
Agile

© copyright 2010. Net Objectives, Inc.

Essential Skills for

the Agile Developer

© copyright 2010. Net Objectives, Inc.

Lean
Enterprise

Business

Manage
ment

Team

ASSESSMENTS

CONSULTING

TRAINING

COACHING

Lean for Executives

Product Portfolio

Management

Lean Management

Project Management
Kanban / Scrum

ATDD / TDD / Design Patterns

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• How they help us

• The problems they are designed to
solve

• Advice from the Gang of Four

Design is not

about planning

it’s about

learning

The Essence of Patterns

 Encapsulate what is not known

 What is not known is how things will change

 Make it possible to change things with low risk

thinking
points

Advice from the Gang of Four

Gang of Four Gives Us Guidelines*

 Design to interfaces

 Favor object delegation over class inheritance

 Consider what should be variable in your design … and

“encapsulate the concept that varies”

* Gamma, Helms, Johnson, Vlissides: The authors of Design Patterns: Elements of Reusable Object-Oriented Design

Design to Interfaces: Methods

 Craft method signatures from the perspective of the

consuming entities

 Hides the implementation of your methods

 Programming by intention is a systematized way of

designing to interfaces

Design to Interfaces

AbstractionA

Impl1 Impl2 Impl3

AbstractionB

Impl4 Impl5

Relationship

Relationship

We strive for 1→1 or 1→many relationships between
abstractions (abstract classes or interfaces) as opposed
to n→m relationships between implementations
(subclasses or interface implementations)

Favor Delegation Over Inheritance

 Specializing function with inheritance is a short path to

problems

 As we saw, once we hit variation two, we get multiple

problems

 However, even in the patterns, inheritance is used

extensively

 So, what does this really mean?

The Proper Use of Inheritance

 We can define a class that encapsulates variation,

contain (via delegation) an instance of a concrete class

derived from the abstract class defined earlier

Chip

1. Allows for decoupling of concepts

2. Allows for deferring decisions until

runtime

3. Small performance hit

Chip_64e Chip_128e

Encryption

64e 128e

Chip

Class Inheritance to Specialize Class Inheritance to Categorize

Find What Varies and Encapsulate It

 Seems like what we just did…

– Base classes encapsulate their implementing subclasses

– This encapsulates varying behavior

Encryption

64 128

Chip

Find What Varies and Encapsulate It

 The GoF meant a varying anything:

– Varying design

– Varying object creation

– Varying relationships (1-1, 1-many)

– Varying sequences and workflows

– Etc…

Encapsulate Variations

 Encapsulating variation means to make it appear as if
the varying issue is not varying

 Each pattern encapsulates a different varying thing

Encapsulate Variations

 Encapsulating variation means to make it appear as if
the varying issue is not varying

 Each pattern encapsulates a different varying thing

This Advice Relates to Principles

 Deal with things at an abstract level

 Why?

Impl4

AbstractionA

Impl1 Impl2 Impl3

Client

Relates to: The Open-Closed Principle

This Advice Promotes Quality

Cohesive

Decoupled
Reusable

(eliminates Redundant
Implementation)

Encapsulated

This Advice Promotes Quality

 Design to Interfaces:

– Helps eliminate redundant relationships

– Avoids subclass coupling

 Encapsulate Variation

– Promotes encapsulation

– Decouples client objects from the services they use

– Leads to component-based architectures

 Favor aggregation over inheritance
– Promotes strong cohesion

– Helps eliminate redundant implementation

 Each pattern is an example of a design that follows this

general advice well, in a given context

 Design patterns are discovered, not invented: they

are what successful design have done to solve the same

problem

 Studying design patterns is a good way to study good

design, and how it plays out under various

circumstances

Design Patterns Are Examples

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• Pretend what you need exists

• Use it

• Then build it

Programming by Intention

void Report::printReport (string CustomerID) {

 vector<Employee> emps = getEmployees(CustomerID);

 if(needsSorting(emps)) sortEmployees(emps);

 printHeader(CustomerID);

 printFormattedEmployees(emps);

 printFooter(CustomerID);

 paginate();

}

Private
Methods

"Sergeant" Method

C++

*Note: These methods may not be literally private, as we may need to make some of them public
or protected for testing. But we treat them as private from client objects, to limit coupling.

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• If you don’t know what you are
using you can use something else

• If you hide construction you must
hide deletion

The Use of Factories

 Factories promote the encapsulation of design

 This enables one mandate in design:

– 1st determine what your entities are and how they work together

– 2nd decide how to instantiate the right objects

 The only question is, when do you use factories?

