

Static Analysis

More than finding bugs

Bob Archer

What do we do?

{) coverity’

L.ook for defects in code

(in C/C++, Java and C#)

{) coverity’

A simple example — find the bug

void foo®(intx p, int 1, int j)
{
if(1 >7)
p = 03

*p =35

{) coverity’

Slightly more subtle — find the bug

void foo(intx);

void foo5(1intx p, int i, dint j)

{
if(p)
foo(p);
*p = J;
}

@) coverity*

Checker examples

* FORWARD_NULL

DEADCODE
COPY_PASTE_ERROR
LOCK_INVERSION

RESOURCE_ LEAK
NESTING_INDENT_MISMATCH

{) coverity’

DEADCODE

void deadcode(int 1)

1
if(i l=10 || 9 t=12) {
return;
¥
++1 3§
}

@) coverity’

DEADCODE

void deadcode(int 1)

!
if(i !'=10 || i !'=12) {
return;
} The condition is always true
++1 3§
}

{) coverity’

COPY_PASTE_ERROR

struct S {
int x, y;

s

void copyPasteError(bool b, int z) {
S s1;
sl.x
sl.y

03
03

if(b)

sl.x = sl.x + z;
if(b)

sl.y = sl.x + z;

@) coverity*

COPY_PASTE_ERROR

struct S {
int x, y;

s

void copyPasteError(bool b, int z) {
S s1;
sl.x
sl.y

03
03

if(b)

sl.x = sl.x + z;
if(b)

sl.y = sl.x + z;

@) coverity*

LOCK_INVERSION

int a, b;

void testl_ok() {
_spin_lock(&a);
_spin_lock(&b);

}

void testl_good() {
_spin_lock(&a);
_spin_lock(&b);

}

void testl_bad() {
_spin_lock(&b);
_spin_lock(&a);

{) coverity’

LOCK_INVERSION

int a, b;

void testl_ok() {
_spin_lock(&a);
_spin_lock(&b);

}

void testl_good() {
_spin_lock(&a);
_spin_lock(&b);

}

void testl_bad() {
_spin_lock(&b);
_spin_lock(&a);

{) coverity’

RESOURCE_LEAK

void test2(bool b)

{
intx p;
p = malloc(10);
if (b)
free(p);
}

{) coverity’

NESTING_INDENT_MISMATCH

void nesting_indent_mismatch(int x)

{

if (x == 0)
x = foo();
bar (x) ;

@) coverity*

NESTING_INDENT_MISMATCH

void nesting_indent_mismatch(int x)

{

if (x == 0)
x = foo();
bar (x) ;

@) coverity*

Checkers

ARRAY_VS_SINGLETON
ASSERT_SIDE_EFFECT
ATOMICITY
BAD_ALLOC_ARITHMETIC
BAD_ALLOC_STRLEN
BAD_COMPARE
BAD_EQ
BAD_EQ_TYPES
BAD_FREE
BAD_OVERRIDE
BAD_SHIFT
BAD_SIZEOF
BUFFER_SIZE
CALL_SUPER

CHAR_IO
CHECKED_RETURN
CHROOT

COM.BAD_FREE

COM.BSTR.CONV
COPY_PASTE_ERROR
COPY_WITHOUT_ASSIGN
CTOR_DTOR_LEAK
DEADCODE
DELETE_ARRAY
DELETE_VOID
ENUM_AS_BOOLEAN
EVALUATION_ORDER
FORWARD_NULL
GUARDED_BY_VIOLATION
INFINITE_LOOP
INVALIDATE_ITERATOR
LOCK

LOCK_INVERSION
MISRA_CAST
MISSING_BREAK

MISSING_LOCK

MISSING_RETURN
NEGATIVE_RETURNS
NO_EFFECT
NULL_RETURNS
OPEN_ARGS
ORDER_REVERSAL
OVERRUN
PARSE_ERROR
PASS BY VALUE
READLINK
RESOURCE_LEAK
RETURN_LOCAL
REVERSE_INULL
REVERSE_NEGATIVE
SECURE_CODING
SECURE_TEMP
SELF_ASSIGN

SIGN_EXTENSION

SIZEOF_MISMATCH USER_POINTER

SLEEP VARARGS
STACK_USE VOLATILE_ATOMICITY
STRAY_SEMICOLON WRAPPER_ESCAPE
STREAM_FORMAT_STATE

STRING_NULL

STRING_OVERFLOW

STRING_SIZE

SWAPPED_ARGUMENTS

TAINTED_SCALAR

TAINTED_STRING

TOCTOU

UNCAUGHT_EXCEPT

UNINIT

UNINIT_CTOR

UNREACHABLE

UNUSED_VALUE

USE_AFTER_FREE

{) cover

ity”

A talk in three parts

Technical
(how do we find defects?)

