
Agile Architecture
The Why, the What and the How

© Copyright Net Objectives, Inc. All Rights Reserved 2

ASSESSMENTS
CONSULTING

TRAINING
COACHING

Product Portfolio Management
Product Management
Lean for Executives
SAFe for Executives
Scaled Agile Framework

Leading SAFe
SAFe Program Consultant

Lean Management
Project Management

Kanban / Scrum
ATDD / TDD / Design Patterns
SAFe Scrum/XP

technica

l

p o d c a s t s

process

© Copyright Net Objectives, Inc. All Rights Reserved 3

Al Shalloway
alshall@NetObjectives.com

@AlShalloway

CEO, Founder

Co-founder of Lean-Systems Society

Co-founder Lean-Kanban University

© Copyright Net Objectives, Inc. All Rights Reserved 4

What are objects?
How much time does
typing take?
If you have a choice
between A & B and
one is easy to undo &
the other isn’t, which
do you chose?

© Copyright Net Objectives, Inc. All Rights Reserved 5

is it in…
writing the new code?
integrating it into the new system?

and which is likely to be the source of
difficulties?

Why?

when adding functionality,

where’s the problem?

© Copyright Net Objectives, Inc. All Rights Reserved 6

1. Purpose of Architecture
2. Perspective Models
3. Useful Practices

Units: Agile Architecture

© Copyright Net Objectives, Inc. All Rights Reserved 7

TABLE WORK

Why have an architecture?

and, by the way, what is an
architecture?

Purpose

© Copyright Net Objectives, Inc. All Rights Reserved 8

architecture
what is architecture?
• Underlying technology
• Structure
• Layers

What can’t be changed?
What provides context for
change?

© Copyright Net Objectives, Inc. All Rights Reserved 9

architecture
when you want to
extend an architecture
for performance,
scalability or security
reasons, which causes
problems:
architecture or code
quality

© Copyright Net Objectives, Inc. All Rights Reserved 10

all with minimal risk

© Copyright Net Objectives, Inc. All Rights Reserved 11

architecture
what if…

integrating functionality wasn’t
hard?

we weren’t tied to our
system’s architecture?

we were truly object-oriented?

we could be prepared for the
unknown?

© Copyright Net Objectives, Inc. All Rights Reserved 12

Not trying to
anticipate change

Cannot prevent
change

Designing to
accommodate*
change requires
• Layered architectures
• Code clarity and

maintainability

*Change is not the problem, it’s the damage that it causes. What if it didn’t cause
damage.

© Copyright Net Objectives, Inc. All Rights Reserved 13

Classic Architecture Agile Architecture

Create a structure that
contains everything

Anticipate everything

Understand the big
picture so have a
framework to hold things

Learn what you need to
up front

Create a structure that
can change

Prepare for anything

Understand the big
picture so can evolve to
hold things

Set things up to use new
ideas as they become
apparent

© Copyright Net Objectives, Inc. All Rights Reserved 14

architecture
the real question

How do we allow for
evolutionary architecture?

there is a parallel between agile
architecture and agile discovery

© Copyright Net Objectives, Inc. All Rights Reserved 15

how?
Emergent design

Testing at Behavior and Functional levels

Behavioral testing (ATDD, BDD)

• Test perspective is from customer

Functional test

• Test perspective is from coder

Why test-first in both cases?

© Copyright Net Objectives, Inc. All Rights Reserved 16

Refactoring Bad Code Refactoring Good Code

Code "smells"

Improve Design without
changing Function.

Refactor to improve code
quality

A way to clean up code
without fear of breaking
the system

Code is "tight"

A new Requirement
means code needs to be
changed

Design needs to change
to accommodate this.

A way to make this
change without fear of
breaking the system

Types of Refactoring

© Copyright Net Objectives, Inc. All Rights Reserved 17

Refactoring Bad Code Refactoring Good Code

Code "smells"

Improve Design without
changing Function.

Refactor to improve code
quality

A way to clean up code
without fear of breaking
the system

Code is "tight"

A new Requirement
means code needs to be
changed

Design needs to change
to accommodate this.

