
  

Component Programming in
The D Programming Language

by Walter Bright



  

Reusable Software

● an axiom
● we all buy into it
● we all try to write reusable software



  

The Reality

● 35 years of programming, and very little 
reusable code

● copy/pasta doesn't count
● I've missed the boat somewhere
● Other programmers often feel the same way



  

Something Went Wrong

● It's not for lack of trying
● It's not because I'm a better programmer now 

than I was, prefering to write it better now
● I need to look deeper



  

A Troubling Look

● My abstractions are leaky
● and the dependencies leak out into the rest of the 

code

● The components are too specific
● they work for type T, but not for type U

● Need to reset back to first principles



  

What is a Component? 

● more than just reusable software
● there are lots of libraries of reusable code, but 

these aren't really components

● a component follows a predefined interface
● so components can be swapped, added, and 

composed, even though they are developed 
independently

● most libraries roll their own interfaces
● require scaffolding to connect to other libraries



  

What would a general component 
interface be?

● read input
● process that input
● write output



  

Even if a program doesn't fit that 
model, it is usually composed of 

subsystems that do



  

source => algorithm => sink

or, composing:

source => algorithm1 => algorithm2 => sink

In Pseudo-Code



  

Where Have We Seen That Before?

The Unix “files and filters” command line model



  

Files and Filters

● Incredibly successful and powerful
● Found its way into C as the “file interface”

● files are both sources and sinks
● algorithms are the 'filters'
● pipes connect them
● there are even pseudo-file systems to take 

advantage

http://linux.die.net/man/5/proc



  

Not Perfect

● Evolved, rather than was designed
● http://en.wikipedia.org/wiki/Ioctl

● Data is viewed only as a stream of bytes
● awkward for algorithms that need random access, 

for example

● But it shows what a component is and that 
components deliver

http://en.wikipedia.org/wiki/Ioctl


  

Looking Back At My Code

    void main(string[] args)
    {
        string pattern = args[1];
        while (!feof(stdin))
        {
            string line = getLine(stdin);
            if (match(pattern, line))
                writeLine(stdout, line);
        }
    }

Doesn't look like source => algorithm => sink,
it looks like:



  

Arthur Rackham



  

Rather Than An Assembly Line

National Archives



  

I Prefer This

  void main(string[] args)
  {
      string pattern = args[1];
      stdin => byLines => match(pattern) => stdout;
  }



  

The Next Design

● C++ OOP
● did not result in better component programming

● C++ iostreams
● started looking like source => algorithm => sink

– by overloading >> operator
● but never went beyond reading/writing files

● Many successful C++ libraries, but they were 
not components as discussed here



  

And Then Came Alexander 
Stepanov

● Revolutionized C++ with iterators and 
algorithms, the STL (Standard Template 
Library)
● more than just files
● algorithms
● common interface
● compiled to highly efficient code



  

Not Quite There

           for (i = L.begin(); i != L.end(); ++i)
               ... do something with *i ...

still looks like loops. Then came std::for_each(), 
std::transform(), but still won't compose because 
iterators need to be in pairs.



  

Back To The Drawing Board

● sources
● streams, containers, generators

● algorithms
● filter, map, reduce, sort

● sinks
● streams, containers



  

Source          Algorithm       Sink
--------------------------------------
file            sort            file
tree            filter          tree
array           map             array
socket          reduce          socket
list            max             list
iota            search
random numbers  odd
                word count



  

Summing Up Requirements

● snap together, i.e. composability
● strong encapsulation support
● generate industrial quality efficient code
● natural syntax looking like: 

source=>algorithm=>sink
● work with types not known in advance



  

Requirements for an InputRange

● is there data available?
● bool empty;

● read the current input datum
● E front;

● advance to the next datum
● void popFront();



  

InputRange is not a Type!

