
Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

info@netobjectives.com
www.netobjectives.com

1 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Avoiding Over and
Under Design

2 Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Lean
Enterprise

Business

Manage
ment

Team

ASSESSMENTS

CONSULTING

TRAINING

COACHING

Lean for Executives

Product Portfolio

Management

Lean Management

Project Management
Kanban / Scrum

ATDD / TDD / Design Patterns

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

3 Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011 4 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Net Objectives’ Talks at Conference

_s

Monday
 1:30-5:00pm Rob Myers. Test Driven Development

Wednesday
 8:30-10:00am Ken Pugh. Regular Expressions in C++
 3:30-5:00pm Ken Pugh. Prefactoring
 3:30-5:00pm Rob Myers. Principles and Practices of Scrum

Thursday
 10:15-11:45am Scott Bain & Rob Myers. Emergent Design Demo through Unit-Testing, Refactoring and Pair

Programming
 10:15-11:45am Alan Shalloway. Lean Software Development: The Business Case for Agility
 1:30-3:00pm Alan Shalloway. Design Patterns Explained
 1:30-3:00pm Rob Myers. Business Value of Pair Programming

Friday
 10:15-11:45am Alan Shalloway. Emergent Design: Design Patterns and Test-Driven Development
 3:30-5:00pm Scott Bain. Mock Objects and Mock Turtles: The Role of Patterns in TDD
 3:30-5:00pm Rod Claar. Dealing With Enterprise Data in an Agile Environment

And don’t forget to see us in the Expo!

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

5 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Emergent Design Agenda

 Assumes knowledge of:

– Code Qualities

– Unit Testing

– Refactoring

– Test First

– Test-Driven-Development:
 Test as design

 Emergent Design

20 June 20115

info@netobjectives.com
www.netobjectives.com

6 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Emergent Design
Design Patterns and Refactoring

for Agile Development

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

7 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Test: What Does It Mean?

 1 a chiefly British : CUPEL b (1) : a critical examination,
observation, or evaluation : TRIAL; specifically : the procedure of
submitting a statement to such conditions or operations as will
lead to its proof or disproof or to its acceptance or rejection <a
test of a statistical hypothesis> (2) : a basis for evaluation :
CRITERION c : an ordeal or oath required as proof of conformity

with a set of beliefs

 Test can be thought of as what your specification is that
says you are doing what you should be doing.

20 June 20117

info@netobjectives.com
www.netobjectives.com

8 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Code Qualities

http://www.m-w.com/dictionary/cupel
http://www.m-w.com/dictionary/trial
http://www.m-w.com/dictionary/criterion

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

9 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Predictability

 We can’t predict how our requirements are going to
change

 We can predict how our code will adapt to
unpredictable requirements changes

 How can we increase our prediction abilities of code
quality?

20 June 20119 10 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Question to Ask

 When working on a mature system consider when
adding a new function…

which task area takes more time

– writing the new function or

– integrating it into the system?

20 June 201110

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

11 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 201111

Qualities and Pathologies

 Strong cohesion
– A goal: classes do one thing – easier to understand
– Pathology: the “God object” is as bad as it gets

 Proper coupling
– A goal: well defined relationship between objects
– Pathology: side affects when have improper coupling

 No redundancy
– A goal: once and only once
– Pathology: a change in one place must be duplicated in another

 Readability
– A goal: coding standards
– Pathology: non-readable code

 Encapsulation
– A goal: hide data, type, implementation
– Pathology: assumptions about how something is implemented makes it

difficult to change

12 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

What Are the Characteristics of
Easily Maintainable Code?

 Code is readable.
– can see what individual things do

– can see how individual things interact

 Can change code in one place without it adversely (or
unknowingly) changing behavior in another place.

 When need to make a change, only need to change it in
one place.

 In other words: readable, independent, efficient

…and, of course, correct

20 June 201112

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

13 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Cohesion

 Cohesion refers to how “closely the operations in a routine *or
class+ are related.” I have heard other people refer to cohesion
as “clarity” because the more operations are related in a routine
[or class] the easier it is to understand the code and what it's
intended to do. *

 Strong cohesion is related to clarity and understanding.

 “No schizophrenic classes”

* Steve McConnell, Code Complete, 1993, p. 81. Note: This concept was first
described by Larry Constantine in 1975, but we like McConnell’s definition best.

