Design Patterns Explained

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved.

Lean for Executives Neh
Product Portfolio . .
Management Business - b]eCtlm
ASSESSMENTS
CONSULTING
TRAINING

COACHING
Lean

Enterprise

Lean Management

Kanban / Scrum I
Project Management

ATDD /TDD / Design Patterns

20 June 2011

Design Patterns Explained

! AlShall
@Netobj €ctives. cop

()@alshalloWay

4

Net Objectives’ Talks at Conference

Monday
® 1:30-5:00pm Rob Myers. Test Driven Development

Wednesday
® 8:30-10:00am Ken Pugh. Regular Expressions in C++
® 3:30-5:00pm Ken Pugh. Prefactoring
® 3:30-5:00pm Rob Myers. Principles and Practices of Scrum

Thursday
L]

10:15-11:45am Scott Bain & Rob Myers. Emergent Design Demo through Unit-Testing, Refactoring and Pair
Programming

10:15-11:45am Alan Shalloway. Lean Software Development: The Business Case for Agility
1:30-3:00pm Alan Shalloway. Design Patterns Explained
1:30-3:00pm Rob Myers. Business Value of Pair Programming

Friday
® 10:15-11:45am Alan Shalloway. Emergent Design: Design Patterns and Test-Driven Development
® 3:30-5:00pm Scott Bain. Mock Objects and Mock Turtles: The Role of Patterns in TDD
® 3:30-5:00pm Rod Claar. Dealing With Enterprise Data in an Agile Environment

And don’t forget to see us in the Expo!

el
—Anfvrhdies Copyright © 2008 Net Objectives. All Rights Reserved s 20 June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

® Assumes knowledge of:
— Code Qualities
— Unit Testing
— Refactoring
— Test First

— Test-Driven-Development:
= Test as design
" Emergent Design

Ml
[3 Anridves Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2N11 20June 2011

l\kf i . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

eS8 at boes ean:

® 1 a chiefly British : CUPEL b (1) : a critical examination,
observation, or evaluation : TRIAL; specifically : the procedure of
submitting a statement to such conditions or operations as will
lead to its proof or disproof or to its acceptance or rejection <a
test of a statistical hypothesis> (2) : a basis for evaluation :
CRITERION c : an ordeal or oath required as proof of conformity

with a set of beliefs

® Test can be thought of as what your specification is that
says you are doing what you should be doing.

Nl
i/ Anridves Copyright © 2008 Net Objectives. All Rights Reserved. 20 hine 2011 20June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

http://www.m-w.com/dictionary/cupel
http://www.m-w.com/dictionary/trial
http://www.m-w.com/dictionary/criterion

Design Patterns Explained

Predictability & Question to Ask &

® We can’t predict how our requirements are going to ® When working on a mature system consider when
change adding a new function...
® We can predict how our code will adapt to which task area takes more time
unpredictable requirements changes — writing the new function or
.) e —i i it 2
® How can we increase our prediction abilities of code integrating it into the system?
quality?
? ""'.'Iq'n Tdives Copyright © 2008 Net Objectives. All Rights Reserved. 20 liina 2011 20June 2011 n I'.'Iﬂ'|'|'\| dives Copyright © 2008 Net Objectives. All Rights Reserved.

70 lina 2011 20%ne20m

Nei , . .
e ’/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

What Are the Characteristics of

T TR RO Easily Maintainable Code?

® Strong cohesion

— Acgoal: classes do one thing — easier to understand ® Codeis readable.
. P— Pathology:l.the “God object” is as bad as it gets — can see what individual things do
roper coupling o e
— Agoal: well defined relationship between objects — can see how individual things interact
= No f:ahu"r']‘;g;';{i'se affects when have improper coupling ® Can change code in one place without it adversely (or
— Agoal: once and only once unknowingly) changing behavior in another place.
— Pathology: a change in one place must be duplicated in another ® When need to make a change onIy need to change it in
= Readability ’
— Agoal: coding standards one pIace.
— Pathology: non-readable code -
= Encapsulation In other words: readable, independent, efficient

— Agoal: hide data, type, implementation
— Pathology: assumptions about how something is implemented makes it
difficult to change ...and, of course, correct

an Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved! 203une 2011 2 Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 0%ne 01

Nei >, . .
»:-‘/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Cohesion

® Cohesion refers to how “closely the operations in a routine [or
class] are related.” | have heard other people refer to cohesion
as “clarity” because the more operations are related in a routine
[or class] the easier it is to understand the code and what it's
intended to do. *

® Strong cohesion is related to clarity and understanding.
® “No schizophrenic classes”

* Steve McConnell, Code Complete, 1993, p. 81. Note: This concept was first
described by Larry Constantinein 1975, but we like McConnell’sdefinition best.

e Trvvhdives Copyright © 2008 Net Objectives. AllRights Reserved. 20 hine 2N11 2ne

Nei

Coupling

® Coupling refers “to the strength of a connection between two
routines [or classes]. Coupling is a complement to cohesion.
Cohesion describes how strongly the internal contents of a
routine [or class] are related to each other. Coupling describes
how strongly a routine is related to other routines. The goal is to
create routines [and classes] with internal integrity (strong
cohesion) and small, direct, visible, and flexible relations to other
routines [and classes] (loose coupling).”*

" Tight coupling is related to highly interconnected code.

