

Component Programming in
The D Programming Language

by Walter Bright

Reusable Software

● an axiom
● we all buy into it
● we all try to write reusable software

The Reality

● 35 years of programming, and very little
reusable code

● copy/pasta doesn't count
● I've missed the boat somewhere
● Other programmers often feel the same way

Something Went Wrong

● It's not for lack of trying
● It's not because I'm a better programmer now

than I was, prefering to write it better now
● I need to look deeper

A Troubling Look

● My abstractions are leaky
● and the dependencies leak out into the rest of the

code

● The components are too specific
● they work for type T, but not for type U

● Need to reset back to first principles

What is a Component?

● more than just reusable software
● there are lots of libraries of reusable code, but

these aren't really components

● a component follows a predefined interface
● so components can be swapped, added, and

composed, even though they are developed
independently

● most libraries roll their own interfaces
● require scaffolding to connect to other libraries

What would a general component
interface be?

● read input
● process that input
● write output

Even if a program doesn't fit that
model, it is usually composed of

subsystems that do

source => algorithm => sink

or, composing:

source => algorithm1 => algorithm2 => sink

In Pseudo-Code

Where Have We Seen That Before?

The Unix “files and filters” command line model

Files and Filters

● Incredibly successful and powerful
● Found its way into C as the “file interface”

● files are both sources and sinks
● algorithms are the 'filters'
● pipes connect them
● there are even pseudo-file systems to take

advantage

http://linux.die.net/man/5/proc

Not Perfect

● Evolved, rather than was designed
● http://en.wikipedia.org/wiki/Ioctl

● Data is viewed only as a stream of bytes
● awkward for algorithms that need random access,

for example

● But it shows what a component is and that
components deliver

http://en.wikipedia.org/wiki/Ioctl

Looking Back At My Code

 void main(string[] args)
 {
 string pattern = args[1];
 while (!feof(stdin))
 {
 string line = getLine(stdin);
 if (match(pattern, line))
 writeLine(stdout, line);
 }
 }

Doesn't look like source => algorithm => sink,
it looks like:

Arthur Rackham

Rather Than An Assembly Line

National Archives

I Prefer This

 void main(string[] args)
 {
 string pattern = args[1];
 stdin => byLines => match(pattern) => stdout;
 }

The Next Design

● C++ OOP
● did not result in better component programming

● C++ iostreams
● started looking like source => algorithm => sink

– by overloading >> operator
● but never went beyond reading/writing files

● Many successful C++ libraries, but they were
not components as discussed here

And Then Came Alexander
Stepanov

● Revolutionized C++ with iterators and
algorithms, the STL (Standard Template
Library)
● more than just files
● algorithms
● common interface
● compiled to highly efficient code

Not Quite There

 for (i = L.begin(); i != L.end(); ++i)
 ... do something with *i ...

still looks like loops. Then came std::for_each(),
std::transform(), but still won't compose because
iterators need to be in pairs.

Back To The Drawing Board

● sources
● streams, containers, generators

● algorithms
● filter, map, reduce, sort

● sinks
● streams, containers

Source Algorithm Sink

file sort file
tree filter tree
array map array
socket reduce socket
list max list
iota search
random numbers odd
 word count

Summing Up Requirements

● snap together, i.e. composability
● strong encapsulation support
● generate industrial quality efficient code
● natural syntax looking like:

source=>algorithm=>sink
● work with types not known in advance

Requirements for an InputRange

● is there data available?
● bool empty;

● read the current input datum
● E front;

● advance to the next datum
● void popFront();

InputRange is not a Type!

● it's a Concept
● all it needs to have are the primitives

● empty
● front
● popFront

 private import core.stdc.stdio;
 struct StdinByChar {
 @property bool empty() {
 if (hasChar)
 return false;
 auto c = fgetc(stdin);
 if (c == EOF)
 return true;
 ch = cast(char)c;
 hasChar = true;
 return false;
 }
 @property char front() { return ch; }
 void popFront() { hasChar = false; }

 private:
 char ch;
 bool hasChar;
 }

InputRange reads chars from stdin

Read From stdin, Write to stdout

for (auto r = StdinByChar();
 !r.empty;
 r.popFront())
{
 auto c = r.front;
 fputc(c, stdout);
}

With a Little Language Magic

foreach (c; StdinByChar())
 fputc(c, stdout);

Look, Ma, no types!