● it's a Concept
● all it needs to have are the primitives

● empty
● front
● popFront



  

    private import core.stdc.stdio;
    struct StdinByChar {
        @property bool empty() {
            if (hasChar)
                return false;
            auto c = fgetc(stdin);
            if (c == EOF)
                return true;
            ch = cast(char)c;
            hasChar = true;
            return false;
        }
        @property char front() {  return ch;  }
        void popFront() { hasChar = false;  }

      private:
        char ch;
        bool hasChar;
    }

InputRange reads chars from stdin



  

Read From stdin, Write to stdout

for (auto r = StdinByChar();
     !r.empty;
     r.popFront())
{
    auto c = r.front;
    fputc(c, stdout);
}



  

With a Little Language Magic

foreach (c; StdinByChar())
    fputc(c, stdout);

Look, Ma, no types!



  

ForwardRange

adds a property:

    @property R save;

(where R is the ForwardRange type)

Returns a copy of the position, not the data.

Original and copy can traverse the range independently.

Singly linked list is the canonical example. Merge sort uses
forward ranges.



  

Bidirectional Range

adds a property and a method:

    @property E back;
    void popBack();

Analogous to front and popFront, but they work their way
backwards from the end.

Doubly linked list is a typical example, but also UTF-8
and UTF-16 are bidirectional encodings.



  

Random Access Range

adds:

    E opIndex(size_t I);

to index the data with [ ], and adds one of 2 options:

1. a BidirectionalRange that offers the length property or is infinite:

    @property size_t length;

2. a ForwardRange that is infinite

(empty always yields false for an infinite range)



  

Sinks (OutputRanges)

has a method called:

    void put(E e);

Element e of type E gets “put” into the range.



  

OutputRange writes to stdout

struct StdoutByChar {
    void put(char c) {
        if (fputc(c, stdout) == EOF)
            throw new Exception("stdout error");
    }
}



  

Recall our earlier:

    foreach (c; StdinByChar())
        fputc(c, stdout);

Using an OutputRange, this becomes:

    StdoutByChar r;
    foreach (c; StdinByChar())
        r.put(c);

and it even handles errors correctly! It copies from
its input to its output. We could call it 'copy', and...



  

void copy(ref StdinByChar source,
          ref StdoutByChar sink) {
    foreach (c; source)
        sink.put(c);
}

Lovely as long as you've got types StdinByChar
and StdoutByChar, and it's back to copy/pasta for any
other types.



  

Using a Template

void copy(Source, Sink)(ref Source source,
                        ref Sink sink) {
    foreach (c; source)
        sink.put(c);
}

Solves the generic problem, but it will accept any input types,
leading to disaster



  

Adding Constraints

Sink copy(Source, Sink)(ref Source source,
                        ref Sink sink)
    if (isInputRange!Source &&
        isOutputRange!(Sink, ElementType!Source))
{
    foreach (c; source)
        sink.put(c);
    return sink;
}

and there's our first algorithm! (The return is there to make it
composable.)



  

Current Status

StdinByChar source;
StdoutByChar sink;

copy(source, sink);

not there yet!



  

Add UFCS

    func(a,b,c)

can be written as:

    a.func(b,c)

so now the component copy looks like:

    StdinByChar source;
    StdoutByChar sink;

    source.copy(sink);

and we're there!



  

Filters

    int[] arr = [1,2,3,4,5];
    auto r = arr.filter!(a => a < 3);
    writeln(r);
    
which will print:

    [1, 2]



  

Maps

    int[] arr = [1,2,3,4,5];
    auto r = arr.map!(a => a * a);
    writeln(r);

which will print:

    [1, 4, 9, 16, 25]



  

Reducers

    int[] arr = [1,2,3,4,5];
    auto r = arr.reduce!((a,b) => a + b);
    writeln(r);

which will print:

    15



  

Putting It Together

import std.stdio;
import std.array;
import std.algorithm;

void main() {
    stdin.byLine(KeepTerminator.yes)
    map!(a => a.idup).
    array.
    sort.
    copy(
       stdout.lockingTextWriter());
}



  

Language Features Needed

● Exception handling for errors
● Generic functions
● Template constraints
● UFCS (Uniform Function Call Syntax)
● Ranges are concepts, not types
● Inlining, customization, optimization
● Specialization
● Type Deduction
● Tuples



  

Conclusion

● components are a way of reusable code
● components are a combination of convention 

and language support
● many advanced features of D come together to 

support components
● builds on earlier successes of files & filters, 

streams, and the STL
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