A way to make this
change without fear of
breaking the system

Types of Refactoring

© Copyright Net Objectives, Inc. All Rights Reserved 18

Testability

Code that is difficult to unit test is often:
1. Tightly Coupled: "I cannot test this

without instantiating half the system“

2. Weakly Cohesive: "This class does so
much, the test will be enormous and
complex!“

3. Redundant: "I'll have to test this in
multiple places to ensure it works
everywhere"

© Copyright Net Objectives, Inc. All Rights Reserved 19

Testability and
Design

Considering how to test your objects
before designing them is, in fact, a kind of
design

It forces you to look at:

• the public method definitions
• what the responsibilities of the

object are

Easy testability is tightly correlated to
loose coupling and strong cohesion

© Copyright Net Objectives, Inc. All Rights Reserved 20

1. Purpose of Architecture
2. Perspective Models
3. Useful Practices

Units: Agile Architecture

© Copyright Net Objectives, Inc. All Rights Reserved 21

thinking
points

Perspective Models

1. Abstraction

2. Creation

3. Structure

• Conceptual

• Specification

• Implementation

© Copyright Net Objectives, Inc. All Rights Reserved 22

Three Perspectives of Abstraction

Conceptual
What you want
Specification
How you use it
Implementation
How it actually works

UML Distilled: A Brief Guide to the Standard Object Modeling Language, Second Edition,
by Martin Fowler, Addison-Wesley Pub Co, ISBN: 0321193687

© Copyright Net Objectives, Inc. All Rights Reserved 23

Any entity (class, method,
delegate, etc…) in a system
should operate at one of these
perspectives:

Conceptual

Specification

Implementation

Use of Perspectives

UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Second Edition, by Martin
Fowler, Addison-Wesley Pub Co, ISBN: 0321193687

© Copyright Net Objectives, Inc. All Rights Reserved 24

thinking
points

Perspective Models

1. Abstraction

2. Creation

3. Structure

• Create objects

• Use objects

© Copyright Net Objectives, Inc. All Rights Reserved 25

Principle: Separate Use From
Construction

The relationship between any entity
A and any other entity B in a system
should be limited such that

A makes B or
A uses B,
and never both.

© Copyright Net Objectives, Inc. All Rights Reserved 26

Normal Constructor C++

class ByteFilter {

 public:

 ByteFilter();

 virtual ~ByteFilter();

}

ByteFilter::ByteFilter () {

 // do any constructor behavior here

}

 // the rest of the class follows

void main {

 ByteFilter *myByteFilter;

 // . . .

 myByteFilter = new ByteFilter();

 // . . .

}

© Copyright Net Objectives, Inc. All Rights Reserved 27

Encapsulating the Constructor C++

class ByteFilter {

 public:

 static ByteFilter* getInstance();

 protected:

 ByteFilter();

 virtual ~ByteFilter();

}

ByteFilter::ByteFilter () {

 // do any constructor behavior here

}

ByteFilter* ByteFilter::getInstance() {

 return new ByteFilter();

 }

Void ByteFilter::returnInstance(ByteFilter *bf2Delete) {

 delete bf2Delete;

}

 // the rest of the class follows

void main {

 ByteFilter *myByteFilter;

 // . . .

 myByteFilter = ByteFilter::getInstance();

 // . . .

}

© Copyright Net Objectives, Inc. All Rights Reserved 28

Accommodating Change:
Complexity

class ByteFilter { // this is an abstract class.

 public:

 static ByteFilter* getInstance();

 protected:

 ByteFilter();

};

ByteFilter* ByteFilter::getInstance() {

 if (someDecisionLogic()) {

 return new HiPassFilter();

 } else {

 return new LoPassFilter();

} }

//Note: both HiPassFilter and LoPassFilter derive from ByteFilter

// but implement the filtering differently

void main () {

 ByteFilter *myByteFilter;

 // . . .

 myByteFilter = ByteFilter::getInstance();

 // . . .

}

No Change!

C++

© Copyright Net Objectives, Inc. All Rights Reserved 29

In C++, Objects on the Stack

ByteFilter myByteFilter;

// .

// . Object gets used

// .

// Object falls out of scope, memory is cleaned up

ByteFilter* myByteFilter = ByteFilter::getInstance();

// .