– Always? Seems like overkill

– But if you don’t start with them, putting them in may cause extra

maintenance

We Need a Practice

 A Practice is something we can do all the time

 Factories and separate interfaces cannot be practices

– They are used when they are justified

 We can’t predict whether something is likely to vary

 We need something else

Motivations and concepts

Manage objects separately

from their use

Example Code:

public class SignalProcessor {

 public:

 SignalProcessor ();

 byte[] process(byte[] signal);

 private:

 ByteFilter *myFilter;

}

SignalProcessor::SignalProcessor () {

 myFilter = new HiPassFilter();

}

byte[] SignalProcessor::process(byte[] signal) {

 // Do preparatory steps

 myFilter->filter(signal);

 // Do other steps

 return signal;

}

C++

Mixed Perspectives:

public class SignalProcessor {

 public:

 SignalProcessor ();

 byte[] process(byte[] signal);

 private:

 ByteFilter *myFilter;

}

SignalProcessor::SignalProcessor () {

 myFilter = new HiPassFilter;

}

byte[] SignalProcessor::process(byte[] signal) {

 // Do preparatory steps

 myFilter->filter(signal);

 // Do other steps

 return signal;

}

Use

Creation

C++

What you hide you can change

 When entities are coupled, then one cannot be freely

changed without effecting the other

 The nature of the coupling determines the nature of

the freedom

What you hide you can change

 If we want to control coupling, we need to limit

perspectives, because

– The Use Perspective implies one sort of coupling

– The Creation Perspective implies different coupling

 This would seem to imply the use of factories to build

all objects, but that’s only one way

Principle:

Separate Use From Construction

The relationship between any entity
A and any other entity B in a system

should be limited such that
 A makes B or

A uses B,
and never both.

This is a "Principle" -
There are Many Ways To Accomplish it

 Using an actual factory pattern

 Object Serialization in one place, de-Serialization in
another

 Object-Relational Data-Binding

 Dependency Injection Frameworks

 Etc...

How Can We Get All the Benefit

Without Excessive Cost
 We cannot know when something is going to vary in the

future

 This fear can lead to overdesign if we’re not careful

 We need a practice, something we can always do, even

when we don’t have enough motivation to use an actual

factory, interface, etc…

 We can encapsulate the constructor* in simple classes

*The original idea for this came from Effective Java by Joshua Bloch

Encapsulating the Constructor

class ByteFilter {

 public:

 static ByteFilter* getInstance();

 protected:

 ByteFilter();

 virtual ~ByteFilter();

}

ByteFilter::ByteFilter () {

 // do any constructor behavior here

}

ByteFilter* ByteFilter::getInstance() {

 return new ByteFilter();

 }

Void ByteFilter::deleteInstance(ByteFilter *bf2Delete) {

 delete bf2Delete;

}

 // the rest of the class follows

}

void main {

 ByteFilter *myByteFilter;

 // . . .

 myByteFilter = ByteFilter::getInstance();

 // . . .

}

C++

Accommodating Change: Complexity

class ByteFilter { // this is an abstract class.

 public:

 static ByteFilter* getInstance();

 protected:

 ByteFilter();

};

ByteFilter* ByteFilter::getInstance() {

 if (someDecisionLogic()) {

 return new HiPassFilter();

 } else {

 return new LoPassFilter();

} }

//Note: both HiPassFilter and LoPassFilter derive from ByteFilter

// but implement the filtering differently

void main () {

 ByteFilter *myByteFilter;

 // . . .

 myByteFilter = ByteFilter::getInstance();

 // . . .

}

No Change!

C++

In C++, Objects on the Stack

ByteFilter myByteFilter;

// .

// . Object gets used

// .

// Object falls out of scope, memory is cleaned up

ByteFilter* myByteFilter = ByteFilter::getInstance();

// .

// . Object gets used

// .

ByteFilter::returnInstance(myByteFilter);

C++

Instead of this…

…we prefer this – “Encapsulating Destruction”

Evolution in Systems: 1

SignalProcessor
-filterBytes()

Single Client object
Non-Varying Service algorithm

Programming by Intention at least puts it in it's own method:
method cohesion

Evolution in Systems: 2

SignalAgent
-filterBytes()

SignalRepeater
-filterBytes()

SignalProcessor
-filterBytes()

 Eliminate Redundancy…

Redundant!

