Porting Emacs to
Chromebooks

and the Web

Pete Williamson
Google Chrome team

__1
Jan 31, 2015

Why?

Background - what is NaCl?

How the emacs build works

Debugging emacs once we got it compiling
How we debugged lisp inside emacs.
Interesting parts of the port

Demo

What's left to do

Questions

CONoOOR~®N =

Why do this? (part 2)

Q /= \wm
€« CHN

HEE
https://chrome.google.com = O
M a w - L] [-

«

NaCl Development Environment

Fokdok - (5)

elc)

OVERVIEW REVIEWS SUPPORT RELATED

Q, Elements Network Sources Timeline Profiles Resources Audits Console | NaCl Debugger

In-browser developm:
Native Client Modules

t environment
for Native Client

chrome-extension://pkidpnnapnfgjhfhkpmjpbckkbaodidb/tts_service.nmf (setup)

Kill | | Attach... | id: 32, pid: 14504, port: 0

Setup GDB Manually..

h (United States)
Action on fault Action on start GDB modules
® attach ' terminate

® run attach visible

What is NaCl?

Chrome

C/C++ NaCl Compiler Sandboxed

(GCC-based)

compiled.nexe Machine
Instructions

Source Files

What is a chrome web app?

Chrome Web Store

g~ chrome web store

Extensions

Themes

Chrome Apps

Pixsta

A beautiful Instagram app

Runs Offline =

By Google 7_ ﬁ;(’]view
Free | Free

Available for Android 2 \ @ b < Requirements
= Management Tool

Chromebook Recovery Utility o

Lucidpress Layout and Design Chromebook Recovery Utility ReqView Desktop
ook (249 FREE Fokok

mmmm Conole!

Emacs composition
5 |

Many elisp

a sea of elisp functions functions are
exposed to all
other elisp code
and minibuffer

C core

A maze of twisty makefiles, all different.

NaCl shell Download
build script and patch

configure

top level
makefile

makefile makefile makefiles

.
C source lisp source [Aux binary

Build
chrome

app
package

How the Emacs build works

emacs

source \ . use temacs.nexe
from FSF Sz

: to generate some
configure temacs.nexe l

elisp

nacl.patch
file

dump temacs compile aux binaries: use emacs. make
and elisp to get etags, blessmail, nexe to build packaged
emacs.nexe profile, docs app (.crx)

Upload to
Chrome Web
Store

Emacs compaction

o [Te[=]e o] [oe [=]e [«

Challenges

- 1
1. Learning how to use use the NaCl toolchain
2. Figuring out how to share my work
3. Not all glibc methods are implemented

4. Bugs in emacs itself that show when porting. (infinite
recursion)

5. Bugs in emacs makefiles that show when porting.
(inconsistent use of file extensions)

6. Heavy use of makefile advanced features.

NaCl options

- 1
Two main libraries to choose from: newlib and glibc.

glibc is more faithful to the glib interface (and thus a
good fit for emacs), but is x86 only (good for the pixel).

newlib lets you use pNaCl to run on arm based
chromebooks like my Samsung.

NaCl options part 2

pNaCl (pronounced Pinnacle, not Pinochle) - portable
NaCl allows you to run on both intel and arm systems
with a single binary (It’s interpreted). You must use
newlib instead of glibc to compile for pNaCl.

The coolness that is NaClPorts

https://code.google.com/p/naclports/wiki/HowTo_Checkout

Q /- \wm

€« - C &) https://code.google.com = =
=l DY : [-

petewil@google.com ¥ | My favorites ¥ | Profile | Sign out

.‘: naclports

Ports of open-source projects to Native Client Search projects
Project Home Wiki Issues Source

Summary People

Project Information Native Client provides a cross-platform POSIX like environment. A range of projects from zlib to python to SDL have been ported to run under

NaCl. This project captures any NaCl specific build process and patches required to compile these project in one place, allowing them to be

Starred by 185 users gradually up-streamed.

Project feeds

Code license A list of all currently available is published here.

New BSD License Important: In order to build anything in naclports, you must have NACL_SDK_ROOT defined in your shell environment. Please see the

Labels README.ixt file for more details.