// . Object gets used

// .

ByteFilter::returnInstance(myByteFilter);

C++

Instead of this…

…we prefer this – “Encapsulating Destruction”

© Copyright Net Objectives, Inc. All Rights Reserved 30

Using Smart Pointers

auto_ptr<ByteFilter> myByteFilter = ByteFilter::getInstance();
// .

// . Object gets used, exception-safety ensured

// .

C++

© Copyright Net Objectives, Inc. All Rights Reserved 31

thinking
points

Perspective Models

1. Abstraction

2. Creation

3. Structure

• Architecture

• Application

© Copyright Net Objectives, Inc. All Rights Reserved 32

architecture
is layered

One layer should not
know about another

© Copyright Net Objectives, Inc. All Rights Reserved 33

1. Purpose of Architecture
2. Perspective Models
3. Useful Practices

Units: Agile Architecture

© Copyright Net Objectives, Inc. All Rights Reserved 34

thinking
points

Useful Practices

1. Understand objects

2. Simplify adding new
functionality

3. Simplify Interfaces

4. Design for the
Unknown

5. Avoid redundancy

• Objects are not data with
methods

• Objects are manifestations
of concepts or behavior

© Copyright Net Objectives, Inc. All Rights Reserved 35

thinking
points

Useful Practices

1. Understand objects

2. Simplify adding new
functionality

3. Simplify Interfaces

4. Design for the
Unknown

5. Avoid redundancy

• Use dependency injection

• Separate use from
construction

© Copyright Net Objectives, Inc. All Rights Reserved 36

The Problem

We are writing a web-enabled
sales order system

A customer signs in and fills out
the order

© Copyright Net Objectives, Inc. All Rights Reserved 37

Initial Solution

Have TaskController instantiate
SalesOrder that handles filling out the
sales order, etc.

TaskController

SalesOrder

© Copyright Net Objectives, Inc. All Rights Reserved 38

As soon as we get new variations in
tax we have to modify the
SalesOrder object

Where should we add the new
responsibility if taxation begins to
vary?

The Challenge

© Copyright Net Objectives, Inc. All Rights Reserved 39

New Requirement

One Solution

method calcTax

 // use switch on type of tax rule to be used
 // TYPE US:
 // calc tax based on US rules
 // break
 // TYPE CANADIAN:
 // calc tax based on Canadian rules
 // break

Multiple Tax Domains
Eventually need to handle different tax rules

• US Tax
• Canadian Tax

© Copyright Net Objectives, Inc. All Rights Reserved 40

z

Direct Inheritance for Specialization
We can solve this problem by specializing
our first SalesOrder object to handle the
new tax rules

new (overriden) calcTax
that does Canadian tax

TaskController

SalesOrder

+ calcTax()

CanadianSalesOrder

+ calcTax()

original calcTax that
does US tax

© Copyright Net Objectives, Inc. All Rights Reserved 41

Abstract Inheritance for Specialization

SalesOrder

+ calcTax()

CanadianSalesOrder

+ calcTax()

USSalesOrder

+ calcTax()

This is a bit better…

© Copyright Net Objectives, Inc. All Rights Reserved 42

May Lead to Maintenance Problems
If we get new variations, where do we put them?

We either start using lots of switches (which makes the code difficult to
understand), or we start over-specializing (which still makes things difficult)

What if we need to switch tax algorithms at runtime?

SalesOrder

+ calcTax()

CanadianSalesOrder

+ calcTax()

USSalesOrder

+ calcTax()

EnglishCanadianSO

+ language()

FrenchCanadianSO

language()

© Copyright Net Objectives, Inc. All Rights Reserved 43

Define a class that encapsulates variation,

contain (via delegation) an instance of a concrete class derived from
the abstract class defined earlier

Proper Use of Inheritance

Chip

1. Decoupling of concepts

2. Deferring decisions until runtime

3. Small performance hit

Chip_64e Chip_128e

Encryption

64e 128e

Chip

Class Inheritance to Specialize Class Inheritance to Categorize

© Copyright Net Objectives, Inc. All Rights Reserved 44

Dependency Injection

USTax CanTax

TaskController

CalcTax

+ taxAmount(itemSold : Salable, qty : double, price : double) : double

SalesOrder

© Copyright Net Objectives, Inc. All Rights Reserved 45

thinking
points

Useful Practices

1. Understand objects

2. Simplify adding new
functionality

3. Simplify Interfaces

4. Design for the
Unknown

5. Avoid redundancy

• Use Dependency
Inversion Principle

© Copyright Net Objectives, Inc. All Rights Reserved 46

Dependency Inversion Principle

High level modules should not depend on
low-level modules. Both should depend on
abstractions.