20 June 201113 14 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Coupling

 Coupling refers “to the strength of a connection between two
routines [or classes]. Coupling is a complement to cohesion.
Cohesion describes how strongly the internal contents of a
routine [or class] are related to each other. Coupling describes
how strongly a routine is related to other routines. The goal is to
create routines [and classes] with internal integrity (strong
cohesion) and small, direct, visible, and flexible relations to other
routines *and classes+ (loose coupling).”*

 Tight coupling is related to highly interconnected code.

* Steve McConnell, Code Complete, 1993, p. 81. Note: This concept was first
described by Larry Constantine in 1975, but we like McConnell’s definition best.

20 June 201114

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

15 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

No Redundancy

 "One Rule in One Place"

 Redundancy is not just:

– Redundant state

– Redundant functions

 It can also be redundant relationships

20 June 201115 16 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Encapsulation

 Data
– The data needed for a class to fulfill it's responsibilities is hidden from other

entities.

 Implementation
– How a class implements a particular function, or whether it implements it itself or

delegates to other objects, is hidden.

There are well-known, but also consider:

 Type
– Abstract classes and interfaces can hide their implementing classes.

 Design
– Assembling collaborating classes with an object factory keeps clients decoupled

from the way they are designed.

 Construction
– Encapsulation of construction means wrapping "new" in, at least, a separate

method, giving you control over the return type.

20 June 201116

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

17 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Qualities and Pathologies

 Strong cohesion
– A goal: classes do one thing – easier to understand

– Pathology: the “God object” is as bad as it gets

 Proper coupling
– A goal: well defined relationship between objects

– Pathology: side affects when have improper coupling

 No redundancy
– A goal: once and only once

– Pathology: a change in one place must be duplicated in another

 Readability
– A goal: coding standards

– Pathology: non-readable code

 Encapsulation
– A goal: hide data, type, implementation

– Pathology: assumptions about how something is implemented makes it difficult to change

20 June 201117 18 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Testability and Design

 Considering how to test your objects before designing
them is, in fact, a kind of design

 It forces you to look at:

– the public method definitions

– what the responsibilities of the object are

 Easy testability is tightly correlated to loose coupling
and strong cohesion

20 June 201118

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

19 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Testability

 Code that is difficult to unit test is often:

1. Tightly Coupled: "I cannot test this without instantiating half
the system“

2. Weakly Cohesive: "This class does so much, the test will be
enormous and complex!“

3. Redundant: "I'll have to test this in multiple places to ensure
it works everywhere"

20 June 201119 20 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Unit Testing

 Tests at a low, or granular level

 Each test confirms that the code accurately reflects one
intention of the system

 Test per class is often a natural fit

 A good test of our thought process:

– If we've designed classes to do one thing (strong cohesion),
then we should be able to test their functionality

– If classes do not create side effects in other classes, (loose
coupling), then we should be able to test them individually

20 June 201120

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

info@netobjectives.com
www.netobjectives.com

21 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring

20 June 201121 22 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring

 Refactoring: "Improving the Design of Existing Code"*

 It's actually more than that.

 Largely underestimated in importance

 Martin Fowler's book: "Refactoring" – an essential
reference for any developer/team

*Martin Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley. 1999.

20 June 201122

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

23 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring

 “Refactoring is the process of changing a software system in such
a way that it does not alter the external behavior of the code yet
improves its internal structure. It is a disciplined way to clean up
code that minimizes the chances of introducing bugs. In essence
when you refactor you are improving the design of the code
after it has been written.”*

 Assuming we know when we mean by "quality code",
Refactoring gives us a way to get there if we're not already

20 June 201123

Martin Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley. 1999.

24 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Types of Refactoring

Refactoring Bad Code

 Code "smells"

 Improve Design without
changing Function.

 Refactor to improve code
quality

 A way to clean up code
without fear of breaking
the system

Refactoring Good Code

 Code is "tight"

 A new Requirement
means code needs to be
changed

 Design needs to change
to accommodate this.

