
LIQ𝑈𝑖|⟩ tutorial

Martin Roetteler

Quantum Architectures and Computation Group (QuArC)

Microsoft Research

Northwest C++ Users’ Group

Redmond, WA

June 15, 2016

Microsoft QuArC and StationQ

Quantum hardware technologies

Majorana

zero modes

Ion traps

Super-
conductors

NV centers

Quantum
dots

Linear optics

Charlie Marcus’ Lab in Copenhagen
6/15/2016 Martin Roetteler @ QuArC Redmond 4

“Quantum killer apps”

Quantum algorithms

• Breaks RSA, elliptic curve
signatures, DSA, El-Gamal

• Exponential speedups

Shor’s
Algorithm
(1994)

Quantum
Simulation (1982)

• Simulate physical systems in a
quantum mechanical device

• Exponential speedups

Solving Linear
Systems of
Equations (2010)

• Applications shown for
electromagnetic wave scattering

• Exponential speedups

Motivation: real-world use cases

Find a material that

superconducts at room

temperature, organic batteries

100s-1000s qubits: Simulate

large systems in time linear in

the number of particles

Capture carbon directly from

the air at any location

100-200 qubits: Design

catalysts to capture waste

carbon with less energy

Efficiently convert nitrogen to

fertilizer

100-200 qubits: Design

catalysts to enable efficient

fertilizer production

Conventional learning uses

approximations to train

efficiently

100s-1000s qubits: Replace

approximations with better

solutions

Superposition

• Feynman taught us that

the universe via

quantum mechanics is

the ultimate parallel

computer

• Quantum mechanics

considers all paths at

once

Interference
Allows to cancel out useless

computations and to amplify

useful ones
6/15/2016 Martin Roetteler @ QuArC Redmond 9

0 = | 〉 = ↓

1 = = ↑

𝜓 = 0 + 1 = + = ↓ + ↑

Quantum Magic: Qubits and Superposition

Information encoded in the state of a two-level quantum system

single atom single spin

𝒈 = 𝟎
𝒆 = |𝟏〉

↓ = 𝟎
↑ = |𝟏〉

6/15/2016 Martin Roetteler @ QuArC Redmond 10

Input Output

+

+

+

+

6/15/2016 Martin Roetteler @ QuArC Redmond 11

Any catches?

No-cloning principle I/O limitations

Quantum information

cannot be copied

Input: preparing initial state can be costly

Output: reading out a state is probabilistic

+

+

output

measure

How to program a
quantum computer?

A Software Architecture for Quantum Computing

The LIQ𝑈𝑖|⟩ platform Wecker and Svore, 2014

• Automatically maps a quantum
algorithm to executable code
for a quantum computer

• Increases speed of innovation
• Rapid development of

quantum algorithms
• Efficient testing of

architectural designs
• Flexible for the future

Quantum Algorithms

Quantum Circuits

Simulation
Backend

Hardware
Backend

Programming Language

Optimized Quantum
Circuits

Compilers and Optimizers

6/15/2016 Martin Roetteler @ QuArC Redmond 14

• Simulation:

– High enough level language to easily implement large quantum algorithms

– Allow as large a simulation on classical computers as possible

– Support abstraction and visualization to help the user

– Implement as an extensible platform so users can tailor to their own requirements

• Compilation:

– Multi-level analysis of circuits to allow many types of optimization

– Circuit re-writing for specific needs (e.g., different gate sets, noise modeling)

– Compilation into real target architectures

LIQ𝑈𝑖|⟩ goals

• We chose F# as high-level language for quantum algorithms
– F# is also the implementation language

• Optimized simulation of quantum operations
– Parallelized linear algebra package

– Many higher-level optimizations are implemented, such as growing a

complex circuit into a single multi-qubit unitary operation

– A CHP-based stabilizer simulator is included for algorithms that don’t require

full circuit and state vector simulation

• Public release for academic purposes
– Restricted to 23 qubits for circuit simulation

– No software restrictions on the stabilizer simulator

The LIQ𝑈𝑖|⟩ simulation platform
LIQUi|>: A Software Design Architecture and Domain-Specific

Language for Quantum Computing. Dave Wecker, Krysta M. Svore

Languages, compilers, and computer-aided design tools will be essential for

scalable quantum computing, which promises an exponential leap in our

ability to execute complex tasks. LIQUi|> is a modular software architecture

designed to control quantum hardware. It enables easy programming,

compilation, and simulation of quantum algorithms and circuits, and is

independent of a specific quantum architecture. LIQUi|> contains an

embedded, domain-specific language designed for programming quantum

algorithms, with F# as the host language. It also allows the extraction of a

circuit data structure that can be used for optimization, rendering, or

translation. The circuit can also be exported to external hardware and software

environments. Two different simulation environments are available to the user

which allow a trade-off between number of qubits and class of operations.

LIQUi|> has been implemented on a wide range of runtimes as back-ends with

a single user front-end. We describe the significant components of the design

architecture and how to express any given quantum algorithm.

Paper: http://arxiv.org/abs/1402.4467

Download: http://stationq.github.io/Liquid

• Basic definition: To operate on 𝑛 qubits requires: U2𝑛,2𝑛 ×Ψ2𝑛

• We run out of simulation address space and physical memory very quickly

• State:

– If we break the state up into pieces (sets of entangled qubits) then only the largest
entangled “register” limits the computation

– The state can’t be compressed further since it’s dense (in general) and must be
represented with high precision.

• Operator:

– Usually very sparse, but requires a large amount of bookkeeping and overhead to
manipulate (inefficient) and is still as big or bigger than the state (even with massive
compression)

LIQ𝑈𝑖|⟩ - Optimizations

• If we can guarantee that the qubits we want to operate on are always at the

beginning of the state vector, we can view the operation as:

𝐺2𝑘,2𝑘 ⊗ 𝐼2𝑛−𝑘,2𝑛−𝑘 ×Ψ2𝑛

• However, what we’d really like is to flip the Kronecker product order:

𝐼2𝑛−𝑘,2𝑛−𝑘 ⊗𝐺2𝑘,2𝑘 ×Ψ2𝑛

• This accomplishes :

– 𝐼 ⊗ 𝐺 becomes a block diagonal matrix that just has copies of 𝐺 down the diagonal. This

means that you’d never have to actually materialize 𝑈=𝐼 ⊗ 𝐺

– Processing is highly parallel (and/or distributed) because the matrix is perfectly partitioned

and applies to separate, independent parts of the state vector

LIQ𝑈𝑖|⟩ - Optimizations

• Define a function to generate entanglement:

Quantum “Hello World!”

let EPR (qs:Qubits) = H qs; CNOT qs

• The rest of the algorithm:

let teleport (qs:Qubits) =
let qs' = qs.Tail
EPR qs'; CNOT qs; H qs
M qs'; BC X qs'
M qs ; BC Z !!(qs,0,2)

Shor’s algorithm: full circuit: 4 bits ≅ 8200 gates

Circuit for Shor’s algorithm using 2n+3 qubits – Stéphane Beauregard

Largest Dave has done:

14 bits (factoring 8189)

14 Million Gates

30 days

Obtain the package from:
http://stationq.github.io/Liquid

Microsoft’s quantum computing group:
http://research.microsoft.com/groups/quarc/
http://research.microsoft.com/en-us/labs/stationq/

martinro@microsoft.com