Philosophical
(what is a defect anyway?)

Psychological

(how do we persuade a programmer that there really is a
defect?)

{) coverity’

Technical

How do we find defects?

{) coverity’

What is static analysis?

{) coverity’

What is static analysis?

Looking for defects without
running the code

(we analyze the code itself, not the
execution of that code)

{) coverity’

What is static analysis?

Analysis of all paths (in theory)

(not just those encountered during
execution of a test suite)

{) coverity’

Problems

Complete analysis = Halting problem

{) coverity’

Problems

Complete analysis = Halting problem

Huge state space

{) coverity’

Problems

Complete analysis = Halting problem
Huge state space

Combinatorial explosion

{) coverity’

Solution

Abstract Interpretation

{) coverity’

Solution

Abstract Interpretation

(simplify, simplify, simplify)

{) coverity’

New problems

What do we simplify?
How do we simplify it?

How much do we simplify it?

{) coverity’

The bane of our existence

Coverity does not Coverity reports bug
report bug

Bug exists in code

Bug does not exist in
code

@) coverity*

Overall picture

{) coverity’

Build capture & emit

Coverity
Connect

(webapp)

Commit

defects

{) coverity’

Build capture

* Wrap the user’s build
* Files
* Order
* Command line options

e Compiler used

* Just building is a hard problem

{) coverity’

Emit

* Our own compiler front end
 Produces an AST + other data we want

{) coverity’

Other data?

 Indentation information

* Unnecessary casts that are (usually) thrown away by Mono
front end

* The complete list of every file that was compiled along with
all of the options used so that we don’t have to run the
build system again.

{) coverity’

Analysis

Coverity

Connect
(webapp)

Build capture

Emit DB

Defects

Commit
defects

@) coverity*

Analysis

Look for known defect patterns in the
AST

Report them

{) coverity’

Intraprocedural / interprocedural

 Intraprocedural
* No (or limited) knowledge of other functions
* Poor for data sensitive checkers

e Usually simple & fast

* Interprocedural
* Knows a lot about other functions
* Good for tracking data flow between functions

* Abstract interpretation — create simplified models of other
functions

* Complex, slow, necessary

{) coverity’

Flow insensitive / flow sensitive

* Flow insensitive
* Things that are always true
* Mostly intraprocedural

* High certainty — makes few assumptions

 Flow sensitive

Things that are conditionally true

Tracks the evolution of (simplified) state

Intraprocedural or interprocedural

Less certainty — relies on abstractions

{) coverity’

Flow sensitive analysis

* Loops are a problem
e Continue until nothing more to be learned
* Trade off between speed and analysis fidelity

{) coverity’

False path pruning

void f(int x) {

int y;
if (x)
y = 1; /* A %/
else
y =25 /*x B %/
[* C */
if (x)
++y 3 /* D %/
else

--ys /x E %/

{) coverity’

False path pruning

void f(int x) {

int y;

if (x)
y:

else

y

if (x)
Tty
else

Y5

1; /*x A */

2; /* B */
[* C x/

/* D x/

/* E x/

Feasible:
A -C-0D
B - C-E
Infeasible
A -C-E
B -C-D

{) coverity’

Is there a defect here?

char foo(int fd)

{
char buf;
lseek(fd, 0, SEEK_SET);
read(fd, &buf, /*nbytex/ 1);
return buf;

}

{) coverity’

Is there a defect here?

char foo(int fd)

{
char buf;
lseek(fd, 0, SEEK_SET);
read(fd, &buf, /*nbytex/ 1);
return buf;

}

{) coverity’

Is there a defect here?

char foo(int fd)

{
char buf;
lseek(fd, 0, SEEK_SET);
read(fd, &buf, /*nbytex/ 1);
return buf;

}

Iseek is called 10 times in the code. Its return value is
checked in the other 9 places.

{) coverity’

Statistical checkers

* Look for consistency

* Return value of Iseek checked 9 times out of 10 — probable
error

{) coverity’

Commit

Build capture

Connect DB

Defects

@) coverity*

Commit

* Adds defects to the database

{) coverity’

Commit

* Adds defects to the database

 Remember that we’re not just doing this once.

* The code might undergo many revisions and have analysis re-run
each time

* Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

{) coverity’

Commit

* Adds defects to the database
 Remember that we’re not just doing this once.

