
sa pa Safe MultiProcessing Architectures

at the University of Washington

Determinism and Fail-stop Races for
Sane Multiprocessing

Luis Ceze, University of Washington

joint work with Owen Anderson, Tom Bergan, Joe Devietti, Nick Hunt, Brandon Lucia, Jacob Nelson,
Steve Gribble, Dan Grossman, Mark Oskin, Karin Strauss, Shaz Qadeer and Hans Boehm.

NWCPP meeting, Jan 2011.

me/sampa: multiprocessor architecture,
compilers, programming models, memory

models, determinism, OS, concurent
software reliability, hw/sw for low-power

You guys know a lot more about C++ and
large software projects than I do...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

•Era of “free” performance is over.

•Most of compute power now scaling in terms of cores
•Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

•Shared memory is most popular
•Within a box

•Simplifies data movement, makes synchronization harder

•Shared memory vs. Message passing almost a religious argument

•This talk:
•Shared-memory multiprocessors. Bringing more safety and sanity to

parallel programming.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A multithreaded voting machine

while (more_votes) {
 load t <- votes
 t++
 store t -> votes
}

thread 0 thread 1
while (more_votes) {
 load t <- votes
 t++
 store t -> votes
}

load
store
load
store

votes == 2

load
store
load
store

votes == 2

load
load
store
store

votes == 1

shared variable

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Two Key Problems

•Data races
•deep impact on memory model and language semantics (see JMM), pretty

much all languages converging to data-race-free models

•usually incorrect and hard to debug

•reliability issues: surprising software failures

•Nondeterminism
•debugging is hard: heisenbugs

• testing is hard: can’t test each input just once

• fault tolerant replicas might not behave the same way

•opens timing-based security attacks

•Note: these two are orthogonal

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races canʼt
cause problems

When a data-race occurs, throw an exception!
(we have div by 0, segfault, why not concurrency errors?)

Can we provide strong detection guarantees at a low cost?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Removed Non-determinism?

Can we remove undesired nondeterminism without removing
performance?

Effectively, make arbitrary parallel programs behave like sequential programs...

•Development: bugs are reproducible by default, test each input
only once

•Deployment: software behaves as tested, enables replication for
fault tolerance, timing-based attacks harder

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

An aside on memory consistency
models and the C/C++ standard model.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a Memory Consistency Model?

•Define what values a read can return in shared-memory
programs
•What values do you expect the loads below to get? (x,y both start with 0).

 st 1 !"y
 st 1 !"x

#$%&'(")" #$%&'("*"
 ld x
 ld y

 st 1 !"x
 ld y

#$%&'(")" #$%&'("*"
 st 1 !"y
 ld x

How about (1,0)?

How about (0,0)?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

Single sequential order: the memory operations from all processors
maintain a single sequential order

P1 P2 P3 PN...

Memory

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

P2

st A
st C

ld D

st A

ld C

st C

st A

st C

ld D

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency Implications

•What are the implications of that to:
•compiler optimizations?

•hardware optimizations?

•Conclusion:
•Need to give freedom to compiler writers and HW designers

•Perhaps at the cost of your sanity :)

•Many “relaxed” models: TSO (x86), Weak Ordering (PPC/ARM), etc.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•Sequential Consistency...

•for Data-Race Free programs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a data-race?

•Many “intuitive” definitions
•One technical definition: two accesses from different threads; at least one a

write; accessing the same location; without explicit happens-before
ordering via synchronization

Acquire(K)

Release(K) Acquire(M)

Release(M)

Rd Y
Wr X

Rd X

Wr Y
...

Thread 1 Thread 2

Race

Acquire(K)

Release(K)
Acquire(K)

Release(K)

Rd Y
Wr X

Rd X

Wr Y
...

Thread 1 Thread 2

HB

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•Sequential Consistency for Data-Race Free programs

•What does that mean?
•If execution of a program has no races, you can reason about it in a

sequentially consistent way

•And execution behaves as some interleaving of regions without
synchronization operations

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency for DRF Example

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Thread 1

Acquire(K)

Release(K)

Rd X

Wr Z
...

Thread 2 Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Some global ordering

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•What does that buy?
•A *lot* of freedom to compiler and hardware

•e.g., HW buffers, loop-inv code motion, CSE, etc.