* Steve McConnell, Code Complete, 1993, p. 81. Note: This concept was first
described by Larry Constantinein 1975, but we like McConnell’sdefinition best.

201

W Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 0%ne 01

b /b]ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

No Redundancy Encapsulation

m i " " Data
One Rule in One Place - Thg (jata needed for a class to fulfill it's responsibilities is hidden from other
® Redundancy is not just: _ entities

Implementation

— Redundant state — How a class implements a particular function, or whether it implements it itself or
delegates to other objects, is hidden.

— Redundantfunctions
. . There are well-known, but also consider:
® |t can also be redundant relationships
" Type
— Abstract classes and interfaces can hide their implementing classes.
" Design
— Assembling collaborating classes with an object factory keeps clients decoupled
from the way they are designed.
" Construction

— Encapsulation of construction means wrapping "new" in, at least, a separate
method, giving you control over the return type.

Nl bl
e Achdies ves. Al Rights Reserved. 920 e 2011 20%une 2011 1% Achdies Copyright © 2008 Net Objectives. Al Rights Re:

70 lina 2011 20%ne20m

Nei , . .
‘ﬁ/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Qualities and Pathologies Testability and Design

" Strong cohesion ® Considering how to test your objects before designing
— Agoal: classes do one thing — easier to understand h . f k d f d .
— Pathology: the “God object” is as bad as it gets them IS, In aCt’ akindo eSIgn
" Proper coupling ® |t forces you to look at:
— Agoal: well defined relationship between objects) o
— Pathology: side affects when have improper coupling — the pUbllC method definitions
" No redundancy — what the responsibilities of the object are
— Agoal: once and only once o . . .
— Pathology: a change in one place must be duplicated in another " Easy teStabIIIty IS tlghtly correlated to Ioose Coupllng
» Readability and strong cohesion

— Agoal: coding standards
— Pathology: non-readable code

" Encapsulation
— Agoal: hide data, type, implementation
— Pathology: assumptions about how something is implemented makes it difficult to change

" "
L i L i
77 Arrchives Copyright © 2008 Net Objectives. Al Rights Reserved! 920 hina 7011 0une 2011 15 “Tvctites Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 0%ne 01

Nei , . .
*-=/lﬂedlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Testability Pﬂ Unit Testing Pﬂ

® Code that is difficult to unit test is often:

Tests at a low, or granular level

1. Tightly Coupled: "I cannot test this without instantiating half ® Each test confirms that the code accurately reflects one

the system” intention of the system
2. Weakly Cohesive: "This class does so much, the test will be

B ® Test per class is often a natural fit
enormous and complex!
.. . u .
3. Redundant: "I'll have to test this in multiple places to ensure A good test of our thought process:
it works everywhere" — If we've designed classes to do one thing (strong cohesion),
then we should be able to test their functionality
— If classes do not create side effects in other classes, (loose
coupling), then we should be able to test them individually
§ Ned Ty
19 Tvchiies Copyright © 2008 Net Objectives. All Rights Reserved. 20 liina 2011 20June 2011 n Tnvvtdivs Copyright © 2008 Net Objectives. All Rights Reserved. 20 hiina 2011 20kune 2011
Nei

b /b]edives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

m

= Refactoring: "Improving the Design of Existing Code"*
" |t's actually more than that.
® largely underestimated in importance

" Martin Fowler's book: "Refactoring" — an essential

NIV = -y v
o
(et o 1 reference for any developer/team

o T

Martin Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley. 1999.

Nl
» e tichives Copyright © 2008 Net Objectives. All Rights Reserved. 90 hine 2011 20une 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

:

Refactoring

m “Refactoring is the process of changing a software system in such
a way that it does not alter the external behavior of the code yet
improves its internal structure. Itis a disciplined way to clean up
code that minimizes the chances of introducing bugs. In essence
when you refactor you are improving the design of the code
after it has been written.”*

= Assuming we know when we mean by "quality code",
Refactoring gives us a way to get there if we're not already

Martin Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley. 1999.

2 e Trvcidins

Copyright © 2008 Net Objectives. All Rights Reserved.

70 lina 2N11 200201

Nef;b]ecti ves

24

Types of Refactoring

Refactoring Bad Code

e Trvcidins

Code "smells"

Improve Design without
changing Function.
Refactor to improve code
quality

A way to clean up code
without fear of breaking
the system

Copyright © 2007 Net Objectives. All Rights Reserved.

Refactoring Good Code

Copyright © 2008 Net Objectives.

Code is "tight"

A new Requirement
means code needs to be
changed

Design needs to change
to accommodate this.