 A way to make this
change without fear of
breaking the system

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

info@netobjectives.com
www.netobjectives.com

25 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Case Study
Monitoring Microwave

Communications Hardware

26 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Complete Requirements

 We have to monitor both chips and cards. We want to write a
program that can request the status of both of these types of
hardware and then sends that status over either a TCP/IP
connection or via e-mail (SMTP)

 These messages may be optionally encrypted with either PGP64
bit encryption or PGP128 bit encryption

 When sending status out for a chip, we want to queue the
information to send it out no more than every 10 minutes unless
there is an error. Cards, on the other hand, send immediately

 A configuration file will contain information about which
transmission method to use

20 June 201126

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

27 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Finding Entities and Their Behaviors

 This has us focus on the “things” we have, first. Then,
we handle differing behaviors through the use of
polymorphism

 If more than one behavior varies, can result in tall class
hierarchies...

…which are hard to test

…which have unintended coupling

…which have redundancies

…which promote weak cohesion

20 June 201127 28 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Accommodating Change with Specialization

 Let’s walk through a potential way our problem could
evolve. We start with Chip and TCP/IP and add
function one step at a time. We accommodate this
through specialization

 The result is not pretty (except as in pretty common)

20 June 201128

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

29 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Start with ChipTCPIP Requirement

ChipTCPIP

+ getAndSendStatus()

sendWithTCPIP()

Client

20 June 201129 30 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Now Get Card with SMTP

ChipTCPIP
+ getAndSendStatus()

getStatus()

send()

Client

CardSMTP
getStatus()

send()

20 June 201130

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

31 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Better Way

Client

ChipTCPIP
getStatus()

send()

CardSMTP
getStatus()

send()

Hardware

+ getAndSendStatus()

This at least avoids some confusion

20 June 201131 32 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Then Get Chip with SMTP Requirement

Client Hardware

+ getAndSendStatus()

Chip

getStatus()

ChipTCP

send()

ChipSMTP

send()

CardSMTP
getStatus()

send()

20 June 201132

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

33 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Finally Get Card with TCPIP Requirement

Client Hardware

+ getAndSendStatus()

Chip

getStatus()

Card

getStatus()

ChipTCPIP
send()

ChipSMTP
send()

CardTCPIP
send()

CardSMTP
send()

20 June 201133 34 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

It Is, Of Course, Worse

 Note that we haven’t even been discussing the
variations of encryption

 That will just make things worse

 If you use switches instead of inheritance you merely
have coupled switches instead of a tall class hierarchy –
it is still bad

20 June 201134

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

35 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Problems with This

 Brittle. Will not easily allow for new derivations of Card and Chip,
or new transmission types

 Redundant. If you make a change to send() in ChipTCPIP, you
also need to change it in CardTCPIP

 Weak cohesion. Concrete classes are about multiple things.

 Multiple variations will cause combinatorial (class) explosion,
which increases maintenance problems

 In Short: Using inheritance for specialization does not scale

20 June 201135 36 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Combinatorial Explosion

Client Hardware

+ getAndSendStatus()

Chip

getStatus()

Card

getStatus()

ChipTCPIP
send()

ChipSMTP
send()

CardTCPIP
send()

CardSMTP
send()

ChipFTP
send()

CardFTP
send()

20 June 201136

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

info@netobjectives.com
www.netobjectives.com

37 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Advice from the
Gang of Four

38 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Gang of Four Gives Us Guidelines*

 Design to interfaces

 Favor object aggregation over class inheritance.

 Consider what should be variable in your design … and
“encapsulate the concept that varies.”

1. Find what varies and encapsulate it in a class of its own

2. Contain this class in another class to avoid multiple
variations in your class hierarchies

Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, 1995, pp. 18, 20, 29.

20 June 201138

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

39 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Design to Interfaces

 Determine the proper interface for a class, and design
to that, ignoring implementation details

– If you ignore implementation details, you cannot possibly
couple to them

– What you hide you can change

 Allows you to stay at a conceptual level, mentally, while
designing

– Most people cannot think effectively on multiple levels
without confusion

– Promotes Cohesion

20 June 201139 40 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Favor Aggregation Over Inheritance

 We can define a class that encapsulates variation,
contain (via aggregation) an instance of a concrete class
derived from the abstract class defined earlier

Socket

1. Allows for decoupling of concepts

2. Allows for deferring decisions until runtime

3. Small performance hit

Socket_cmp1 Socket_cmp2

Compression

Cmp1 Cmp2

Socket

Class Inheritance to Specialize Object Aggregation

20 June 201140

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

41 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Find What Varies and Encapsulate It

 Identify varying behavior

 Define abstract class that allows for communicating
with objects that have one case of this varying behavior

 This is a “design up front” point of view, but can be
tailored for design as you go

– Extract variations that result from new requirements

– Pull these out into their own classes

20 June 201141 42 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

What Are Design Patterns?