Note to Windows developers: You must use Cygwin to build anything in naclports. From a Cygwin shell, use gmake to build the Native Client
executables.
4% Members
bradnelson@google.com, To try some of these ports in Chrome you can browse directly the products of the continuous builder. You will need to have either NaCl or PNaCl
S...@google.com, enabled to run the these examples. For example, try a build of Lua 5.2 for PNacCl.
sbec@google.com,
bi...@google.com
9 committers

Links

External links

Native Client Developer Docs
buildbot

continuous builds

https://code.google.com/p/naclports/wiki/HowTo_Checkout
https://code.google.com/p/naclports/wiki/HowTo_Checkout

Some existing NaCIlPorts projects

bash, binutils, bzip2, coreutils, curl, dosbox, gcc, gdb,
git, glib, gmock, grep, librar and tar, make, nano, curses,
openssl, python, ruby, sqlite, subversion, 200+ more.

Debugging emacs

1. You can in fact use GDB with NaCl. It is very helpful
when debugging c code. However, it doesn'’t help
much when debugging elisp.

2. Printf debugging was most useful when debugging
elisp, statements show up in the *Messages™ buffer,
or in the command shell before emacs gets its text
mode window up.

3. Lisp Object and whatis ()

How to spell printf

In the C code “printf(...)", or
“fprintf (stdout, ..)”
In the Lisp code
(message “format string %$s” string-to-print)

In C code, it prints to the terminal window before Lisp starts. Lisp code
prints to the *Messages* buffer after emacs starts.

C also has a “message” function, presumably it prints to the *Messages*
buffer, if it exists.

Sample call stack 1

#0 gobble_input ()

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/keyboard.c:6739
#1 0x00000000011d46¢0 in get_input_pending (flags=3)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/keyboard.c:6686
#2 0x00000000011dfce0 in Finput_pending_p ()

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/keyboard.c:10351
#3 0x00000000012c3320 in Ffuncall (nargs=1, args=0xfeb3cc54)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2775
#4 0x000000000133a8e0 in exec_byte_code (bytestr=-27094943,

vector=-444821131, maxdepth=16, args_template=268786018, nargs=0, args=0x0)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/bytecode.c:900
#5 0x00000000012c4420 in funcall_lambda (fun=-468020195, nargs=0,
arg_vector=0xe57c9175)
at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:3010
#6 0x00000000012c3780 in Ffuncall (nargs=1, args=0xfeb3cf34)
at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2827
#7 0x000000000133a8e0 in exec_byte_code (bytestr=-27167479,
vector=-459559739, maxdepth=12, args_template=268786018, nargs=0, args=0x0)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/bytecode.c:900

Sample call stack 2

#8 0x00000000012c4420 in funcall_lambda (fun=-445898659, nargs=1,

arg_vector=0xe49bacc5)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:3010
#9 0x00000000012c3c00 in apply_lambda (fun=-445898659, args=-30026122)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2887
#10 0x00000000012¢15€0 in eval_sub (form=-30026066)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2188
#11 0x0000000001308240 in readevalloop (readcharfun=-476402355, stream=0x0,

sourcename=-27607711, printflag=false, unibyte=268786018,

readfun=268786018, start=268786018, end=268786018)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/lread.c: 1843
#12 0x0000000001308780 in Feval_buffer (buffer=-476402355,

printflag=268786018, filename=-466144087, unibyte=268786018,

do_allow_print=268786042)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/lread.c: 1904
#13 0x00000000012¢3520 in Ffuncall (nargs=6, args=0xfeb3d494)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2794

Sample call stack 3

#14 0x000000000133a8€0 in exec_byte_code (bytestr=285743225, vector=285743245,
maxdepth=24, args_template=268786018, nargs=0, args=0x0)
at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/bytecode.c:900
#15 0x00000000012c4420 in funcall_lambda (fun=285743157, nargs=4,
arg_vector=0x1108188d <pure+101677>)
at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:3010
#16 0x00000000012c3780 in Ffuncall (nargs=>5, args=0xfeb3d790)
at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2827
#17 0x00000000012¢2¢20 in call4 (fn=-466673990, arg1=-466144087,
arg2=-466144087, arg3=268786042, arg4=268786042)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/eval.c:2621
#18 0x0000000001305b40 in Fload (file=-466246191, noerror=268786042,

nomessage=268786042, nosuffix=268786018, must_suffix=268786018)

at /usr/local/google/work/naclports2/src/out/build/emacs/emacs-24.3/src/lread.c: 1256
#19 0x00000000012c3520 in Ffuncall (nargs=4, args=0xfeb3da60)

---Type <return> to continue, or q <return> to quit---

And it goes up to 55 frames total....