Abstractions should not depend on details.
Details should depend on abstractions.

 “The modules that contain the high-level
business rules should take precedence over,
and be independent of, the modules that
contain the implementation details.”

Agile Software Development: Principles, Practices and Patterns Bob Martin, pg 127.

© Copyright Net Objectives, Inc. All Rights Reserved 47

thinking
points

Useful Practices

1. Understand objects

2. Simplify adding new
functionality

3. Simplify Interfaces

4. Design for the
Unknown

5. Avoid redundancy

• Scott’s Magic Card

• Encapsulate that!

© Copyright Net Objectives, Inc. All Rights Reserved 48

Multiple processors in a real-time
environment

There will be a performance problem…
just don’t know where / how

The Situation

© Copyright Net Objectives, Inc. All Rights Reserved 49

Figure out where / how the performance
problem will show up

Just use what appears best at first and fix it
later if it becomes clear later that we need
something else

Use Scott Bain’s magic consultant card

The Options

~3

© Copyright Net Objectives, Inc. All Rights Reserved 50

How would I design
if I knew that
no matter what I did
it would be wrong?

© Copyright Net Objectives, Inc. All Rights Reserved 51

The Magic Consultant Card

~3

© Copyright Net Objectives, Inc. All Rights Reserved 52

The Magic Consultant Card

~3

© Copyright Net Objectives, Inc. All Rights Reserved 53

"Encapsulate
That"

The Magic Consultant Card

~3

© Copyright Net Objectives, Inc. All Rights Reserved 54

The Magic Consultant Card

~3

This is where design patterns come in.
In many cases a pattern exists to help you
see how to solve your problem.

The Good News
The magic card is always right!

The Bad News
It doesn’t tell you how to do what it tells
you to do!

© Copyright Net Objectives, Inc. All Rights Reserved 55

Behavior Strategy Bridge
Template
Method

Null Object

Sequence Decorator
Chain of
Responsibility

Template
Method

Workflow
Template
Method

Visitor Bridge Null Object

Cardinality Decorator
Chain of
Responsibility

Proxy Observer Composite

Construction Singleton
Abstract
Factory

Builder
Factory
Method

Prototype

Selection
Chain of
Responsibility

Structure Composite
Template
Method

Entity Facade Adapter Proxy

Relationships Observer Command Mediator Visitor

Dependencies Mock Object

The Net Objectives Patterns Repository

http://www.netobjectivestest.com/PatternRepository/index.php?title=Main_Page

© Copyright Net Objectives, Inc. All Rights Reserved 56

thinking
points

Useful Practices

1. Understand objects

2. Simplify adding new
functionality

3. Simplify Interfaces

4. Design for the
Unknown

5. Avoid redundancy

• Avoiding redundancy is
impossible

• We can manage it

• Shalloway’s Principle

© Copyright Net Objectives, Inc. All Rights Reserved 57

Shalloway’s Law

If ‘N’ things need to
change and ‘N>1’,
Shalloway will find at
most ‘N-1’ of these things

© Copyright Net Objectives, Inc. All Rights Reserved 58

Shalloway’s Principle

Avoid situations where
Shalloway’s Law Applies

review

© Copyright Net Objectives, Inc. All Rights Reserved 59

Summary

Design for change

Use models of perspective
• Abstraction
• Creation
• Structure

Use good practices
• Dependency injection
• Model the unknown
• Shalloway’s Law

You’ve still gotta think!

© Copyright Net Objectives, Inc. All Rights Reserved 60

Webinars
May 28 The Challenges of Team-Based or Evolutionary
Based Methods In Achieving Agile at Scale

Questions
email: alshall@NetObjectives.com

twitter: @alshalloway