 Patterns are best-practice solutions for recurring problems in a
particular context

 Patterns have been classified as being:*
– Architectural
– Design
– Idiomatic

 Design patterns can also be thought of as describing the
relationships between the entities (objects) in our problem
domain

 Patterns have led to new modeling techniques:
– handling variations in behavior
– new ways of using inheritance to avoid rigidity and aid testing and

maintenance issues.

Bushmann, et. al. Pattern-Oriented Software Architecture.

20 June 201142

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

info@netobjectives.com
www.netobjectives.com

43 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Emergent Design

44 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Emergent Design

 Test-Driven Development, integrated with:

– the concepts of high quality code

– the knowledge of design patterns

– the attitude of building only what you need (Agile, YAGNI)

 Allows for designs to emerge

 We can take advantage of what we know without
overbuilding or over-designing.

20 June 201144

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

45 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Requirements as XP-Style “Stories

 Story 1: Request the status of a chip, encrypt it with PGP64 bit
encryption and send that status out via TCP/IP

 Story 2: Allow for not encrypting the status or using either
PGP64 bit or PGP128 bit encryption. A configuration file will
determine what (if any) encryption is needed

 Story 3: Support transmission via an e-mail connection. A
configuration file will determine which type of transmission to
use

 Story 4: Support getting and sending the status for a card as well

 Story 5: When sending out the status for a card, if there isn’t an
error, queue the results for 10 minutes before sending in case
get multiple status requests

20 June 201145 46 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Emergent Design: Starting with Story 1

 Request the status of a chip, encrypt it with PGP64 bit
encryption and send that status out via TCP/IP

 We will follow our rules attempting to implement the
simplest solution possible. This really means:

– No extra function

– Design for full system will emerge via refactoring

20 June 201146

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

47 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Thinking from a Testability Perspective

 What do we need to test?

– getting status

– encrypting a string

– sending an encrypted string

 Writing the tests for the individual methods should be
straightforward enough.

 Where should the methods lie?

 What’s the easiest way?

20 June 201147 48 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Test-First Development Steps

1. Write a test that expresses an intent of a class in the
system

2. Stub out the class (enough to allow the test to
compile

3. Fail the test (don't skip this)
4. Change the class just enough to pass the test
5. Pass the test
6. Examine the class for coupling, cohesion, redundancy,

and clarity problems. Refactor.
7. Pass the test
8. Return to 1 until all intentions are expressed

20 June 201148

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

49 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Solution Diagrammed

Chip
+ getAndSendStatus()

getStatus()

encrypt()

send()

Encrypt

+ encrypt()

TCPIP
+ transmit()

Client

20 June 201149 50 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Why Is this Better?

 It is clear what the pieces do and how they relate

– Increases extensibility

– Eases maintainability

 Sometimes requirements mis-lead us

20 June 201150

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

51 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Transition

 Remember: Two Kinds of Refactoring

1. Refactoring Bad Code: to improve code compliance to the
principles of loose coupling, strong cohesion, and no
redundancy

2. Refactoring Good Code: to implement a new/changed
requirement, leading to emergent design

 We've been doing the first kind thus far

 Now we're going to do the second

20 June 201151 52 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Story 2: Multiple Encryptions

 Allow for using no encryption, PGP64 bit encryption or
PGP128 bit encryption

20 June 201152

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

53 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring Says to Restructure Before Adding

 Refactoring tells us we should change our code before
adding new function.

 That is, we keep function the same, but restructure our
code to improve it.

 This has the following advantages:

– If we’ve been doing up-front testing, our tests don’t need to
change (we’re doing the same things)

– We always have something that works

– If something breaks, we are more likely to know what caused
it (one step at a time)

20 June 201153 54 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

How Can We Most Easily Test Things?

 Need to test every encryption
 Want to deal with using encryptions the same way.
 Easiest way is if we can have a common interface to the

encryptions

 If interfaces aren’t the same, then we have two
choices:
– Have Chip know differences and deal with them.
– Use lessons from design patterns and hide the variations.

This requires wrapping the differences. There are many ways
to do this, even when it at first appears difficult.