* The code might undergo many revisions and have analysis re-run
each time

* Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

* Cross reference information

{) coverity’

Commit

Adds defects to the database
 Remember that we’re not just doing this once.

* The code might undergo many revisions and have analysis re-run
each time

* Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

* Cross reference information
 This is where our customers view the defects

{) coverity’

Managing defects

* Prioritize
* Categorize
* Annotate
* Assign

* Integrate with bug tracking systems, lifecycle management
systems etc.

* Search by time, file, component, severity etc.
e Set a baseline (no new defects)

{) coverity’

Philosophical

What is a defect anyway?

{) coverity’

Quiz time — what is a defect?

{) coverity’

Quiz time — what is a defect?

e Acrash

* Fragile code — unstable under modification

* Doesn’t match the specification

* Doesn’t match the programmer’s intent

* Inconsistent

* Confusing

* Doesn’t obey the house style

* Makes the customer say “What?”

* Something the customer wants to know about
e Inefficient (slow)

e Inefficient (wasteful of some finite resource)

* Security vulnerability

* Non-conformant with an external standard/constraint, such as MISRA

{) coverity’

What is a defect?

void fool(
intx p,
int 1,
int j)
{
if(p)
foo(p);
P =35
}

{) coverity’

What is a defect?

void fool(

intx p,
int 1,
int j)

if(p)
foo(p);

*p = 33

void foola(

intx p,

int 1,

int j)
{

*p = 73
}

{) coverity’

What is the defect here?

void fool(Is the defect:
intx p,
int 1, 1. That the pointer was
int j) dereferenced without a
NULL check?
t . 2. That foo1 checked for a
if(p) NULL pointer even though
foo(p); it will never be passed a
NULL pointer?
i = e 3. That the code is
P =135 inconsistent?
¥

{) coverity’

Programmer’s intent?

void nesting_indent_mismatch(int x)

{

if (x == 0)
x = foo();
bar (x) ;

@) coverity*

Programmer’s intent?

std::string display = foo();

if(condition) {
display = bar();

¥
else {

display = baz();
}

write(display);

{) coverity’

What does Coverity think of as a

defect?
e Acrash
el ; b ; Lifients

* Doesn’t match the programmer’s intent

* Inconsistent

* Confusing (sort of)

2~ Boesatobethe-souse-stele

e Makes the customer say “What?”

* Something the customer wants to know about

e Inefficient (slow)

e Inefficient (wasteful of some finite resource)

e Security vulnerability

* Non-conformant with an external standard/constraint, such as MISRA

@) coverity*

Psychological

Persuasion

@) coverity*

How many people like being told
they’re wrong?

{) coverity’

How many people like being told
they’re wrong?

The egoless programmer

Jerry Weinberg - The Psychology of Computer
Programming

@) coverity*

Reporting the problem isn’t enough

Show the evidence

(and even then they might not believe you)

{) coverity’

Bane of our existence #1

Coverity does not Coverity reports bug
report bug

Bug exists in code

Bug does not exist in
code

{) coverity’

Bane of our existence #1

Coverity does not Coverity reports bug
report bug

Bug exists in code

Bug does not exist in

code
Too many false negatives - our product 1s ineffective
Too many false positives - loss of confidence

{) coverity’

Bane of our existence #2 - churn

{) coverity’

Bane of our existence #2 - churn

Changes in our results
between versions

{) coverity’

Bane of our existence #2 - churn

* Good churn
* increase true positive / true negative

* decrease false positive / false negative

* Bad churn
* decrease true positive / true negative

* increase false positive / false negative

{) coverity’

Bane of our existence #2 - churn

* Good churn
* increase true positive / true negative

* decrease false positive / false negative

* Bad churn
* decrease true positive / true negative

* increase false positive / false negative

Even good churn can be a
problem

{) coverity’

What managers want to see

defects

time

{) coverity’

What managers actually see

defects # defects New Coverity release

.

time time

{) coverity’

Bane of our existence #2 - churn

* Managers hate seeing the graph go up

* Can result in customers not upgrading our product (if we
can’t see the defect it isn’t there)

{) coverity’

Summary

* Technical - problems are formidable
* Philosophical - defining the problem is tricky

* Psychological - people are always the most complex part of
any system

{) coverity’

Thanks

* My Coverity colleagues including:
* Roger Scott
* Peter Henriksen

* Peter Dillinger

A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World

{) coverity’

@) coverity

Copyright 2013 Coverity, Inc.

{) coverity’