Lisp_Object - the data structin c

3 type

| 61 data bits | bits l

type 0 -> int0 (payload is the int)

type 1 -> string (payload is a pointer, low 3 bits are all 0)

type 2 -> symbol (payload is a symbol, we can lookup the name)

type 3-> misc

type 4 -> int1

type 5 -> vectorlike

type 6 -> cons cell (also known as a list) (payload is a pointer, low 3 bits are all 0)
type 7 -> float (payload is a floating point number)

Predefined constants for true (Qt) and false (Qnil)

Whatis debug helper

/I Print a human readable type for a Lisp object to the debug console.

}

char debug_print_buf[81]; else if (Qnil == object)

char* whatis(Lisp_Object object) {
debug_print_buf[0] ="\0";
debug_print_buf[80] = "\0";

return "It's a lisp null";
else if (Qt == object)
return "It's a lisp 't";
else if (SYMBOLP(object)) {

if (STRINGP(object)) { snprintf(debug_print_buf, 80, "Symbol named %s", SYMBOL_NAME(object));

snprintf(debug_print_buf, 80, "String %s", SSDATA(object)); return debug_print_buf:

}
else if (CONSP(object))

return debug_print_buf;
}
else if INTEGERP(object)) {
int x = XINT(object);
snprintf(debug_print_buf, 80, "Number %d", x);

return "It's a list!";
else if (MISCP(object))
return "It's a lisp misc!";

return debug_print_buf; else if (VECTORLIKEP(object))

}
else if (FLOATP(object)) {
struct Lisp_Float* floater = XFLOAT (object);

return "It's some kind of vector like thingie!";
else

return "l don't know what it is.";
return "It's a float number!";

Things | had to fix

- 1
1. Get NaCl team to implement mkdir function in glibc

2. sel_|dr is not done, so fix “is file writeable” functions to
just return “true”

3. Fix infinite recursion when passing
directory

4. Makefile.in using {EXEEXT} consistently

(13 H

.” as the current

Things | had to fix part 2

5. Comment out the chinese dictionary, it runs out of
memory when compiling the elisp (maybe a memory fix
also needed)

6. Turn off blessmail which didn’t build.

7. Turn off FIONREAD and SIGIO

8. Use system malloc instead of builtin.

9. ~user/.emacs not supported, ~/.emacs is.

Handling lack of file properties

DEFUN ("file-executable-p", Ffile executable p, Sfile executable p, 1, 1, O,
doc: /* Return t if FILENAME can be executed by you.
For a directory, this means you can access files in that directory. */)

(Lisp_Object filename)

Lisp Object absname;

Lisp Object handler;

return Qt;

// code that actually detects if the file is executable by checking properties.

lisp/files.el - file-truename

;; If this file directly leads to a link, process that iteratively ;; Get the truename of the directory

.. '
;; so that we don't use lots of stack. (setq dirfile (directory-file-name dir))

(while (not done) ;; If these are equal, we have the (or a) root directory.

(setcar counter (l1- (car counter))) (or (string= dir dirfile)

(if (< (car counter) 0) (and (memg system-type ' (windows-nt ms-dos cygwin))
(eq (compare-strings dir 0 nil dirfile 0 nil t) t))
(setq done t)) ;; If this is the same dir we last got the truename for,

i time--don't lculate.
(let ((handler (find-file-name-handler filename 'file-truename))) save time-—cdon't recatculate

)) (if (assoc dir (car prev-dirs))
;; For file name that has a special handler, call handler.

- : . . (setq dir (cdr (assoc dir (car prev-dirs))))
;; This is so that ange-ftp can save time by doing a no-op.

;; Otherwise, we don't have a cached dir, check for . and

(if handler

. P .
(setq filename (funcall handler 'file-truename filename) :; then recurse we don't have . or

done t) (if (not (or (equal ".." (file-name-nondirectory

(let ((dir (or (file-name-directory filename) default- filename))

directory)) (equal "." (file-name-nondirectory

target dirfile) filename))))
(let ((old dir)
(new (file-name-as-directory

(file-truename dirfile counter prev-
dirs))))

(setcar prev-dirs (cons (cons old new)

Makefile changes

In the top level makefile:

etags${EXEEXT}: ${srcdir}/etags.c regex.o $(config h)
$(CC) ${ALL CFLAGS} -DEMACS NAME="\"GNU Emacs\"" \

-DVERSION="\"${version}\"" ${srcdir}/etags.c \

+ regex.o $(LOADLIBES) -o etags${EXEEXT}

FIONREAD and SIGIO broken 1

In configure:

+ *-nacl)