20 June 201154

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

55 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Open-Closed Principle

 Ivar Jacobson said:
– “All systems change during their life cycles. This must be borne in mind

when developing systems expected to last longer than the first version”

 Bertrand Meyer summarized this as:
– Software entities (classes, modules, functions, etc.) should be open for

extension, but closed for modification

 In English this means: design modules so that they never change.
When requirements change, add new modules to handle things

For a good article on the Open-Closed Principle, see www.objectmentor.com/publications/ocp.pdf

20 June 201155 56 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring to Open-Closed

 First refactor code so can add new function following
OCP

 Then add new code

20 June 201156

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

57 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

First, Add Needed Interface and Factory

Chip
+ getAndSendStatus()

getStatus()

encrypt()

send()

Encrypt

+ encrypt()

TCPIP
+ transmit()

Encrypt64

Client

Config
+ getEncrypt()

Used by Client
or Chip

20 June 201157 58 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Now, We Can Put in the New Function

 To put in new function someone must determine which
encryption type to use

 Let’s say we have a configuration object that can do this for us

 Client object can ask configuration object which to use

 Chip object can then be told what behavior is needed

 Now add encrypt128 and no encrypt options

 Note: Chip object could be responsible for talking with
configuration object, but then Client must give Chip all the
information the configuration object needs

20 June 201158

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

59 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Then, Add New Implementations

Chip
+ getAndSendStatus()

getStatus()

encrypt()

send()

Encrypt

+ encrypt()

TCPIP
+ transmit()

Encrypt64

Client

EncryptNull

Encrypt128

Config
+ getEncrypt()

Used by Client
or Chip

makes one of these

20 June 201159 60 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Story 3

 Support transmission via an e-mail connection. A
configuration file will determine which type of
transmission to use

 Testability tells us to deal with concept of Transmission
(don’t have to test all combinations)

 Design Patterns tell us same thing

20 June 201160

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

61 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Want to Follow Gang of Four Advice

 Because transmission is going to vary, we want to
encapsulate it and contain it in the using class (the
Chip)

 To implement this, first pull out the existing
transmission functionality into its own class

 Note that there is no extra cost caused by us doing this
now instead of when we first noticed it was possible

20 June 201161 62 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactor First

Chip
+ getAndSendStatus()

getStatus()

encrypt()

send()

Encrypt

+ encrypt()

TCPIP

Encrypt64

Client

EncryptNull

Encrypt128

Config
+ getEncrypt()

+ getTransmit()

Used by Client
or Chip

Transmit

+ transmit()

makes one of these

makes this

20 June 201162

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

63 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Add Other Transmitters

TCPIP

Chip
+ getAndSendStatus()

getStatus()

encrypt()

send()

Encrypt

+ encrypt()

Encrypt64

Client

EncryptNull

Encrypt128

Config
+ getEncrypt()

+ getTransmit()

Used by Client
or Chip

Transmit

+ transmit()

SMTP

makes one of these

makes one of these

20 June 201163 64 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Story 4: Support Cards

 For testing reasons, we don’t want to have to handle
different functional test cases when we have Cards or
Chips – we want to handle them together

 We want Cards and Chips to appear to be the same to
the Client

 We will implement the code with our two-step
Refactor-OCP shuffle

20 June 201164

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

65 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

First, Refactor So OCP Can Apply

TCPIP

Chip

Encrypt

+ encrypt()

Encrypt64

Client

EncryptNull

Encrypt128

Config

+ getEncrypt()

+ getTransmit()

Used by Client
or Hardware

Transmit

+ transmit()

SMTP

Hardware

+ getAndSendStatus()

getStatus()

encrypt()

send()

makes one of these

makes one of these

+getHardware()

20 June 201165 66 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Then, Add New Function

TCPIP

Chip

Encrypt

+ encrypt()

Encrypt64

Client

EncryptNull

Encrypt128

Transmit

+ transmit()

SMTP

Card

Hardware

+ getAndSendStatus()
getStatus()

encrypt()

send()

makes one of these

makes one of these

Config

+ getEncrypt()

+ getTransmit()

Used by Client
or Hardware

+getHardware()

20 June 201166

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

67 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

A Few Comments

 It is not a coincidence, or just good luck that we could
make these changes easily

 It happened because we made sure there was no
redundancy and because we kept unrelated things in
different classes

 These low level distinctions are easy to see, even if
their immediate benefit is not

 We should use them because they represent very low
cost and will result in significant gains if things change -
- which they almost certainly will

20 June 201167

info@netobjectives.com
www.netobjectives.com

68 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Designing with
Patterns

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

69 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

The Bridge Pattern

 GoF Intent: “De-couple an abstraction from its implementation
so that the two can vary independently”*

 This generally confuses people, because they think of
“abstractions” as abstract super classes, and
“implementations” as concrete subclasses

 This is not how the GoF is using these
terms

Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, 1995.