A way to make this
change without fear of
breaking the system

All Rights Reserved 20

June 2011

20 June 2011

Design Patterns Explained

= We have to monitor both chips and cards. We want to write a
program that can request the status of both of these types of
hardware and then sends that status over either a TCP/IP
connection or via e-mail (SMTP)

® These messages may be optionally encrypted with either PGP64
bit encryption or PGP128 bit encryption

® When sending status out for a chip, we want to queue the
information to send it out no more than every 10 minutes unless
there is an error. Cards, on the other hand, send immediately

" A configuration file will contain information about which
transmission method to use

Ml
oe vl Copyright © 2008 Net Objectives. Al Rights Reserved. 20 iina 2011 20une 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Finding Entities and Their Behaviors & Accommodating Change with Specialization &

® This has us focus on the “things” we have, first. Then, ® Let’s walk through a potential way our problem could
we handle differing behaviors through the use of evolve. We start with Chip and TCP/IP and add
polymorphism function one step at a time. We accommodate this

® |f more than one behavior varies, can result in tall class through specialization
hierarchies... " The result is not pretty (except as in pretty common)

..which are hard to test

...which have unintended coupling
...which have redundancies
...which promote weak cohesion

7 Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved! 920 hina 7011 0une 2011 2% Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 0%ne 01

Nei >, . .
»:-‘/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Start with ChipTCPIP Requirement Now Get Card with SMTP

Client
— ChipTCPIP
Client + getAndSendStatus()
\ - # getStatus()
ChipTCPIP # send()
+ getAndSendStatus ()
#sendWithTCPIP()
CardSMTP
getStatus()
send()
e, e,
2q -"fﬂ'\ Hivs Copyright © 2008 Net Objectives. All Rights Reserved. 20 hine 2N11 20June 2011 in -“f'*" Hivs Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2N11 20June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Better Way

Client

Hardware

+ getAndSendStatus()

#

ChipTCPIP

CardSMTP

getStatus()
send()

getStatus()
send()

This at least avoids some confusion

Ml

3 Anrcidies Copyright © 2008 Net Objectives. All Rights Reserved.

Nir.;l?jecti ves

Then Get Chip with SMTP Requirement

20 liine 2N11 20June 201

Copyright © 2007 Net Objectives. All Rights Reserved.

Client | Hardware
+ getAndSendStatus()
Chip CardSMTP
getStatus()
getStatus() #send()
[\
ChipTCP ChipSMTP
#send() #send()
Anrcidies Copyright © 2008 Net Objectives. All Rights Reserved.

20 liine 2N11 20June 2011

20 June 2011

Design Patterns Explained

Finally Get Card with TCPIP Requirement It Is, Of Course, Worse

® Note that we haven’t even been discussing the
variations of encryption

Client Hardware
+ getAndSendStatus(® That will just make things worse
‘ Z> ‘ " |f you use switches instead of inheritance you merely
Chip Card have coupled switches instead of a tall class hierarchy —
getStatus() # getStatus() L R
Q Q it is still bad
ChipTCPIP ChipSMTP CardTCPIP CardSMTP
send() # send() # send() # send()
Ned Ty el
B Amchdivs Copyright © 2008 Net Objectives. All Rights Reserved 20 liina 2011 20June 2011 ¥ Amchdivs Copyright © 2008 Net Objectives. All Rights Reserved. 20 hiina 2011 20kune 2011

Nei , . .
*-=/lﬂedlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Problems with This Combinatorial Explosion

= Brittle. Will not easily allow for new derivations of Card and Chip, Client Hardware

or new transmission types + getAndSendStatus()
= Redundant. If you make a change to send() in ChipTCPIP, you 4

also need to change it in CardTCPIP C‘ard
® Weak cohesion. Concrete classes are about multiple things. # getStatus()
® Multiple variations will cause combinatorial (class) explosion, Chip Z>

which increases maintenance problems # getStatus()

L . e CardTCPIP || CardSMTP | | CardFTP

" |n Short: Using inheritance for specialization does not scale $ # send() # send() # send()

\ [\
ChipTCPIP ChipSMTP ChipFTP
send() # send() # send()

Nl Nl
E:S Ieciives Copyright © 2008 Net Objectives. AllRights Reserved. 20 hiina 2011 20une 2011 ¥ Trivtdivs Copyright © 2008 Net Objectives. All Rights Reserved 20 hiina 2011 20une 2011

Nei >, . .
»:-‘/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

" Designto interfaces

" Favor object aggregation over class inheritance.

® Consider what should be variable in your design ... and
“encapsulate the concept that varies.”
1. Find what varies and encapsulate it in a class of its own

2. Contain this class in another class to avoid multiple
variations in your class hierarchies

Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, 1995, pp. 18, 20, 29.

Ml
E Copyright © 2008 Net Objectives. Al Rights Reserved. 20 iina 2011 20une 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Design to Interfaces

® Determine the proper interface for a class, and design
to that, ignoring implementation details

— If you ignore implementation details, you cannot possibly
couple to them

— What you hide you can change
® Allows you to stay at a conceptual level, mentally, while
designing
— Most people cannot think effectively on multiple levels
without confusion
— Promotes Cohesion

0 5
Ee) Arfchies Copyright © 2008 Net Objectives. Al Rights Reserved! 20 liine 2011 20%une 2011

Ncif;ky'ecti ves

Copyright © 2007 Net Objectives. All Rights Reserved.

