

Static Analysis
More than finding bugs

Bob Archer

What do we do?

Look for defects in code

(in C/C++, Java and C#)

A simple example – find the bug

void foo0(int* p, int i, int j)

{

 if(i > 7)

 p = 0;

 *p = j;

}

Slightly more subtle – find the bug

void foo(int*);

void foo5(int* p, int i, int j)

{

 if(p)

 foo(p);

 *p = j;

}

Checker examples

• FORWARD_NULL

• DEADCODE

• COPY_PASTE_ERROR

• LOCK_INVERSION

• RESOURCE_LEAK

• NESTING_INDENT_MISMATCH

DEADCODE

void deadcode(int i)

{

 if(i != 10 || i != 12) {

 return;

 }

 ++i;

}

DEADCODE

void deadcode(int i)

{

 if(i != 10 || i != 12) {

 return;

 }

 ++i;

}

The condition is always true

COPY_PASTE_ERROR

struct S {

 int x, y;

};

void copyPasteError(bool b, int z) {

 S s1;

 s1.x = 0;

 s1.y = 0;

 if(b)

 s1.x = s1.x + z;

 if(b)

 s1.y = s1.x + z;

}

COPY_PASTE_ERROR

struct S {

 int x, y;

};

void copyPasteError(bool b, int z) {

 S s1;

 s1.x = 0;

 s1.y = 0;

 if(b)

 s1.x = s1.x + z;

 if(b)

 s1.y = s1.x + z;

}

LOCK_INVERSION

int a, b;

void test1_ok() {

 _spin_lock(&a);

 _spin_lock(&b);

}

void test1_good() {

 _spin_lock(&a);

 _spin_lock(&b);

}

void test1_bad() {

 _spin_lock(&b);

 _spin_lock(&a);

}

LOCK_INVERSION

int a, b;

void test1_ok() {

 _spin_lock(&a);

 _spin_lock(&b);

}

void test1_good() {

 _spin_lock(&a);

 _spin_lock(&b);

}

void test1_bad() {

 _spin_lock(&b);

 _spin_lock(&a);

}

RESOURCE_LEAK

void test2(bool b)

{

 int* p;

 p = malloc(10);

 if (b)

 free(p);

}

NESTING_INDENT_MISMATCH

void nesting_indent_mismatch(int x)

{

 if (x == 0)

 x = foo();

 bar(x);

}

NESTING_INDENT_MISMATCH

void nesting_indent_mismatch(int x)

{

 if (x == 0)

 x = foo();

 bar(x);

}

Checkers

ARRAY_VS_SINGLETON

ASSERT_SIDE_EFFECT

ATOMICITY

BAD_ALLOC_ARITHMETIC

BAD_ALLOC_STRLEN

BAD_COMPARE

BAD_EQ

BAD_EQ_TYPES

BAD_FREE

BAD_OVERRIDE

BAD_SHIFT

BAD_SIZEOF

BUFFER_SIZE

CALL_SUPER

CHAR_IO

CHECKED_RETURN

CHROOT

COM.BAD_FREE

COM.BSTR.CONV

COPY_PASTE_ERROR

COPY_WITHOUT_ASSIGN

CTOR_DTOR_LEAK

DEADCODE

DELETE_ARRAY

DELETE_VOID

ENUM_AS_BOOLEAN

EVALUATION_ORDER

FORWARD_NULL

GUARDED_BY_VIOLATION

INFINITE_LOOP

INVALIDATE_ITERATOR

LOCK

LOCK_INVERSION

MISRA_CAST

MISSING_BREAK

MISSING_LOCK

MISSING_RETURN

NEGATIVE_RETURNS

NO_EFFECT

NULL_RETURNS

OPEN_ARGS

ORDER_REVERSAL

OVERRUN

PARSE_ERROR

PASS_BY_VALUE

READLINK

RESOURCE_LEAK

RETURN_LOCAL

REVERSE_INULL

REVERSE_NEGATIVE

SECURE_CODING

SECURE_TEMP

SELF_ASSIGN

SIGN_EXTENSION

SIZEOF_MISMATCH

SLEEP

STACK_USE

STRAY_SEMICOLON

STREAM_FORMAT_STATE

STRING_NULL

STRING_OVERFLOW

STRING_SIZE

SWAPPED_ARGUMENTS

TAINTED_SCALAR

TAINTED_STRING

TOCTOU

UNCAUGHT_EXCEPT

UNINIT

UNINIT_CTOR

UNREACHABLE

UNUSED_VALUE

USE_AFTER_FREE

USER_POINTER

VARARGS

VOLATILE_ATOMICITY

WRAPPER_ESCAPE

A talk in three parts

Technical
(how do we find defects?)

