Things You Never Wanted to
Know about Memory Fences

But were afraid would be explained to you anyway

For instance by
Bartosz Milewski

Ignorance is bliss as far as lock-free programming goes. Except when we don’t realize
the depths of our ignorance and think that we can deal with it.

Plan of talk

» Purpose: to scare away from lock-free
programming and weak atomics

» Example: Publication safety

» Memory barriers: introduction

» High level abstractions: Java, C++
» Low level x86 memory model

» Peterson lock on x86
> Need for fencing
> Why sequential consistency helps

I’'m trying to make the connection between high-level language constructs and the
low level workings of an x86.

Publication Safety

» General model for the double-checked
locking pattern
> Thread O
Prepare data (construct an object)
Publish it (update shared pointer to object)
> Thread 1

Test if data was published (test shared pointer
for null)

If so, read the data

» Can we guarantee that if the test
succeeds, the data will be valid?

This is one of the most common patterns in lock free programming. A lot of
programmers don’t even realize they are doing lock-free programming when they are

using this pattern. Depending on the compilers and the underlying processor, the
result can be surprising—access to invalid data.

Release Barriers

Thread 0 Without the release
data = 1 barrier:
release barrier Thread O
ready = 1 ready = 1
Thread 1 Thread 1
M= r_eady , r1 =ready // 1
;Cr?u:j barrier 2 =x//0
2 = data Thread 0
data =1

Initially data == 0, ready == 0. A release memory barrier (this is pseudo-code)
separates writes. An acquire barrier separates reads. Without the release barrier the
order of writes may appear switched. The right column shows a particular execution
(interleaving of the two threads) in a relaxed memory model. Thread 1 ends up using
invalid data.

Acquire Barriers

Thread O Wti)tgroriL:etrt'he acquire
data=1 Thread 1
release barrier Speculates that ready ==
ready = 1 r2 = data // 0
Thread 1 Thread O
r1 = ready data = 1
acquire barrier ready = 1
ifr1 == Thread 1
r2 = data Confirms ready ==
Keepsr2// 0

Without the acquire barrier, the reads ma be inverted. This may happen even if there
is control dependency between the two reads (the reading of data happens only
when ready is 1). The processor may speculate the value of ready and tentatively
execute the load of data. Later the speculation is confirmed and the incorrect value of
data is used.

Higher level languages: Java

« Volatile takes care of memory barriers

volatile bool ready = false;
volatile int data = 0;

Thread 0:
data =1,
ready = true; // publish data

Thread 1:
if (ready) // was data published
assert(data == 1);

Java volatile guarantees appropriate barriers around reads and writes. Warning: the
keyword “volatile” in C++ has completely different meaning. Even vendor specific
extensions of the semantics of volatile might work only in some cases and fail in
others (see Peterson lock later)

Java memory model

» Sequential consistency

> For every program execution all volatile
reads and writes appear to be done in
some global order

- Every processor sees the same order
» No out-of-thin-air values

o Certain types of non-causal speculations
are disallowed

Java had a formal memory model before C++. The important part is the sequential
consistency guarantee.

Java bytecode

« Compiler issues barriers

- Barriers go between volatile accesses
LoadlLoad between reads
StoreStore between writes
LoadStore between read and write
StoreLoad between write and read
» Cookbook rules

- StoreStore before each volatile store
- StoreLoad after each volatile store

- LoadLoad and LoadStore after each volatile
load

There are four types of barriers used by the Java compiler (they appear in the
bytecode whenever volatile access is performed). Since the compiler cannot always
predict what kind of access will follow the current access, the between-accesses

barrier rules turn into around-each-access rules. Barriers are issued before and after
each volatile write, and after each volatile read.

Java barriers

» Compiler optimizes away a lot of
barriers (dataflow analysis)

* Runtime (or native compiler)
translates them into appropriate
processor-dependent fences (or
locked instructions)

» Many can be eliminated

Cookbook rules produce a lot of barriers. They are pruned extensively.

Higher level languages: C++

» Strong atomics are sequentially
consistent, similar to Java volatile

atomic<int> ready(0);
atomic<int> data(0);

Thread 0:
x.store(1);
ready.store(1);

Thread 1:
if (ready.load())
assert(x.load() == 1);

Atomics have load and store methods, among others. (They also have overloads of
the assignment operator.) These atomics guarantee sequential consistency, just like
Java’s volatile.