Evolution in Systems: 2

Choices…

SignalAgent SignalRepeater SignalProcessor

SignalHandler
#filterBytes()

Inheritance

SignalAgent

SignalRepeater

SignalProcessor

ByteFilter

+filterBytes()

Aggregation

The Gang of Four said:

Chip

Chip_64e Chip_128e

Encryption

64e 128e

Chip

"Favor Aggregation Over Inheritance"

Evolution in Systems: 2

SignalAgent

SignalRepeater

SignalProcessor

ByteFilter

+(static)getInstance():ByteFilter

Move Method Refactoring to eliminate
redundancy when multiple Clients require the
same service…

//Service is simple

return new Bytefilter();

Encapsulate the constructor

Evolution in Systems: 3

ByteFilter

+(static)getInstance():ByteFilter

//Service is moderately

//Complex

if (decisionLogic()) {

 return new HighPassFilter();

} else {

 return new LoPassFilter();

}

HiPassFilter LoPassFilter

Service is now Abstract

SignalAgent

SignalRepeater

SignalProcessor

The Strategy Pattern

No change to Clients

Evolution in Systems: 4

//Service is significantly

//Complex

return myByteFilterFactory.

 makeByteFilter();

ByteFilterFactory

+makeByteFilter():ByteFilter

FilterAdapter

FilterProxy

No change to Clients

SignalAgent

SignalRepeater

SignalProcessor

ByteFilter

+(static)getInstance():ByteFilter

HiPassFilter LoPassFilter

ForeignAdapter

An Optional Step

ByteFilterFactory

+makeByteFilter():ByteFilter

FilterAdapter

FilterProxy

SignalAgent

SignalRepeater

SignalProcessor

ByteFilter

HiPassFilter LoPassFilter

Slight change to Clients

ForiegnAdapter

How do Factories Make Decisions?

 Based on a rule:

– We filter one way during the day, another after hours

– We call this "Rule Based“

 Based on state external to this subsystem:

– There is a GUI or configuration file or environment variable
that holds the information needed to make the decision

– We Call this "Extrinsic”

 The Client has the information needed to make the
decision

– We call this "Intrinsic”

In Each Case

 Rule Based: The factory or encapsulating method

keeps the rule in one place. This is a good thing

 Extrinsic: Only the factory on encapsulating method

couples to the GUI, config file, or whatever. This limits

coupling, and is a good thing

 Intrinsic: The client will have to pass in a parameter,

which does mean a bit of maintenance, however…

Encapsulation of Construction

 Essentially no programming cost

 Allows for accommodating future, unforeseen variation

without excessive anticipation

 Promotes the Open-Closed Principle

 Promotes cohesion of Perspective:

– Fowler's Conceptual, Specification, Implementation

– Our Use, Construction

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• Test specifications are about
behavior

• Defining tests up front is a kind of
analysis

• Defining tests up front is a kind of
design

Testability

 Code that is difficult to unit test is often:

– Tightly Coupled: "I cannot test this without

instantiating half the system"

– Weakly Cohesive: "This class does so many things,

the test will be enormous and complex!"

– Redundant: "I'll have to test this in multiple places to

ensure it works everywhere"

The Role of Testability

 Unit testing is a good thing. You should do it

 Whether you agree or not

– You should always ask yourself "if I were to test this, how

would I do it?"

– If you find the design would be very hard to test, or if you

cannot see a way to test it, ask yourself "why isn't this more

testable?"

 This is a significant Trim Tab

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• No redundancy is a good idea

• No redundancy is also impossible

• How can we manage redundancy?

Shalloway’s Law

If ‘N’ things need to
change and ‘N>1’,

Shalloway will find at most
‘N-1’ of these things

Shalloway’s Principle

Avoid situations where
Shalloway’s Law Applies

thinking
points

The Thought Process of Patterns

1. What are design

patterns?

2. Programming by

Intention

3. Separating Use from

Construction

4. Define tests up front

5. Shalloway’s Law

6. Encapsulate that!

• What do we do when we don’t
know what to do?

• Scott Bain’s Magic Card

Our Situation

 We need a method of real-time messaging

 We know we’ll have a performance problem

 We don’t know where it will be

 What can we do?

Our Options

1. Figure out, up-front, what’ll work

2. Just use what appears best at first and fix it later if it

becomes clear later that we need something else

~3

Downsides to First Two Options

 Figuring out up-front is fraught with risk

 Just use an easy one and fix it later has different risk

 How would I design this if I knew that no matter how I

designed it I would later discover I did it the wrong

way?

~3

Learn Trim Tabs

1. Programming by Intention

2. Separating Use from Construction

3. Define tests up front

4. Shalloway’s Law

5. Encapsulate that!

ASSESSMENTS

CONSULTING

TRAINING

COACHING

Thank

You!

Register at www.netobjectives.com/register to access many webinars

Contact me at alshall@netobjectives.com @alshalloway

Webinar: Lean-Agile: The Next Generation May 22

Webinar: Product Portfolio Management: Why It Is Critical for Agile

at Scale June 18

Design Patterns for Agile Developers, Seattle, June 19-21

Lean-Agile Project Management, Seattle, June 19-21

Sustainable Test-Driven Development, Seattle, July 10-12

http://www.netobjectives.com/register
mailto:alshall@netobjectives.com