Abstraction

Imp1 Imp2

Decouple?

20 June 201169 70 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

The Bridge in Our Case

 The Bridge pattern in our case means we separate the
abstraction of our main responsibility (different kinds of
hardware - Chips and Cards) from an implementation of
one aspect of its responsibility (TCP/IP communication
and e-mail communication)

 The way to do this if by having all of our
implementations “look the same” to all of our
hardware components

20 June 201170

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

71 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

An Abstraction (Hardware) Tightly Coupled
to Its Implementation (Transmission)

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

ChipTCPIP
+ getAndSendStatus()

sendWithTCPIP()

ChipSMTP
+ getAndSendStatus()

sendWithSMTP()

CardTCPIP
+ getAndSendStatus()

sendWithTCPIP()

CardSMTP
+ getAndSendStatus()

sendWithSMTP()

20 June 201171 72 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Bridge Would Tell Us to Build It This Way

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus() TCPIP
+ sendInfo(string)

+ start()

+ done()

SMTP
+ sendInfo(string)

Transmit

+ sendInfo(string)

+ start()

+ done()

20 June 201172

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

73 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Bridge and Strategy Together

HWComp

+ getAndSendStatus()

Transmit

+ sendInfo(string, int)

+ start()

+ done()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

TCPIP

+ sendInfo(string, int)

+ start()

+ done()

SMTP

+ sendInfo(string, int)

Client

Encryption

+ encrypt()

EncryptW64

+ encrypt()

EncryptW128

+ encrypt()

EncryptWNone

+ encrypt()

20 June 201173

info@netobjectives.com
www.netobjectives.com

74 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Refactoring a Poor
Design

20 June 2011

74

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

75 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Can We “Refactor" a Design?

 Let’s say we took the original “entities with behavior”
approach.

 Although we wouldn’t recommend getting into this
trouble in the first place, let’s see if we can get out of it
by refactoring the design.

20 June 201175 76 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Poor Design as a Result of Using Entities
and Behaviors / Specialization

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

ChipTCPIP
+ getAndSendStatus()

sendWithTCPIP()

ChipSMTP
+ getAndSendStatus()

sendWithSMTP()

CardTCPIP
+ getAndSendStatus()

sendWithTCPIP()

CardSMTP
+ getAndSendStatus()

sendWithSMTP()

20 June 201176

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

77 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Pull Out Duplication of Transmission

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

ChipTCPIP

+ getAndSendStatus()

ChipSMTP

+ getAndSendStatus()

CardTCPIP

+ getAndSendStatus()

CardSMTP

+ getAndSendStatus()

TCPIP

+ sendTCPIP(string)

+ start()

+ done()

SMTP

+ sendSMTP(string)

20 June 201177 78 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Create Trans Class to Simplify Things

SMTP

+ sendInfo(string)

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

ChipTCPIP

+ getAndSendStatus()

ChipSMTP

+ getAndSendStatus()

CardTCPIP

+ getAndSendStatus()

CardSMTP

+ getAndSendStatus()

TCPIP

+ sendInfo(string)

+ start()

+ done()

Transmit

+ sendInfo(string)

+ start()

+ done()

20 June 201178

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

79 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Derived Classes Now Not Needed

SMTP
+ sendInfo(string)

Client Hardware

+ getAndSendStatus()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

TCPIP
+ sendInfo(string)

+ start()

+ done()

Transmit

+ sendInfo(string)

+ start()

+ done()

20 June 201179 80 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Can Keep Reference in Hardware

HWComp

+ getAndSendStatus()

Transmit

+ sendInfo(string, int)

+ start()

+ done()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

TCPIP

+ sendInfo(string, int)

+ start()

+ done()

SMTP

+ sendInfo(string, int)

Client

20 June 201180

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

81 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

The Full Design: Bridge and Strategy

HWComp

+ getAndSendStatus()

Transmit

+ sendInfo(string, int)

+ start()

+ done()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

TCPIP

+ sendInfo(string, int)

+ start()

+ done()

SMTP

+ sendInfo(string, int)

Client

Encryption

+ encrypt()

EncryptW64

+ encrypt()

EncryptW128

+ encrypt()

EncryptWNone

+ encrypt()

20 June 201181 82 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

A Universal Context in Software

 What objects you want to use creates the context for
the factories that will create those objects

 That is, before you can create something, you need to
know what you want to create

20 June 201182

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

83 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

The Full Design with Factory

Results in another kind of encapsulation….