ForwardRange

adds a property:

 @property R save;

(where R is the ForwardRange type)

Returns a copy of the position, not the data.

Original and copy can traverse the range independently.

Singly linked list is the canonical example. Merge sort uses
forward ranges.

Bidirectional Range

adds a property and a method:

 @property E back;
 void popBack();

Analogous to front and popFront, but they work their way
backwards from the end.

Doubly linked list is a typical example, but also UTF-8
and UTF-16 are bidirectional encodings.

Random Access Range

adds:

 E opIndex(size_t I);

to index the data with [], and adds one of 2 options:

1. a BidirectionalRange that offers the length property or is infinite:

 @property size_t length;

2. a ForwardRange that is infinite

(empty always yields false for an infinite range)

Sinks (OutputRanges)

has a method called:

 void put(E e);

Element e of type E gets “put” into the range.

OutputRange writes to stdout

struct StdoutByChar {
 void put(char c) {
 if (fputc(c, stdout) == EOF)
 throw new Exception("stdout error");
 }
}

Recall our earlier:

 foreach (c; StdinByChar())
 fputc(c, stdout);

Using an OutputRange, this becomes:

 StdoutByChar r;
 foreach (c; StdinByChar())
 r.put(c);

and it even handles errors correctly! It copies from
its input to its output. We could call it 'copy', and...

void copy(ref StdinByChar source,
 ref StdoutByChar sink) {
 foreach (c; source)
 sink.put(c);
}

Lovely as long as you've got types StdinByChar
and StdoutByChar, and it's back to copy/pasta for any
other types.

Using a Template

void copy(Source, Sink)(ref Source source,
 ref Sink sink) {
 foreach (c; source)
 sink.put(c);
}

Solves the generic problem, but it will accept any input types,
leading to disaster

Adding Constraints

Sink copy(Source, Sink)(ref Source source,
 ref Sink sink)
 if (isInputRange!Source &&
 isOutputRange!(Sink, ElementType!Source))
{
 foreach (c; source)
 sink.put(c);
 return sink;
}

and there's our first algorithm! (The return is there to make it
composable.)

Current Status

StdinByChar source;
StdoutByChar sink;

copy(source, sink);

not there yet!

Add UFCS

 func(a,b,c)

can be written as:

 a.func(b,c)

so now the component copy looks like:

 StdinByChar source;
 StdoutByChar sink;

 source.copy(sink);

and we're there!

Filters

 int[] arr = [1,2,3,4,5];
 auto r = arr.filter!(a => a < 3);
 writeln(r);

which will print:

 [1, 2]

Maps

 int[] arr = [1,2,3,4,5];
 auto r = arr.map!(a => a * a);
 writeln(r);

which will print:

 [1, 4, 9, 16, 25]

Reducers

 int[] arr = [1,2,3,4,5];
 auto r = arr.reduce!((a,b) => a + b);
 writeln(r);

which will print:

 15

Putting It Together

import std.stdio;
import std.array;
import std.algorithm;

void main() {
 stdin.byLine(KeepTerminator.yes)
 map!(a => a.idup).
 array.
 sort.
 copy(
 stdout.lockingTextWriter());
}

Language Features Needed

● Exception handling for errors
● Generic functions
● Template constraints
● UFCS (Uniform Function Call Syntax)
● Ranges are concepts, not types
● Inlining, customization, optimization
● Specialization
● Type Deduction
● Tuples

Conclusion

● components are a way of reusable code
● components are a combination of convention

and language support
● many advanced features of D come together to

support components
● builds on earlier successes of files & filters,

streams, and the STL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