C++ weak atomics: fine grain
control
» You may specify ordering

atomic<int> ready(0);
atomic<int> data(0);

Thread O:
x.store(1, memory_order_release),
ready.store(1, memory_order_release);

Thread 1:
if (ready.load(memory_order_acquire))
assert(x.load(memory_order_acquire) == 1);

You can add an additional argument to loads and stores if you want to relax
sequential consistency. In particular, publication safety only requires release and
acquire ordering—not full sequential consistency.

11

From high level to low level

» Pick a particular processor: x86
> The x86 memory model
» How does Java volatile translate into
x86 fences?
- Sequential consistency
* How do C++ atomics translate?
- Default: sequential consistency
- Specific weak memory orderings

How do compilers (libraries) deal with the quirks of particular processors? In
particular the x86 (starting with Pentium 4).

12

x86 memory model guarantees

« Loads are not reordered with other loads.
« Stores are not reordered with other stores.
» Stores are not reordered with older loads.

« In a multiprocessor system, memory ordering
obeys causality (memory ordering respects
transitive visibllity).

« In a multiprocessor system, stores to the same
location have a total order (important!)

« In a multiprocessor system, locked instructions
have a total order. (sequential consistency!)

» Loads and stores are not reordered with locked
instructions.

The first two guarantees tell us that the publication pattern will work on the x86
without any modifications (no fences necessary). The x86 spec gives examples for all
those guarantees.

x86 memory non-guarantees

» Loads can be moved before stores to
different locations

» Intra-processor forwarding allowed

» No sequential consistency between
writes to different locations

» Ordering may be enforced by fences
(Ifence, sfence, mfence) or locked
instructions (e.g., lock xchg)

The first non-guarantee is very interesting and we’re going to explore it. In practice,
Ifence and sfence are not used in regular programming because of the existing
guarantees. They might be needed in systems programming, when dealing with
different types of memory.

14

Java barriers to fences on x86

+«—StoreStore before each volatile store
» StorelLoad after each volatile store

> Turns into mfence (actually lock xchg)
«-LoadlLeoad and LoadStere after each volatile

load
volatile data, ready Thread 0
Thread 0 :f:‘taanz;/store using xchg
data = 1 ready = 1
ready = 1 mfence/store using xchg
Thread 1 Thread 1
r1 = ready r1 = ready
ifr1 == if r1 ==1
r2 = data r2 = data

Three of the four types of barriers turn into no-ops on an x86. The only cookbook rule
that remains is the use of StoreLoad barrier after every volatile store. This code might
look over-fenced, but Java has to enforce sequential consistency, which is a stronger
requirement than release/acquire semantics needed for this pattern to work.

C++ atomics to fences

Thread 0O:
data.store(1, memory_order _release);
ready.store(1, memory_order_release);

Thread 1:
if (ready.load(memory_order_acquire))
assert(data.load(memory_order_acquire) == 1);

» On an x86, release and acquire
barriers turn into no-ops

« Still, don’t remove them! They stop the
compiler from rearranging code

In C++, sequential consistency ordering can be relaxed to release/acquire ordering
(for this particular pattern). Since the x86 guarantees release/acquire ordering, no
fences are generated in this case. Even if your code will only run on the x86, don’t
remove the ordering constrains!

16

Are fences needed on x867

» The double-checked locking pattern
doesn’t need them

« Publication (and privatization) safety
doesn’t need them

» Are there patterns that require fences
on x867

» How is high-level portable code
effectively translated into fences?

There must be algorithms that require fences even on the x86. | set myself on the
qguest to find one and see how this need can be expressed at high level and low level.

17

X86 tricky case: Peterson Lock

» An actual algorithm that won’t work
without fences on x86
> Mutual exclusion for two threads

> Thread local variable threadlD, can be 0 or 1.
Used as index into _interested

class Peterson {
private:
bool _interested[2];
int _victim; // who's yielding?
public:
Peterson();
void lock();
void unlock();

I}

Dekker’s algorithm is one such algorithm. Peterson lock is a more modern version of
it. This mutual exclusion algorithm works only for two threads. It can be useful for
synchronizing exactly two threads.

