LIQUI|) tutorial

Martin Roetteler
Quantum Architectures and Computation Group (QuArC)
Microsoft Research

Northwest C++ Users’” Group
Redmond, WA
June 15, 2016



Microsoft QUArC and StationQ




Quantum hardware technologies

ICS

Inear opt

Super-
conductors
L



Martin Roetteler @ QUAERC Redmond
o




‘Quantum killer apps”



Quantum algorithms

Solving Linear
Systems of
Equations (2010)

Breaks RSA, elliptic curve
signatures, DSA, ElI-Gamal

Exponential speedups

Applications shown for
electromagnetic wave scattering

Exponential speedups

Simulate physical systems in a
guantum mechanical device

Exponential speedups




Motivation: real-world use cases

Efficiently convert nitrogen to
fertilizer

100-200 qubits: Design
catalysts to enable efficient
fertilizer production

Find a material that
superconducts at room
temperature, organic batteries

100s-1000s qubits: Simulate
large systems in time linear in
the number of particles

Capture carbon directly from
the air at any location

100-200 qubits: Design
catalysts to capture waste
carbon with less energy

Conventional learning uses
approximations to train
efficiently

100s-1000s qubits: Replace
approximations with better
solutions




Superposition

"'1 'I'J X oad ' &

. Feynman taught us that

the un
quantu

the ulti

lverse via
m mechanics Is
mate parallel

compL

ter

e Quantum mechanics

considers all paths at

once



6/15/2016

-
Martin Roetteler @ QuArC Redmond

errerence

Allows to cancel out useless
computat’ﬁ and to amplify

seful ones ’



Quantum Magic: Qubits and Superposition

Schrodinger

) = I(

Information encoded in the state of a two-level quantum system

6/15/2016 Martin Roetteler @ QuArC Redmond 10



+

.
+ I

6/15/2016

Input

Martin Roetteler @ QuArC Redmond

Output

11



Any catches?

No-cloning principle /O limitations

output

measure

Quantum information Input: preparing initial state can be costly
cannot be copied Output: reading out a state is probabilistic



How to program a
quantum computer?



A Software Architecture for Quantum Computing

* Automatically maps a quantum
algorithm to executable code
Programming Language for a quantum computer

Quantum Algorithms

* Increases speed of innovation

Compilers and Optimizers * Rapid development of
guantum algorithms

* Efficient testing of
architectural designs

Simulation e Flexible for the future
Backend

6/15/2016

Martin Roetteler @ QuArC Redmond 14

The LIQUi|) platform



LIQUi|) goals

« Simulation:
— High enough level language to easily implement large quantum algorithms
— Allow as large a simulation on classical computers as possible
— Support abstraction and visualization to help the user

— Implement as an extensible platform so users can tailor to their own requirements

« Compilation:
— Multi-level analysis of circuits to allow many types of optimization
— Circuit re-writing for specific needs (e.g., different gate sets, noise modeling)

— Compilation into real target architectures



LIQUI|)

LIQUI|>: A Software Design Architecture and Domain-Specific

° We ChOS‘ Language for Quantum Computing. Dave Wecker, Krysta M. Svore um a | g e I‘Ith ms

— F#is als Languages, compilers, and computer-aided design tools will be essential for
scalable quantum computing, which promises an exponential leap in our
. . ability to execute complex tasks. LIQUi|> is a modular software architecture
® O t| MIZE designed to control quantum hardware. It enables easy programming,
compilation, and simulation of quantum algorithms and circuits, and is
Paralleli independent of a specific quantum architecture. LIQUi|> contains an
embedded, domain-specific language designed for programming quantum
_ i algorithms, with F# as the host language. It also allows the extraction of a i
Many al circuit data structure that can be used for optimization, rendering, or S growing a
Comp|e} translation. The circuit can also be exported to external hardware and software 7
environments. Two different simulation environments are available to the user
. o . I b
— A CHP-I which allow a trade-off between number of qubits and class of operations. 1s that don't require
full ci LIQUi|> has been implemented on a wide range of runtimes as back-ends with
Ul CIrcL, single user front-end. We describe the significant components of the design

architecture and how to express any given quantum algorithm.

* Publicre Paper: http://arxiv.org/abs/1402.4467

— Restrictt Download: http://stationg.github.io/Liquid
— No software restrictions on the stabilizer simulator




LIQUI|) - Optimizations

Basic definition: To operate on n qubits requires: Uyn ;n X Wyn
We run out of simulation address space and physical memory very quickly
State:

— If we break the state up into pieces (sets of entangled qubits) then only the largest
entangled “register” limits the computation

— The state can't be compressed further since it's dense (in general) and must be
represented with high precision.

Operator:

— Usually very sparse, but requires a large amount of bookkeeping and overhead to
manipulate (inefficient) and is still as big or bigger than the state (even with massive
compression)



LIQUI|) - Optimizations

If we can guarantee that the qubits we want to operate on are always at the
beginning of the state vector, we can view the operation as:

sz,zk (0% Izn_kan_k X Wyn

« However, what we'd really like is to flip the Kronecker product order:
[yn—k yn-k @ Gk ke X Won

« This accomplishes :

— I ® G becomes a block diagonal matrix that just has copies of G down the diagonal. This
means that you'd never have to actually materialize U=1 ®Q G

— Processing is highly parallel (and/or distributed) because the matrix is perfectly partitioned
and applies to separate, independent parts of the state vector



Quantum “Hello World!”

let EPR (gs:Qubits)

H gs; CNOT gs

let teleport (gs:Qubits) =
let qgs'’ = ¢gs.Taill
EPR gqs'; CNOT gs; H gs
M gs'; BC X gs'
Mqgs ; BC Zz ''(gs,0,2)




Shor's algorithm: full circuit: 4 bits = 8200 gates

SR o amsamaemaes o' Jcst Dave has done:

' = | 14 bits (factoring 8189)
S i 14 Million Gates
== ' 30 days

HuIMod

ul..dh1]

k y o= |

, MulModNs

| MulModiz

HulModhis

. an]

Circuit for Shor’s algorithm using 2n+3 qubits — Stéphane Beauregard




Obtain the package from:
http://stationqg.github.io/Liquid

Microsoft’s quantum computing group:
http://research.microsoft.com/groups/quarc/
http://research.microsoft.com/en-us/labs/stationq/

== Microsoft martinro@microsoft.com