•Pretty much can do whatever reordering as long as it does not cross
synchronization

•Key is to determine if there is a race...
•very hard to do statically

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Concurrency Exceptions: The Vision

•Concurrency bugs drive people nuts
•Show asynchronous, non-local behavior

•Often lead to silent failures

•Significantly complicate language semantics

➡Generate an exception when a concurrency occurs
•Put them in the same category as Div-by-zero, SEGFAULTs, etc

•Which concurrency errors? When should the exception be delivered? To
what threads?

•We are starting with data-races
•Well defined, doesn’t require programmer annotations, language semantics

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Goals In Supporting Races as Exceptions

High-Performance - Always-on detection

Precise detection - No false positives

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Undetected Race
Exception
Delivered

Here

Synchronization-Free
Regions

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Undetected Race Exception
Delivered

Here

Synchronization-Free
Regions

Precisely detect only races that can effect consistency

Ignoring “unimportant” races is key to performance
(much lower space and time overheads)

The Guarantee:
Exception-Thrown? There was a data-race.
Exception-Free? Sequential Consistency.

(dramatically simplifies checking, while making PL and systems people happy :).

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Language Level Benefits

Acquire(K)

Release(K)

Reordering in SFRs
is legal

Granularity
independence

Rd Y
Wr X

Acquire(K)

Release(K)

Wr64_Low X
Wr64_Hi X

Exception-Free
executions are SC

Acq(K)

Rel(K)

Rd X
Wr X

Acq(K)

Rel(K)

Rd X
Wr X

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Language Level Benefits

pthread_lock(K)

pthread_unlock(K)

Programming model
is largely the same

Racy programs are well-
behaved

Rd Y
Wr X

Race semantics are
simpler

Wr Q
Wr Z

Acq(K)
Rd X
Wr X

Acq(L)

Rd X

!

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging and Reliability

Concurrent, conflicting SFRs
throw exceptions

Acq(K)
Rd X
Wr X

Acq(L)

Rd X

!

All races have some exceptional
schedule

Exception Handling: Log
+ Recover

Damage Control: Shut
down buggy module

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Hardware Support in a Nutshell

Hardware Transactional Memory

- Versioning
+ Byte-level conflict detection

+ Exception support

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Hardware/Software Interface

Rd Y
Wr X

Rd T
Wr T

Acquire(K)

Release(K)

BeginRegion

EndRegion

BeginRegion

EndRegion

New Instructions:
BeginRegion and EndRegion

Synchronization Operations
are Singleton Regions

Exceptions Thrown Precisely
Before Conflicting Instruction

sa pa

Access Monitoring

...
...

N-byte Cache Line

N-bit
Access Bits

Local Read
Local Write

Remote Read
Remote Write

Exception Test: compare local and remote bits

Line-level
Supplied Bit

Overheads significantly reduced via type-safety and reusing
data-array for access bits. [ISCA‘11sub]

sa pa

Leveraging Coherence Support

CPU 1 CPU 2

Read Request

Read
Reply

Local
Write
Bits

Remote
Write
Bits

V

CPU 1 CPU 2

Write/Invalidate

Invalidate
Ack

Local
Write
Bits

Local
Read
Bits

Read
Coherence

Actions

Write
Coherence

Actions

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Now that we know how to get SC
executions (or an exception)....

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Multiprocessing

•DMP provides execution-level determinism for arbitrary
multithreaded programs:
•execution is only function of explicit inputs => single execution per input

•this is not record-replay of multithreaded programs

•Key idea: conceptually serialize execution, recover
parallelism while preserving serial execution semantics
•several techniques to make this fast: actual goal is to preserve inter-

thread communication, still freedom left for efficient schedules

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

deterministic box

Shim Program:

shim
 program

network

Thread2 Thread3

Process B

System ensures:
• internal nondeterminism is eliminated

(for shared-memory, pipes, signals, local files, ...)

• external nondeterminism funneled through shim program

• user-space program that precisely controls all external
nondeterministic inputs

user I/O

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Internal
Determinism

External
Nondeterminism

network

deterministic box

users

pipe

shared file

Process 4

shared
memory

pipes

private
files

shim
 program

Precisely controls
all external inputs

• value of input data
• time input data arrives

real time

Process 1

Process 2

Process 3

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Aside: Using DPGs When Constructing Apps

webserver

deterministic part
(in a DPG)

nondeterministic part
(in a shim)

request
processing

low-level
network I/O

(bundle into requests)