Philosophical
(what is a defect anyway?)

Psychological
(how do we persuade a programmer that there really is a

defect?)

Technical

How do we find defects?

What is static analysis?

What is static analysis?

Looking for defects without

running the code

(we analyze the code itself, not the
execution of that code)

What is static analysis?

Analysis of all paths (in theory)

(not just those encountered during
execution of a test suite)

Problems

Complete analysis ≡ Halting problem

Problems

Complete analysis ≡ Halting problem

Huge state space

Problems

Complete analysis ≡ Halting problem

Huge state space

Combinatorial explosion

Solution

Abstract Interpretation

Solution

Abstract Interpretation

(simplify, simplify, simplify)

New problems

What do we simplify?

How do we simplify it?

How much do we simplify it?

The bane of our existence

Coverity does not
report bug

Coverity reports bug

Bug exists in code
False Negative True Positive

Bug does not exist in
code True Negative False Positive

Overall picture

Build capture & emit

Build capture

• Wrap the user’s build

• Files

• Order

• Command line options

• Compiler used

• Just building is a hard problem

Emit

• Our own compiler front end

• Produces an AST + other data we want

Other data?

• Indentation information

• Unnecessary casts that are (usually) thrown away by Mono
front end

• The complete list of every file that was compiled along with
all of the options used so that we don’t have to run the
build system again.

Analysis

Analysis

Look for known defect patterns in the
AST

Report them

Intraprocedural / interprocedural

• Intraprocedural

• No (or limited) knowledge of other functions

• Poor for data sensitive checkers

• Usually simple & fast

• Interprocedural

• Knows a lot about other functions

• Good for tracking data flow between functions

• Abstract interpretation – create simplified models of other
functions

• Complex, slow, necessary

Flow insensitive / flow sensitive

• Flow insensitive

• Things that are always true

• Mostly intraprocedural

• High certainty – makes few assumptions

• Flow sensitive

• Things that are conditionally true

• Tracks the evolution of (simplified) state

• Intraprocedural or interprocedural

• Less certainty – relies on abstractions

Flow sensitive analysis

• Loops are a problem

• Continue until nothing more to be learned

• Trade off between speed and analysis fidelity

False path pruning

void f(int x) {

 int y;

 if (x)

 y = 1; /* A */

 else

 y = 2; /* B */

 ... /* C */

 if (x)

 ++y; /* D */

 else

 --y; /* E */

}

False path pruning

void f(int x) {

 int y;

 if (x)

 y = 1; /* A */

 else

 y = 2; /* B */

 ... /* C */

 if (x)

 ++y; /* D */

 else

 --y; /* E */

}

Feasible:

A – C – D

B – C – E

Infeasible

A – C – E

B – C - D

Is there a defect here?

char foo(int fd)

{

 char buf;

 lseek(fd, 0, SEEK_SET);

 read(fd, &buf, /*nbyte*/ 1);

 return buf;

}

Is there a defect here?

char foo(int fd)

{

 char buf;

 lseek(fd, 0, SEEK_SET);

 read(fd, &buf, /*nbyte*/ 1);

 return buf;

}

Is there a defect here?

char foo(int fd)

{

 char buf;

 lseek(fd, 0, SEEK_SET);

 read(fd, &buf, /*nbyte*/ 1);

 return buf;

}

lseek is called 10 times in the code. Its return value is
checked in the other 9 places.

Statistical checkers

• Look for consistency

• Return value of lseek checked 9 times out of 10 – probable
error

Commit

Commit

• Adds defects to the database

Commit

• Adds defects to the database

• Remember that we’re not just doing this once.

• The code might undergo many revisions and have analysis re-run
each time

• Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

Commit

• Adds defects to the database

• Remember that we’re not just doing this once.