Favor Aggregation Over Inheritance

® We can define a class that encapsulates variation,
contain (via aggregation) an instance of a concrete class
derived from the abstract class defined earlier

‘ Socket H Compression ‘
N\ N\

Object Aggregation

‘ Socket_cmpl H Socket_cmp2 ‘

Class Inheritance to Specialize

=

Allows for decoupling of concepts
Allows for deferring decisions until runtime

w N

Small performance hit

0 5
Tpvlaivs Copyright © 2008 Net Objectives. All Rights Reserved.

70 lina 2011 20%ne20m

20 June 2011

Design Patterns Explained

Find What Varies and Encapsulate It

® |dentify varying behavior

® Define abstract class that allows for communicating
with objects that have one case of this varying behavior

" This is a “design up front” point of view, but can be
tailored for design as you go
— Extract variations that result from new requirements
— Pull these out into their own classes

2 —Archives Copyright © 2008 Net Objectives. AllRights Reserved. 20 liine 2011 20%une 2011

Nei

»;-'/@edlves Copyright © 2007 Net Objectives. All Rights Reserved.

What Are Design Patterns?

Patterns are best-practice solutions for recurring problems in a
particular context

Patterns have been classified as being:*

— Architectural

— Design

— Idiomatic

Design patterns can also be thought of as describing the
relationships between the entities (objects) in our problem
domain

Patterns have led to new modeling techniques:

— handling variations in behavior

— new ways of using inheritance to avoid rigidity and aid testing and
maintenance issues.

Bushmann, et. al. Pattern-Oriented Software Architecture.

Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 2

une 2011

20 June 2011

Design Patterns Explained

® Test-Driven Development, integrated with:
— the concepts of high quality code

— the knowledge of design patterns
— the attitude of building only what you need (Agile, YAGNI)

= Allows for designs to emerge

" We can take advantage of what we know without
overbuilding or over-designing.

Ml
wa e dectives Copyright © 2008 Net Objectives. All Rights Reserved. 20 hiine 2011 20June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Requirements as XP-Style “Stories E* Emergent Design: Starting with Story 1 E*

® Story 1: Request the status of a chip, encrypt it with PGP64 bit ® Request the status of a chip, encrypt it with PGP64 bit

encryption and send that Statfjs out via TCP/IP o encryption and send that status out via TCP/IP

= Story 2: Allow for not encrypting the status or using either
PGP64 bit or PGP128 bit encryption. A configuration file will ® We will follow our rules attempting to implement the
determine what (if any) encryption is needed simplest solution possible. This really means:

® Story 3: Support transmission via an e-mail connection. A
configuration file will determine which type of transmission to
use

" Story 4: Support getting and sending the status for a card as well

® Story 5: When sending out the status for a card, if there isn’t an
error, queue the results for 10 minutes before sending in case
get multiple status requests

— No extra function
— Design for full system will emerge via refactoring

955, Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved! 920 hina 7011 0une 2011 %a Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved 20 hina 2011 0%ne 01

Nei

b /b]ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Thinking from a Testability Perspective E* Test-First Development Steps E*

® What do we need to test? 1. Write a test that expresses an intent of a class in the
— getting status system
)) 2. Stub out the class (enough to allow the test to
— encrypting a string compile
— sending an encrypted string 3. Fail the test (don't skip this)
® Writing the tests for the individual methods should be 4, Change the class just enough to pass the test
straightforward enough. 5. Passthe test
® Where should the methods lie? 6. Examine the class for coupling, cohesion, redundancy,
, . and clarity problems. Refactor.
® What's the easiest way? yp
7. Passthe test
8. Returnto 1 until all intentions are expressed
W7 Trvvhdives Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20%une 2011 %9 Trvvhdives Copyright © 2008 Net Obiectives. All Rights Reserved: 20 lhine 2011 20%une 2011

Nei >, . .
b ./b]ectu)es Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Solution Diagrammed

- Chip Encrypt
Client + getAndSendStatus() >
I | + encrypt()
C] # getStatus() [+ encrypo)
encrypt() ~—_
#send0 > 1cpp
el
%9 At Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20%une 2011 N

N%ecti ves

Copyright © 2007 Net Objectives. All Rights Reserved.

Why Is this Better?

® |t is clear what the pieces do and how they relate
— Increases extensibility
— Eases maintainability

® Sometimes requirements mis-lead us

y
Mol
Anrcidies Copyright © 2008 Net Objectives. All Rights Reserved.