Factory

+ getHWComp()

+ getEncrypt()

HWComp

+ getAndSendStatus()

Transmit

+ sendInfo(string, int)

+ start()

+ done()

Chip

+ getAndSendStatus()

Card

+ getAndSendStatus()

TCPIP

+ sendInfo(string, int)

+ start()

+ done()

SMTP

+ sendInfo(string, int)

Client

Encryption

+ encrypt()

EncryptW64

+ encrypt()

EncryptW128

+ encrypt()

EncryptWNone

+ encrypt()

20 June 201183 84 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Using Coding Qualities

 You could actually get here by just following coding
qualities.

 However, TDD, DPs and CVA are so related to code
qualities (and are easier to use) that we recommend
using them.

 However, to illustrate, say we had started with:

 and now got another transmitter.

ChipTCPIP

+ getAndSendStatus()

sendWithTCPIP()

Client

20 June 201184

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

85 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Handling This in Chip Weakens Cohesion

 We can handle this variation as follows:
private void sendStatus(String anInfo) {

if (transType== TCPIP) sendStatusTCPIP(anInfo);

else sendStatusSMTP(anInfo);

}

 However, this requires the Chip class to remember even more
detail about how to transmit. It’s already remembering how
TCP/IP works, now it’d have to remember SMTP stuff as well --
this erodes cohesion even more.

 I might have not worried about where I was, but I won’t tolerate
getting worse – I’ll split out Transmitter.

20 June 201185 86 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Using Encapsulation

 Consider how you would break up the functionality into
classes where you encapsulated as much as possible

 Implementation encapsulation means you need to pull
out encryption

 Design encapsulation means you don’t want the Chip to
even know there are multiple encryptions (hence, you
need to use polymorphism)

20 June 201186

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

87 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Conclusions

 Design emerges from:
– Refactoring, with adherence to good principles

– Thinking in Patterns, which reflects past adherence to good principles

– Commonality/Variability Analysis, which leads to good code qualities

 "Good Code Qualities" are:
– Strong cohesion (method, class)

– Loose coupling

– No Redundancy

– Encapsulation

– Testability

– Readability

– Focus

20 June 201187 88 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Conclusions

 Agility in the development process requires flexibility in
terms of the methodologies employed.

 Such flexibility comes from, among other things:

 Adherence to Good Principles, while

 Maintaining an awareness of emergent design, by

 Understanding the forces of change, and

 Recognizing applicable patterns in the design

 We can create maintainable code!

20 June 201188

Design Patterns Explained

20 June 2011Copyright © 2007 Net Objectives. All Rights Reserved.

89 Copyright © 2008 Net Objectives. All Rights Reserved. 20 June 2011

Other Net Objectives’ Talks

_s

Monday
 8:30-12:00pm Alan Shalloway. Scaling Agile with the Lessons of Lean Product

Development Flow

Tuesday
 8:30-12:00pm Alan Shalloway. Design Patterns Explained: From Analysis

Through Implementation

Wednesday
 2:30-3:45pm Ken Pugh. Prefactoring: Extreme Abstraction, Extreme Separation

and Extreme Readability
 2:30-3:45pm Alan Shalloway. Getting Executive Management on the Agile Bus
 4:00=5:30pm Alan Shalloway. Avoiding Over and Under Design

Thursday
 10:15-11:15 Alan Shalloway. Effective Agility Across the Enterprise: Patterns of

Successful Adoption
 2:30-3:45pm Alan Shalloway. Lean Development Practices for Agile Enterprise
 4:00-5:30pm Alan Shalloway. Developing Competence in Agile Teams

Come see 3 talks and get a t-shirt And don’t forget to see us in the Expo!

Register at www.netobjectives.com/register

http://www.netobjectives.com/register