• The code might undergo many revisions and have analysis re-run
each time

• Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

• Cross reference information

Commit

• Adds defects to the database

• Remember that we’re not just doing this once.

• The code might undergo many revisions and have analysis re-run
each time

• Once a bug has been committed we don’t want it reported as a
separate entry. (Lose categorization information)

• Cross reference information

• This is where our customers view the defects

Managing defects

• Prioritize

• Categorize

• Annotate

• Assign

• Integrate with bug tracking systems, lifecycle management
systems etc.

• Search by time, file, component, severity etc.

• Set a baseline (no new defects)

Philosophical

What is a defect anyway?

Quiz time – what is a defect?

Quiz time – what is a defect?

• A crash

• Fragile code – unstable under modification

• Doesn’t match the specification

• Doesn’t match the programmer’s intent

• Inconsistent

• Confusing

• Doesn’t obey the house style

• Makes the customer say “What?”

• Something the customer wants to know about

• Inefficient (slow)

• Inefficient (wasteful of some finite resource)

• Security vulnerability

• Non-conformant with an external standard/constraint, such as MISRA

What is a defect?

void foo1(

 int* p,

 int i,

 int j)

{

 if(p)

 foo(p);

 *p = j;

}

What is a defect?

void foo1(

 int* p,

 int i,

 int j)

{

 if(p)

 foo(p);

 *p = j;

}

void foo1a(

 int* p,

 int i,

 int j)

{

 *p = j;

}

What is the defect here?

void foo1(

 int* p,

 int i,

 int j)

{

 if(p)

 foo(p);

 *p = j;

}

Is the defect:

1. That the pointer was
dereferenced without a
NULL check?

2. That foo1 checked for a
NULL pointer even though
it will never be passed a
NULL pointer?

3. That the code is
inconsistent?

Programmer’s intent?

void nesting_indent_mismatch(int x)

{

 if (x == 0)

 x = foo();

 bar(x);

}

Programmer’s intent?

std::string display = foo();

if(condition) {

 display = bar();

}

else {

 display = baz();

}

write(display);

What does Coverity think of as a
defect?
• A crash

• Fragile code – unstable under modification

• Doesn’t match the specification

• Doesn’t match the programmer’s intent

• Inconsistent

• Confusing (sort of)

• Doesn’t obey the house style

• Makes the customer say “What?”

• Something the customer wants to know about

• Inefficient (slow)

• Inefficient (wasteful of some finite resource)

• Security vulnerability

• Non-conformant with an external standard/constraint, such as MISRA

Psychological

Persuasion

How many people like being told
they’re wrong?

How many people like being told
they’re wrong?

The egoless programmer

Jerry Weinberg - The Psychology of Computer
Programming

Reporting the problem isn’t enough

Show the evidence

(and even then they might not believe you)

Bane of our existence #1

Coverity does not
report bug

Coverity reports bug

Bug exists in code
False Negative True Positive

Bug does not exist in
code True Negative False Positive

Bane of our existence #1

Coverity does not
report bug

Coverity reports bug

Bug exists in code
False Negative True Positive

Bug does not exist in
code True Negative False Positive

Too many false negatives - our product is ineffective

Too many false positives - loss of confidence

Bane of our existence #2 - churn

Bane of our existence #2 - churn

Changes in our results

between versions

Bane of our existence #2 - churn

• Good churn

• increase true positive / true negative

• decrease false positive / false negative

• Bad churn

• decrease true positive / true negative

• increase false positive / false negative

Bane of our existence #2 - churn

• Good churn

• increase true positive / true negative

• decrease false positive / false negative

• Bad churn

• decrease true positive / true negative

• increase false positive / false negative

Even good churn can be a
problem

What managers want to see

What managers actually see

Bane of our existence #2 - churn

• Managers hate seeing the graph go up

• Can result in customers not upgrading our product (if we
can’t see the defect it isn’t there)

Summary

• Technical - problems are formidable

• Philosophical - defining the problem is tricky

• Psychological - people are always the most complex part of
any system

Thanks

• My Coverity colleagues including:

• Roger Scott

• Peter Henriksen

• Peter Dillinger

A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World

Copyright 2013 Coverity, Inc.