201

20 lina 2011 200une

20 June 2011

Design Patterns Explained

Transition E

= Remember: Two Kinds of Refactoring

Story 2: Multiple Encryptions

1. Refactoring Bad Code: to improve code compliance to the PGP128 bit encryption

principles of loose coupling, strong cohesion, and no
redundancy

2. Refactoring Good Code: to implement a new/changed
requirement, leading to emergent design

"= We've been doing the first kind thus far
" Now we're going to do the second

bl Nl
& Achdies Copyright © 2008 Net Objectives. Al Rights Reserved 90 hiine 9N11 20 201t 29 Achdies

Nei , . .
»;@edlves Copyright © 2007 Net Objectives. All Rights Reserved.

Copyright © 2008 Net Objectives. All Rights Reserved.

-

Allow for using no encryption, PGP64 bit encryption or

70 lina 2011 20%ne20m

20 June 2011

Design Patterns Explained

Refactoring Says to Restructure Before Adding E*

® Refactoring tells us we should change our code before
adding new function.

" Thatis, we keep function the same, but restructure our
code to improve it.

" This has the following advantages:

— If we’ve been doing up-front testing, our tests don’t need to
change (we’re doing the same things)

— We always have something that works
— If something breaks, we are more likely to know what caused
it (one step at a time)

Nl
ooy Trvctdies Copyright © 2008 Net Obiectives, Al Rights Reserved 920 e 2011 20%une 2011

Nei

be -‘/@edlves Copyright © 2007 Net Objectives. All Rights Reserved.

=

How Can We Most Easily Test Things? E*

Need to test every encryption
Want to deal with using encryptions the same way.

Easiest way is if we can have a common interface to the
encryptions

If interfaces aren’t the same, then we have two
choices:
— Have Chip know differences and deal with them.

— Use lessons from design patterns and hide the variations.
This requires wrapping the differences. There are many ways
to do this, even when it at first appears difficult.

Nl
Trechdies Copyright © 2008 Net Objectives. Al Rights Reserved. 20 e 2011 20ne 011

20 June 2011

Design Patterns Explained

Open-Closed Principle Refactoring to Open-Closed

" IvarJacobson said: ® First refactor code so can add new function following
— “All systems change during their life cycles. This must be borne in mind OCP
when developing systems expected to last longer than the first version”
® Bertrand Meyer summarized this as: ® Then add new code

— Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification

" |n English this means: design modules so that they never change.
When requirements change, add new modules to handle things

For a good article on the Open-Closed Principle, see www.objectmentor.com/publications/ocp.pdf

Nl Nl
(=S Tmvlaws Copyright © 2008 Net Objectives. All Rights Reserved. 20 hine 2011 20June 2011 [N Tl Copyright © 2008 Net Objectives. Al Rights Reserved 90 hine 27N11 20June 2011

Nei , . .
*-=/lﬂedlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

First, Add Needed Interface and Factory Now, We Can Put in the New Function

" To putin new function someone must determine which
encryption type to use

Client Chip Encrypt ,) . . .
I+ getAndsendstatus(] |+ encypt(® Let’s say we have a configuration object that can do this for us
getS
\ o0 Zé = Client object can ask configuration object which to use
\ # send()
\ T Encrypt64 ® Chip object can then be told what behavior is needed
Used by Client & \1 N " Now add encrypt128 and no encrypt options
or Chip TCPIP \
\
Config + transmit()
TgetEncypl) T ——— " Note: Chip object could be responsible for talking with
o configuration object, but then Client must give Chip all the
information the configuration object needs
w7 "I'I'fl'- tiiws Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20%une 2011 e "I'I'fl'- tiiws Copyright © 2008 Net Objectives. Al Rights Reserved 20 lhine 2011 20%une 2011

Nei , . .
‘ﬁ/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Then, Add New Implementations Story 3

® Support transmission via an e-mail connection. A
configuration file will determine which type of

o chip Encrypt transmission to use
e 3::@?;:558“8“’““50 i + encrypt() " Testability tells us to deal with concept of Transmission
\ zzgﬁ:jy(;)t() A -~ (don’t have to test all combinations)
\ EncryptNull || | Encrypt64 i i
A \ neryptNull ||| Encryp ® Design Patterns tell us same thing
Used by Client AN
@ TCPIP / Encrypt128 | \
Conﬁg + transmit() //7
+ getEncrypt() 7““%akesmﬁthg§—e;\ﬁv,
Nl Nl
[=¢) Anrcidies Copyright © 2008 Net Objectives. All Rights Reserved. 20 hiine 2011 20June 2011 N “Tvctites Copyright © 2008 Net Objectives. All Rights Reserved 20 liina 2N11 20June 2011

Nei >, . .
»/b]eCtu?eS Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Want to Follow Gang of Four Advice

Refactor First

® Because transmission is going to vary, we want to

encapsulate it and contain it in the using class (the
Chip)

" To implement this, first pull out the existing
transmission functionality into its own class

" Note that there is no extra cost caused by us doing this
now instead of when we first noticed it was possible

Nl
& Arrctdies Copyright © 2008 Net Obiectives, Al Rights Reserved 920 e 2011 20%une 2011 6

Nei , . .
be ’/@Edlves Copyright © 2007 Net Objectives. All Rights Reserved.