Shim program defines the nondeterministic interface

• behaves deterministically w.r.t. requests rather than packets

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

How is determinism actually enforced?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Starting simple: DMP-Serial

quantum

time →

T1

T2

T3

deterministic quantum size
(in logical time, e.g., instructions)
+
deterministic scheduling

determinism

quantum round

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

•Need to know when communication happens
• The Memory Ownership Table (MOT) tracks information about ownership

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Parallel Serial

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

MOT

x owned-by T1

y shared

z owned-by T2

:
:

:
:

Important: State of the MOT needs to evolve deterministically; updates are limited to serial suffix

DMP-O (Ownership)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM: Recovering Parallelism with Speculation

•DMP-O conservatively assumes that all cache line state
transitions are communication
•…but many transitions are not communication

•Use TM support to speculate that a quantum is not
involved in communication
•If communication happens, rollback + re-execute

•Commit quanta in a deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

•rollback+restart on conflicts

•leverage (best effort) HTM support

•functionally equivalent to DMP-Serial

wr X

rd X rd X

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM Overheads

time →

T1

T2

T3

commit
parallel rollbacks

•can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

commit
•lots of TM techniques to

make commit fast

imbalance
•better quantum formation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-O and DMP-TM Evaluation

1.0

1.1

1.3

1.4

1.5

4 8 16 4 8 16

ru
nt

im
e

no
rm

al
iz

ed
 to

no
nd

et
 e

xe
cu

tio
n

threads

DMP-O
DMP-TM
DMP-TMForward

speculation
gap

splash2 parsec

scalability

(HW version)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Performance Summary

•DMP-O: Low overheads, ok (not great) scalability

•DMP-B: More overheads, good scalability

•DMP-TM: Even more overheads, great scalability (tricks)

•Exacerbates inherent lack of scalability of applications
•Relaxing memory ordering helps a lot, even more so than in nondet MPs

•Implementations:
•HW implementation: ~5% to 50%

•Compiler implementation: 2x to 3x (instrumentation cost)

•OS (paging tricks): 0% to 10x (false sharing at page granularity)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

In case you want to learn more...

•DMP:
• “Deterministic Shared Memory Multiprocessing”, ASPLOS’09, IEEE Micro Top

Picks

• “CoreDet: A Compiler and Runtime System for Deterministic Multithreaded
Execution”, ASPLOS’10

• “Deterministic Process Groups in dOS”, OSDI’10

• “RCDC: A Relaxed Consistency Deterministic Computer”, ASPLOS’11

•FailStop Races:
• “A Case for System Support for Concurrency Exceptions”, Usenix HotPar’09

• “Conflict Exceptions”, ISCA’10

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Other work @ SAMPA

•Dynamic analysis for arbitrary concurrency bug detection
•using graphs, machine learning

•Automatic concurrency bug avoidance

•Architecture support for Dynamic Languages

•Energy-exposed programming models

•JavaScript parallelization

•OS support for non-volatile main memory systems

(ask me about it if you are interested...)

Page 

Introducing Corensic Jinx

Jinx is a tool that makes multi-core bugs happen
quickly, and enables developers and testers to
identify the root cause of bugs with immediate
forensics

 Windows and Linux versions available now
 Kernel mode support for finding bugs in the full software stack during acceptance

testing or system validation
 Works the way you do: Integrated into development and test processes…bugs

happen faster and they make more sense
 Reliable: No false positives, definitively finds bugs in code
 Easy: 3 minutes from download to install to finding bugs

Page 

How Jinx Works: Forcing Bugs to Happen (1)

Jinx intelligently samples periods of execution and
explores many different possibilities for thread
timing…

Page 

How Jinx Works: SmartStop (2)

In a typical multi-threaded program, when a bug occurs in one thread, the
other threads continue to run until the application stops…

A developer viewing the end state of the program gets no meaningful info

Jinx is different. With SmartStop, Jinx automatically positions the end state
of the program in a meaningful location for a developer to find the root cause
of the concurrency bug…

Page 

The Jinx Advantage

Fully complementary to existing tools and development processes
 Jinx accelerates the rate at which bugs manifest themselves
 Jinx pinpoints causality of bugs

Enhances the effectiveness of common testing techniques
Easily plugs into stress and load testing environments

No false positives

Intelligently samples execution (no random timing intervals)

Operating system and application platform independent

No changes necessary to source code and most testing scripts

sa pa Safe MultiProcessing Architectures

at the University of Washington

Luis Ceze, University of Washington

?

Determinism and Fail-stop Races for
Sane Multiprocessing

