security reasons

DynamicLock(const DynamicLock & obj) = delete; 

DynamicLock(DynamicLock && obj) = delete; 

DynamicLock & operator=(const DynamicLock& obj) = delete;

DynamicLock & operator=(DynamicLock&& obj) = delete;

void Lock();

void Unlock() ;

};



STL - Proposed

Template<class T, class U, … Args>

public _threadsync : class T

{

volatile _thread* next;

volatile double _weight;

DynamicLock<… Args> *lock;

T<std::thread*> _thread_container;

template <… > U<std::futures<…>> _async_container;

bool update_thread(_thread *_updated);

_utry();

_kcatch();

execute((void *)fptr); 

execute(std::function<void>()); 

void* fptr;

std::function<void> func;

public:

bool add_thread(_thread& new_thread);

void remove_thread(_thread& removed);

template<… >bool add_handler((void *)fptr<… >(… args));

void define_execution((void *) _fp);

void define_execution(std::function<void> _fn);

}



execute(???)
void execute((void *) _fp)

{

_utry{

_fp();

}

_kcatch

{

std::future<…> _clean();

std::future<…> _realloc();

.

.

.

std::future<…> _writelog();

}

}



Examples



Producer-Consumer

Producer Consumer

Production of Widget

Orders 10

15

Inventory



Producer-Consumer

Producer Consumer

Production of Widget

Orders 30

10

Inventory

10

Inventory

10

Inventory



Producer-Consumer

Producer Consumer

Production of Widget

Orders 30

10

Inventory

30

Inventory



Game Play

_utry _kcatch

_clean _foo _log… … …



Other Scenarios

• Another production line is put in place
• Spin Lock

• Heap memory with a const pointer, volatile data

• Two customers order, one customer needs the order filled in a hurry 
and a limited supply
• Latch for second customer

• Mutex for first customer 



The committee has no direct influence over OS or hardware vendors. If there is 

something provided by multiple vendors, IMO it is fair game to propose an 

abstraction that covers it. If it is performance-related (especially in a non-

obvious way), an implementation across multiple platforms and timing 

measurements showing a clear benefit in typical use cases for it go a long way 

towards selling your proposals. 

Conversation on the SG14 forum



Yes, it does but not in a direct way. Vendors have been bending over to adapt to the 'standard 

way' to program C/C++. See Intel itself, CUDA, Microblaze/NIOS, and the whole C-to-HDL 

ecosystem (https://en.wikipedia.org/wiki/C_to_HDL) just to mention a few from the top of my 

head. The committee has absurd attention and quasi-religious following among software 

professionals to have indeed a huge (unintended) influence. Want it or not, you are part of a 

strong feedback circle that affects how hardware technologies are implemented (or not) in the 

future. As an example, if we had zero-copy semantics adopted when it came out long ago, 

perhaps I would not have to be doing the LD_PRELOAD hack today.

HFT has been about collapsing layers of software and hardware. 

Application/presentation/session/transport/network and sometimes eve data layers today reside 

in a single binary blob through a whole hack-a-mole pipeline. And all this happened while the 

C++ comittee was focused developing auto, lambda and variadics. 

I think SG14 is a good opening to close more this circle and engage with the industry, pretty 

much like the MPI standard embraced the HPC industry. But I can see how that can be a turn off 

for many.



References
• http://www.futurechips.org/chip-design-for-all/cpu-vs-gpgpu.html
• http://www.embedded.com/design/prototyping-and-development/4231326/Taking-advantage-of-the-

Cortex-M3-s-pre-emptive-context-switches
• Building Parallel, Embedded, and Real-Time Applications with Ada John W. McCormick, Frank Singhoff,      

Jérôme Hugues
• http://www.tutorialspoint.com/operating_system/os_process_scheduling.htm
• https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
• https://computing.llnl.gov/tutorials/pthreads/
• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4399.html
• http://www.boost.org/doc/libs/1_59_0/doc/html/lockfree.html
• https://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-

and-ia32-architectures
• https://software.intel.com/en-us/articles/introduction-to-x64-assembly
• http://www.keil.com/support/man/docs/armasm/armasm_dom1359731128950.htm
• www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4582.pdf
• https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/5_CPU_Scheduling.html
• http://akosma.com/2010/10/11/how-knowing-c-and-c-can-help-you-write-better-iphone-apps-part-1/
• http://www.plantation-

productions.com/Webster/www.artofasm.com/Linux/HTML/MemoryAccessandOrg.html
• http://www.tldp.org/LDP/tlk/ds/ds.html
• http://www.tutorialspoint.com/operating_system/os_multi_threading.htm



• http://deploytonenyures.blogspot.com/2013/10/windows-vs-linux-processes-and-threads.html
• http://www.linfo.org/kernel_space.html
• http://www.codeproject.com/Articles/421976/How-to-create-a-Simple-Lock-Framework-for-Cplusplu
• http://en.cppreference.com/w/cpp/language/parameter_pack
• http://en.cppreference.com/w/cpp/thread/future
• http://en.cppreference.com/w/cpp/thread/async
• https://en.wikipedia.org/wiki/Asymmetric_multiprocessing
• http://searchdatacenter.techtarget.com/definition/SMP
• http://www.gulamshakir.com/2012/10/03/C%2B%2B-Multithreading-Tips.html
• https://docs.oracle.com/cd/E26502_01/html/E35303/ggecq.html
• http://www.thegeekstuff.com/2012/03/linux-threads-intro/
• http://fpgacenter.com/fpga/fpga_arch.php
• https://www.safaribooksonline.com/library/view/designing-embedded-hardware/0596007558/ch01.html
• http://stackoverflow.com/questions/6155951/whats-the-difference-between-deadlock-and-livelock
• http://stackoverflow.com/questions/3111403/what-is-the-difference-between-a-lock-and-a-latch-in-the-

context-of-concurrent-a
• http://www.dba-oracle.com/t_lru_latches.htm
• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3998.html
• https://en.wikipedia.org/wiki/Semaphore_(programming)
• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3666.html
• http://superuser.com/questions/455316/what-is-a-user-thread-and-a-kernel-thread