P Anchipes

Client Chip - Encrypt
————xJ]+ getAndSendStatus()|———— ~ |+ encrypt()
| # getStatus()
\\ # encrypt()
\ # send()
\ N EncryptNull || | Encrypt64
Used by Client Transmit A <
or Chip + transmit() f \
I / | Encryptl128 | \
Config Q
+ getEncrypt() —makes this>| TCPIP
+ getTransmit()

A\

—makes one of these™

Copyright © 2008 Net Objectives. All Rights Reserved.

20 lina 2011 200

20 June 2011

une 2011

Design Patterns Explained

Story 4: Support Cards

Add Other Transmitters

Client Chip > Encrypt " For testing reasons, we don’t want to have to handle
tAndSendStatus()| 7|+ encrypt . .
: >:¢gg:tgfatufg aws0 o0 different functional test cases when we have Cards or
\
\ o cara0 iﬁ Chips — we want to handle them together
\ . .
\ T* . EncryptNull | | Encrypt64 ® We want Cards and Chips to appear to be the same to
Used b Clientﬁ ransmi .
or Chipy + transmit() A = 128 N\ the Client
: / ncryp \ - .
Con'ﬁg é /) " We will implement the code with our two-step
+ getEncrypt(cpp | [smp]/ Refactor-OCP shuffle
+ getTransmit()

< A
Nrakesoné of these—
———makes one of these” ’

Copyright © 2008 Net Objectives. All Rights Reserved.

Nl
Achdies Copyright © 2008 Net Objectives. Al Rights Reserved. 20 e 2011 20ne 011

Nl
=5 “IpATais 20 liine 2N11 20June 2011 ®a

Nei , . .
e ’/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

First, Refactor So OCP Can Apply Then, Add New Function

Hardware Hardware

+getAndSendStatus() + getAndSendStatus()

getStatus() # getStatus()

encrypt() _|# encrypt()

send() " 7J#send()

ey —y —) \ "> Encrypt
Client | ~| Encrypt Client +encrypt()
+encrypt()] i
\ Card .

EncryptNull|| | Encrypt64

2

¥ EncryptNull || | Encrypt64

yisis 2%
Transmit ‘

-] Used by Client
Used by Client™ Transmit vi N or Hardware A R
or Hardware +transmit() /| Encrypt128|
Encrypt128 | \ - \
- y Config
Config p + getEncrypt) /ﬂ o
+getEncrypt() e +getTransmit() S
+ getTransmit() TCPIP SMTP pe +getHardware(). e
+getHardware() X
.‘ll'll- i .‘ll'll- i
= “Tvctites Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20une 2011 A “Tvctites Copyright © 2008 Net Objectives. All Rights Reserved. 20 lhina 2011 20%une 2011

Nei >, . .
s—/bJECtiUes Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

! !ew !ommen!s !

® |tis not a coincidence, or just good luck that we could
make these changes easily

" |t happened because we made sure there was no
redundancy and because we kept unrelated things in
different classes

" These low level distinctions are easy to see, even if
their immediate benefit is not

® We should use them because they represent very low
cost and will result in significant gains if things change -
- which they almost certainly will

Nl
&7 Anridves Copyright © 2008 Net Objectives. All Rights Reserved. 20 hine 2011 20June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

The Bridge Pattern

® GoF Intent: “De-couple an abstraction from its implementation
so that the two can vary independently”*

® This generally confuses people, because they think of
“abstractions” as abstract super classes, and
“implementations” as concrete subclasses ‘

Abstraction ‘

® This is not how the GoF is using these

terms Decouple?
‘ Imp1l ‘ ‘ Imp2 ‘
Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, 1995.
©a Ttdies Copyright © 2008 Net Objectives. AllRights Reserved. 20 liine 2011 20%une 2011
Nei

—bjectives

Copyright © 2007 Net Objectives. All Rights Reserved.

The Bridge in Our Case

® The Bridge pattern in our case means we separate the
abstraction of our main responsibility (different kinds of
hardware - Chips and Cards) from an implementation of
one aspect of its responsibility (TCP/IP communication
and e-mail communication)

" The way to do this if by having all of our
implementations “look the same” to all of our
hardware components

Trvvhdives Copyright © 2008 Net Obiectives. All Rights Reserved:

70 lina 2011 20%ne20m

20 June 2011

Design Patterns Explained

An Abstraction (Hardware) Tightly Coupled

T mmm—— Bridge Would Tell Us to Build It This Way

Client Hardware T -
ransmit
*getAndSendStats0 ‘ Client ‘ Hardware + sendlInfo(string)
+ getAndSendStatus() + start()
[1 +done()
Chip Card %
+ getAndSendStatus() + getAndSendStatus() Chip Card
é + getAndSendStatus() | |+ getAndSendStatus() TCPIP
L + sendInfo(string) SMTP
ChipTCPIP ChipSMTP CardTCPIP CardSMTP + start() + sendinfo(string)
+ getAndSendStatus() | |+ getAndSendStatus() | |+ getAndSendStatus() ||+ getAndSendStatus() +done()
#sendWithTCPIP() | |# sendWithSMTP() #sendWithTCPIP() || # sendWithSMTP()