+ opsys=nacl

case $opsys in case $opsys in

+ aix4-2 | nacl) + hpux* | irix6-5 | openbsd | sol2* | unixware | nacl)

emacs broken SIGIO=yes
emacs_cv_usable FIONREAD=no - -

FIONREAD and SIGIO broken 2

t+#felif defined USG || defined CYGWIN || defined _ native client
/* Read some input if available, but don't wait. */

n_to_read = sizeof cbuf;

+ fcntl (fileno (tty->input), F_SETFL, O_NONBLOCK) ;

NaCl Memory Layout

256MB

1GB/
4GB

Shared Libraries

- r |
Conventional NaCl
UNIX

LibA Code
LibA Code

LibA Data LibB Code

LibB Code

LibB Data LibA Data

LibB Data

u
Using system malloc, not emacs
I D ——
case "$opsys" in
darwin 1d insists on the use of malloc routines in the System framework.
darwin|sol2-10) system malloc=yes ;;

+ nacl) system malloc=yes ;;

~/.emacs, not ~user/.emacs

In startup.el:

1. (when (eq user-init-file t)
;; If we did not find ~/.emacs, try

' + ;; ~<user>/.emacs.d/init.el.

5. (let ((otherfile

6. (expand-file-name

7. "init"

8. (file-name-as-directory
11. + (concat "~" init-file-user "/.emacs.d"))))
12. + ;; NaCl cannot expand ~<user>, just use '~'

13. + (otherfile-nacl

14. + (expand-file-name

15. + "init"

16. + (file-name-as-directory "~/.emacs.d"))))
17. + (if (eq system-type 'nacl)

18. + (load otherfile-nacl t t)

19. + (load otherfile t t))

Loadup.el and messages

++4++ b/lisp/loadup.el
@@ -68,7 +68,7 @@
;3 Hash consing saved around 11% of pure space in my tests.

(setq purify-flag (make-hash-table :test 'equal :size 70000)))

+;, (message "Using load-path %s" load-path)

Using the right systime.h

Changing the entry point 1

You need a separate entry point, not “main’

// The special NaCl entry point into emacs.

extern int nacl_emacs main(int argc, char *argv[]);

int nacl main(int argc, char* argv[]) {

if (nacl_startup untar(argv[0], "emacs.tar", "/"))

return 1;

return nacl_emacs_main(argc, argv);

Changing the entry point 2

int real main (int argc, char **argv);

Replace your regular

Fifndef NACLEMACS main entry point with
int main (int argc, char **argv) .
{ nacl main.

return real main(argc, argv);

#else // NACL_EMACS
int nacl_emacs main (int argc, char **argv)
{

return real main(argc, argv);

}
#endif // NACL EMACS

Demo

x bash
File Edit Options Buffers Tools C Help

ALl L1 (C/L Abbrev)

printf(
}

All L1 (C/1L Abbrev)

Remaining work

O

O
O
O

o O

e (et everything working

Fix calling other linux utilities like ‘Is’ and ‘grep’.
Reduce load time.
Fix window drawing and resizing issues.

Debug and fix common elisp packages that don't
work.

Fix autocomplete menu drawing.

Fix background color (today it is always black).
Get X included in dev env, for emacs in a window.

More remaining work items

Find a way to mount a cloud drive such as GDrive to
chrome so we can open our .emacs file, and edit
files. (as a first step, | can use local storage for a file
system, but too limited.)

Move to newlib to get pNaCl support.

undo file property bypass when | can.

Upstream the work back to GNU/FSF

Build as a web page too, so you can run real emacs
on a web site.

Thanks to the NaCl team!

Bradley Nelson did a lot of work before
| got here setting up the NaCl port, and
fixing the makefiles to use
RUNPROGRAM to run emacs
(RUNPROGRAM lets us run a NaCl
binary on a vanilla linux machine).

Sam Clegg helped a lot, and | copied
his Vim chrome app to use for emacs.

Any questions?

