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Quantum hardware technologies

Majorana

zero modes

Ion traps

Super-
conductors

NV centers

Quantum 
dots

Linear optics 



Charlie Marcus’ Lab in Copenhagen
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“Quantum killer apps”



Quantum algorithms 

• Breaks RSA, elliptic curve 
signatures, DSA, El-Gamal

• Exponential speedups

Shor’s 
Algorithm 
(1994)

Quantum 
Simulation (1982)

• Simulate physical systems in a 
quantum mechanical device

• Exponential speedups

Solving Linear 
Systems of 
Equations (2010)

• Applications shown for 
electromagnetic wave scattering

• Exponential speedups



Motivation: real-world use cases 

Find a material that 

superconducts at room 

temperature, organic batteries

100s-1000s qubits: Simulate 

large systems  in time linear in 

the number of particles

Capture carbon directly from 

the air at any location

100-200 qubits: Design 

catalysts to capture waste 

carbon with less energy

Efficiently convert nitrogen to 

fertilizer

100-200 qubits: Design 

catalysts to enable efficient 

fertilizer production

Conventional learning uses 

approximations to train 

efficiently

100s-1000s qubits: Replace 

approximations with better 

solutions



Superposition

• Feynman taught us that 

the universe via 

quantum mechanics is 

the ultimate parallel 

computer

• Quantum mechanics 

considers all paths at 

once



Interference
Allows to cancel out useless

computations and to amplify

useful ones
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0 = | 〉 = ↓

1 = = ↑

𝜓 = 0 + 1 = + = ↓ + ↑

Quantum Magic: Qubits and Superposition

Information encoded in the state of a two-level quantum system

single atom single spin

𝒈 = 𝟎
𝒆 = |𝟏〉

↓ = 𝟎
↑ = |𝟏〉
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Input Output
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+
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Any catches?

No-cloning principle I/O limitations

Quantum information 

cannot be copied

Input: preparing initial state can be costly

Output: reading out a state is probabilistic

+

+

output

measure



How to program a 
quantum computer?



A Software Architecture for Quantum Computing

The LIQ𝑈𝑖|⟩ platform Wecker and Svore, 2014

• Automatically maps a quantum 
algorithm to executable code 
for a quantum computer

• Increases speed of innovation
• Rapid development of 

quantum algorithms
• Efficient testing of 

architectural designs
• Flexible for the future

Quantum Algorithms

Quantum Circuits

Simulation 
Backend

Hardware 
Backend

Programming Language

Optimized Quantum 
Circuits

Compilers and Optimizers
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• Simulation:

– High enough level language to easily implement large quantum algorithms

– Allow as large a simulation on classical computers as possible

– Support abstraction and visualization to help the user

– Implement as an extensible platform so users can tailor to their own requirements

• Compilation:

– Multi-level analysis of circuits to allow many types of optimization

– Circuit re-writing for specific needs (e.g., different gate sets, noise modeling) 

– Compilation into real target architectures

LIQ𝑈𝑖|⟩ goals



• We chose F# as high-level language for quantum algorithms
– F# is also the implementation language

• Optimized simulation of quantum operations
– Parallelized linear algebra package

– Many higher-level optimizations are implemented, such as growing a 

complex circuit into a single multi-qubit unitary operation

– A CHP-based stabilizer simulator is included for algorithms that don’t require 

full circuit and state vector simulation

• Public release for academic purposes
– Restricted to 23 qubits for circuit simulation

– No software restrictions on the stabilizer simulator

The LIQ𝑈𝑖|⟩ simulation platform
LIQUi|>: A Software Design Architecture and Domain-Specific 

Language for Quantum Computing.  Dave Wecker, Krysta M. Svore

Languages, compilers, and computer-aided design tools will be essential for 

scalable quantum computing, which promises an exponential leap in our 

ability to execute complex tasks. LIQUi|> is a modular software architecture 

designed to control quantum hardware. It enables easy programming, 

compilation, and simulation of quantum algorithms and circuits, and is 

independent of a specific quantum architecture. LIQUi|> contains an 

embedded, domain-specific language designed for programming quantum 

algorithms, with F# as the host language. It also allows the extraction of a 

circuit data structure that can be used for optimization, rendering, or 

translation. The circuit can also be exported to external hardware and software 

environments. Two different simulation environments are available to the user 

which allow a trade-off between number of qubits and class of operations. 

LIQUi|> has been implemented on a wide range of runtimes as back-ends with 

a single user front-end. We describe the significant components of the design 

architecture and how to express any given quantum algorithm. 

Paper: http://arxiv.org/abs/1402.4467 

Download: http://stationq.github.io/Liquid



• Basic definition: To operate on 𝑛 qubits requires: U2𝑛,2𝑛 ×Ψ2𝑛

• We run out of simulation address space and physical memory very quickly

• State:

– If we break the state up into pieces (sets of entangled qubits) then only the largest 
entangled “register” limits the computation

– The state can’t be compressed further since it’s dense (in general) and must be 
represented with high precision.

• Operator:

– Usually very sparse, but requires a large amount of bookkeeping and  overhead to 
manipulate (inefficient) and is still as big or bigger than the state (even with massive 
compression)

LIQ𝑈𝑖|⟩ - Optimizations



• If we can guarantee that the qubits we want to operate on are always at the 

beginning of the state vector, we can view the operation as:

𝐺2𝑘,2𝑘 ⊗ 𝐼2𝑛−𝑘,2𝑛−𝑘 ×Ψ2𝑛

• However, what we’d really like is to flip the Kronecker product order:

𝐼2𝑛−𝑘,2𝑛−𝑘 ⊗𝐺2𝑘,2𝑘 ×Ψ2𝑛

• This accomplishes :

– 𝐼 ⊗ 𝐺 becomes a block diagonal matrix that just has copies of 𝐺 down the diagonal. This 

means that you’d never have to actually materialize 𝑈=𝐼 ⊗ 𝐺

– Processing is highly parallel (and/or distributed) because the matrix is perfectly partitioned 

and applies to separate, independent parts of the state vector

LIQ𝑈𝑖|⟩ - Optimizations



• Define a function to generate entanglement:

Quantum “Hello World!”

let EPR (qs:Qubits) = H qs; CNOT qs

• The rest of the algorithm:

let teleport (qs:Qubits) =
let qs'     = qs.Tail
EPR qs'; CNOT qs; H qs
M qs'; BC X qs'
M qs ; BC Z !!(qs,0,2)



Shor’s algorithm: full circuit: 4 bits ≅ 8200 gates

Circuit for Shor’s algorithm using 2n+3 qubits – Stéphane Beauregard

Largest Dave has done:

14 bits (factoring 8189)

14 Million Gates

30 days



Obtain the package from:
http://stationq.github.io/Liquid

Microsoft’s quantum computing group:
http://research.microsoft.com/groups/quarc/
http://research.microsoft.com/en-us/labs/stationq/

martinro@microsoft.com