Ml

7 Anrcidies Copyright © 2008 Net Obj

Ml

ves. All Rights Reserved. 20 hine 2N11 20une 2011 25 Trvvhdives Copyright © 2008 Net Objectives. All Rights Re:

20 liine 2N11 20June 2011

Nei , . .
*'/lﬂed‘lves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

HWComp

Transmit
+ sendinfo(string, int)
+ start()
+ done()
A TCPIP
: ;) + ing, int) SMTP
[Encryptwe4 | | Encryptwi2s| [EncryptwiNone || S [+ sendinfo(sting, in
‘+ encrypt() ‘ ‘+ encrypt() ‘ ‘+ encrypt() ‘
Nl
a2 Anridves Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2N11 20June 2011

Ne . .
ectives Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Poor Design as a Result of Using Entities
and Behaviors / Specialization

Can We “Refactor" a Design?

® Let’s say we took the original “entities with behavior”
approach.

® Although we wouldn’t recommend getting into this
trouble in the first place, let’s see if we can get out of it ' ‘

Client Hardware
+ getAndSendStatus()

by refactoring the design. Chip card
+ getAndSendStatus() + getAndSendStatus()
ChipTCPIP ChipSMTP CardTCPIP CardSMTP

+ getAndSendStatus() | | + getAndSendStatus() | |+ getAndSendStatus() ||+ getAndSendStatus()
sendWithTCPIP() # sendWithSMTP() # sendWithTCPIP() # sendWithSMTP()

Nl Nl
e Tmvlaws Copyright © 2008 Net Objectives. All Rights Reserved. 20 hine 2N11 20une 2011 #a Tmvlaws Copyright © 2008 Net Objectives. Al Rights Reserved 70 hine 2011 20June 2011

Nei , . .
‘ﬁ/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Nir.;l?jecti ves

Design Patterns Explained

Pull Out Duplication of Transmission

Client < Hardware
L]

+ getAndSendStatus()

+ getAndSendStatus()

+ getAndSendStatus(

[chiptcPip || chipsmte || cardTcPP || cardsmTP |
‘+ getAndSendStatus()‘ ‘4— getAr\dSer\dStatus()‘ ‘* getAr U l)H+ g US()‘
N e ~

TcPp
+ sendTCPIP(string)
+ start()
+ done()

y
Nl
Anrcidies Copyright © 2008 Net Objectives. All Rights Reserved.

20 liine 2N11 20June 201

7R

Copyright © 2007 Net Objectives. All Rights Reserved.

Create Trans Class to Simplify Things
Client | Hardware |

+ getAndSendStatus()

+ getAndSendStatus()

+ getAndSendStatus(

‘ ChipTCPIP ‘ ‘ ChipSMTP ‘ ‘ CardTCPIP H CardSMTP ‘
‘+ getAndSendS!alus()‘ ‘+ getAndSendStatus()‘ ‘4— getAr tatu L)H + get ldluS()‘
<. N ~ —

N Transmit
+ sendinfo(string)
+ start()
+ done()

— &

TCPIP [smrp]
+ sendlinfo(string)| + sendInfo(string)
+ start()
+ done()

;
Nl
Anvciiies Copyright © 2008 Net Objectives. All Rights Re

20 liine 2N11 20June 2011

20 June 2011

Design Patterns Explained

Derived Classes Now Not Needed Can Keep Reference in Hardware

Client Hardware
+ getAndSendStatus()
Z> + getAndSendStatus()
I] L
Chip Card T Transmit
+ getAndSendStatus() + getAndSendStatus() ‘ - H ‘ + sendinfo(string, int)
~ 7 Chip Card + start()
= T it ‘+ gemndSendSla(us()H + gelAndSendSIalus()‘ + done()
ransmi
+ sendInfo(string)
+ start()
+done() TCPIP
+ sendinfo(string, int)| SMTP
+ start() _+ sendInfo(string, int)|
+ done()
TCPIP SMTP
+ sendinfo(string) + sendInfo(string)
+ start()
+done()
el el
7#q Arfchies Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20%une 2011 8N Arfchies Copyright © 2008 Net Obiectives. All Rights Reserved: 20 lhine 2011 20%une 2011

Nei >, . .
L-/lﬂedtves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

The Full Design: Bridge and Strategy A Universal Context in Software

® What objects you want to use creates the context for

B HWComp the factories that will create those objects
- .+ getAndSendStatus()
: I, " That s, before you can create something, you need to
Transmit
N _ H | [senamttsng, know what you want to create
‘ Chip Card + start()
1 ‘+ getAndSend Slalus()H + gelAndSendSlalus()‘ + done()
N TCPIP
. + sendinfo(string, int)|
‘ EncryptW64‘ ‘ EncryplWlZS‘ ‘ EncryptWNone‘ :Z?HZ(())
‘4— encrypt() ‘ ‘4— encrypt() ‘ ‘+ encrypt() ‘
Nl el
81 vhiivs Copyright © 2008 Net Objectives. Al Rights Reserved 90 liina 2011 20une 201) vhiivs Copyright © 2008 Net Objectives. All Rights Reserved. 20 liina 2011 20ne 201

Nei , . .
‘ﬁ/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

The Full Design with Factory Using Coding Qualities

e " You could actually get here by just following coding
qualities.