[

Thanks for coming to my talk!

https.//chrome.google.com/webstore/detail/nacl-
development-
environm/aljpgkjeipgnmdpikaajmnepbctkglfa?
utm_source=chrome-ntp-icon

(it's easier to just search for “NaCl Dev” from the
Chrome Web Store)

You can install this on a desktop too, you don’t need a
chromebook.

https://chrome.google.com/webstore/detail/nacl-development-environm/aljpgkjeipgnmdpikaajmnepbcfkglfa?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/nacl-development-environm/aljpgkjeipgnmdpikaajmnepbcfkglfa?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/nacl-development-environm/aljpgkjeipgnmdpikaajmnepbcfkglfa?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/nacl-development-environm/aljpgkjeipgnmdpikaajmnepbcfkglfa?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/nacl-development-environm/aljpgkjeipgnmdpikaajmnepbcfkglfa?utm_source=chrome-ntp-icon

Getting started with NaCl

I N
link: https://developers.google.com/native-client/dev/devguide/tutorial
1. Install the NaCl SDK to .../nacl_sdk.
2. ./naclsdk update pepper_canary --force
3. Start a server to serve up the compiled files
4. See the examples subdirectory.

https://developers.google.com/native-client/dev/devguide/tutorial

Working with NaCl ports

| can work in the naclports tree with git cl upload, git diff, my normal tools, and share my work.
There is no commit queue, must use git cl land instead.

Working code ends up at

.../naclports/src/out/build/emacs/emacs-24.3/...

Update my nacl.patch file: ./bin/naclports updatepatch emacs

Anytime | update my patch file, | need to run rm -rf out/build/emacs

Backup way to update nacl.patch file: git diff upstream --no-ext-diff >nacl.patch

Build with: NACL_DEBUG=1 TOOLCHAIN=glibc DIFF= bin/naclports --force --from-source
install emacs >build.out

Run XServer manually: (in case we are not using the emacs-x package)
apt-get install server-xephyr,
Xephyr :42 -screen 1000x800

Doing a clean build: ./make_all.sh clean

Debugging a nacl port: web page

e chrome://flags - enable Native Client, enable GDB debugging, relaunch chrome
o (you need to disable gdb debugging when done)
e Build with NACL_DEBUG=1
e from naclports/src, type “make run” to start the server on port 5103
e Run the GDB deep inside pepper: nack_sdk/pepper_canary/toolchain/linux_x86_glibc/bin/x86_64-nacl-

gdb.

e Navigate to localhost:5103 in the browser, navigate down to emacs/glibc/emacs/emacs.html (or run as
app)

e Use the chrome task manager to find the port for native client module localhost:5103 (default 4014)

° Inside GDB:

o target remote :4014 // attaches to the tab running my nacl port

o nacl-manifest out/publish/emacs/glibc/emacs/emacs.nmf // tells GDB about my nacl port

o nacl-irt out/publish/emacs/glibc/emacs/emacs_x86_64.nexe // Backup way to make sure symbols.

o remote getirtirt // loads symbols for the irt, which patches into my .nexe so gdb and interpret
symbols if it is on the stack.

o nacl-irtirt // Part of loading irt symbols.

o Set a breakpoint before hitting “c” to continue to give it time to load symbols.

o Exit and re-enter GDB if | rebuild.

e At this point, we are attached in the debugger. We can set breakpoints, and hit “c” to continue when

ready.

e Note that some symbols are available, some are not. Thread locals such as “errno” are not yet available.

Debugging a NaCl port: app

chrome://flags - enable Native Client, enable GDB debugging, relaunch chrome

(o]

(you need to disable gdb debugging when done)

Build with NACL_DEBUG=1

Load the unpacked extension from /user/local/google/work/naclports2/src/out/publish/emacs/glibc/emacs

Run the GDB deep inside pepper: ../../nacl_sdk/pepper_canary/toolchain/linux_x86_glibc/bin/x86_64-nacl-gdb
Launch the app from chrome

Use the chrome task manager to find the port for native client module localhost:5103 (default 4014)

Inside GDB:

(0]
(0]
(0]

(0]
(0]
(0]

nacl-manifest out/publish/emacs/glibc/emacs/emacs.nmf // tells GDB about my nacl port

target remote :4014 // attaches to the tab running my nacl port

remote get irt irt // loads symbols for the irt, which patches into my .nexe so gdb and interpret symbols if it is on the
stack.

nacl-irt irt // Part of loading irt symbols.

Set a breakpoint before hitting “c” to continue to give it time to load symbols.

Exit and re-enter GDB if | rebuild. Also reload the unpacked extension.

“

At this point, we are attached in the debugger. We can set breakpoints, and hit “c” to continue when ready.

Note that some symbols are available, some are not. Thread locals such as “errno” are not yet available.

To rerun, close the emacs window, then re-open it and redo target remote :4014 inside gdb. No need to redo other commands.
If we rebuild emacs, need to delete it from the browser and quit GDB, then restart.

If we can’t find a breakpoint, we may have an old version of the app loaded in chrome.