® However, TDD, DPs and CVA are so related to code
qualities (and are easier to use) that we recommend

A Tranemit using them.

‘ Chip | Card | [sendfotsting. i - . Sl
s e) However, to illustrate, say we had started with:

HWComp
|+ getAndSendsStatus()

o

" Client

_+ encrypt() I — N :
N TCPIP N ChipTCPIP
) + sendinfo(string, int)| + gemndsendStatus()
‘ EncryptW64‘ ‘ Encrypthzs‘ ‘ EncryptWNone‘ :Zt;:;(()) #sendWithTCPIP()
‘+ encrypt() ‘ ‘+ encrypt() ‘ ‘+ encrypt() ‘
® and now got another transmitter.
Results in another kind of encapsulation....
el Nl
8 Aechiies Copyright © 2008 Net Objectives AllRights Reserved! 20 hina 9011 20une 2011 o Aechiies

Copyright © 2008 Net Objectives. Al Rights Reserved 20 liine 2N11 20June 2011

Nei , . .
e ’/@edlves Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

Design Patterns Explained

Handling This in Chip Weakens Cohesion

® We can handle this variation as follows:
private void sendStatus (String anInfo) {
if (transType== TCPIP) sendStatusTCPIP(anInfo);
else sendStatusSMTP (anInfo) ;
}
® However, this requires the Chip class to remember even more
detail about how to transmit. It’s already remembering how
TCP/IP works, now it’d have to remember SMTP stuff as well --
this erodes cohesion even more.

" | might have not worried about where | was, but | won’t tolerate
getting worse — I'll split out Transmitter.

86c, Trvrtiivs Copyright © 2008 Net Objectives. Al Rights Reserved! 920 hina 7011 0une 2011

NC:'K.;Eyecti ves

Copyright © 2007 Net Objectives. All Rights Reserved.

Using Encapsulation

® Consider how you would break up the functionality into
classes where you encapsulated as much as possible

® Implementation encapsulation means you need to pull
out encryption

® Design encapsulation means you don’t want the Chip to
even know there are multiple encryptions (hence, you
need to use polymorphism)

Tmvlavs Copyright © 2008 Net Objectives. All Rights Reserved.

70 lina 2011 20%ne20m

20 June 2011

Design Patterns Explained

Conclusions Conclusions
® Design emerges from: = Agility in the development process requires flexibility in
— Refactoring, with adherence to good principles terms of the method0|ogies emp|oyed.

— Thinking in Patterns, which reflects past adherence to good principles

- T . .
— Commonality/Variability Analysis, which leads to good code qualities Such ﬂEXIbIlIty comes from’ among other thmgs.

* "Good Code Qualities" are: = Adherence to Good Principles, while
— Strong cohesion (method, class) " Maintaining an awareness of emergent design, by
— Loose couplin .
PIne ® Understanding the forces of change, and
— No Redundancy
— Encapsulation ® Recognizing applicable patterns in the design
— Testability
— Readability . .
— Focus " \We can create maintainable code!
7 Ttdies Copyright © 2008 Net Objectives. All Rights Reserved. 20 liine 2011 20%une 2011 sgg -~ Imlies Copyright © 2008 Net Objectives. Al Rights Reserved 20 lhine 2011 20%une 2011

Nei >, . .
b ./b]ectu)es Copyright © 2007 Net Objectives. All Rights Reserved. 20 June 2011

89

Nei , . .
»;@edlves Copyright © 2007 Net Objectives. All Rights Reserved.

Design Patterns Explained

Other Net Objectives’ Talks

Monday

® 8:30-12:00pm Alan Shalloway. Scaling Agile with the Lessons of Lean Product
Development Flow

Tuesday
® 8:30-12:00pm Alan Shalloway. Design Patterns Explained: From Analysis
Through Implementation

Wednesday
® 2:30-3:45pm Ken Pugh. Prefactoring: Extreme Abstraction, Extreme Separation
and Extreme Readability

= 2:30-3:45pm Alan Shalloway. Getting Executive Management on the Agile Bus
® 4:00=5:30pm Alan Shalloway. Avoiding Over and Under Design

Thursday

® 10:15-11:15 Alan Shalloway. Effective Agility Across the Enterprise: Patterns of
Successful Adoption

® 2:30-3:45pm Alan Shalloway. Lean Development Practices for Agile Enterprise
® 4:00-5:30pm Alan Shalloway. Developing Competence in Agile Teams

Come see 3 talks and get a t-shirt And don’t forget to see us in the Expo!
Registerat www.netobjectives.com/register

rved 20 June 2011

20 June 2011

http://www.netobjectives.com/register