18

Peterson Lock

Peterson::Peterson() {
_victim = 0; // thread 0 yields
_interested[0] = false; // thread 0 not interested
_interested[1] = false; // thread 1 not interested
}
void Peterson::lock() {
int me = thread|ID; // either 0 or 1
int he = 1 — me; // the other thread
_interested[me] = true; // I'm interested
_victim = me; // I'll yield if contended
while (_interested[he] && _victim == me)
continue; // spin
}

void Peterson::unlock() {
int me = threadID;
_interested[me] = false; // no longer interested

}

The constructor does initialization.

When thread O tries to acquire the lock, it signals its intent and politely offers to be
the one to yield in case of contention (the _victim variable). As long as the other
thread is interested and I’'m the victim, I'll spin. As soon as the other thread clears its
_interested slot, I'm free to enter the critical section. At exit, | reset my _interested
slot, so the other thread may continue.

The gist of Peterson Lock

Thread 0

zeroWants = true;

victim = 0;

while (oneWants && victim == 0)
continue;

/I critical code

zeroWants = false;

Thread 1

oneWants = true;

victim = 1;

while (zeroWants && victim == 1)
continue;

/I critical code

oneWants = false;

I'll go through some simplification stages, to show where exactly the fencing is
necessary. Here, the array _interested was replaced by two variables zeroWants and
oneWants. The two threads have their ID hardcoded. Thread 1 executes the mirror
image of the code of Thread 0.

20

Peterson in pseudo assembly

Thread 0
store(zeroWants, 1)
store(victim, 0)

r0 = load(oneWants)
r1 = load(victim)

Thread 1
store(oneWants, 1)
store(victim, 1)

r0 = load(zeroWants)
r1 = load(victim)

These are just the operations performed when threads enter the lock. The load of
victim is actually predicated on the value of oneWants. Notice that the spin loop is
skipped when the appropriate “wants” variable is zero. Can both, zeroWants and
oneWants be zero?

21

Peterson on x86

» Loads can be moved before stores to
different locations

» Thread 0: Load of one\Wants before
store to zeroWants

e Thread 1: Load of zeroWants before
store to oneWants

« If both loads return zero, spin loop
never entered and both threads enter
the critical section simultaneously!

It turns out that there is a possible interleaving on the x86 that will lead to both
variables being zero.

22

Peterson fencing

» Minimal fencing

> An mfence between store zeroWants and
load oneWants is needed (different
locations!)

- Alternatively, store victim using lock xchg

» Microsoft implementation of “volatile”
doesn’t work with Peterson lock

Peterson lock will not work on the x86 without an actual fence.
Note: Vendor-specific extension of C++ volatile don’t produce fences on the x86 (at
least not on Microsoft compiler), so Peterson lock is broken pre C++0x.

23

C++ ordering for Peterson

void Peterson::lock() {

int me = threadID; // either O or 1

int he = 1 — me; // the other thread

_interested[me].store(true, memory_order_relaxed);

_victim.exchange(me, memory_order_acq_rel);

while (_interested[he].load(memory order_acquire)
&& _victim.load(memory _order_relaxed) == me)

continue; // spin

}

Produces minimal fencing on x86 (one mfence or lock
xchg)

This is (almost) minimal ordering required by Peterson lock. It should work for every
processor supported by C++0x compilers. On the x86 it will produce the lock xchg
instruction that makes Peterson lock work. Writing this kind of code requires
understanding of various processor memory models and the theory behind weak
atomics. The need for memory_order_acq_rel is not at all obvious. (I would have
never guessed it if | didn’t go into the low-level x86 analysis.)

24

Sequential consistency

 Full sequential consistency requires
as much fencing as for Java volatile

» The standard proof of Peterson’s

algorithm assumes sequential
consistency!

» The formal proof using weak atomics

required modifications in the draft
standard

The safe approach is to not relax sequential consistency. Only if performance
requirement reach the level of panic, should one think of relaxing it. And that

requires rewriting of the proof of correctness of the Peterson’s algorithm. Not to be
taken lightly! I don’t have such a proof, so don’t quote me.

25

Summary

» Don’t use lock-free algorithms unless
there is a proof of correctness

« If you do, impose sequential
consistency (e.g., default atomics)
» Weak atomics may offer performance

advantage, but you must be able to
prove correctness

The biggest danger is when programmers don’t recognize that they are doing lock-
free programming. Any variable that is shared between threads must be synchronized
one way or another—either through locking or the use of atomics.

26

Bibliography

« Maurice Herlihy, Nir Shavit, The Art of
Multiprocessor Programming (Sequential
consistency, Peterson lock)

* Doug Lea,
(Java barriers)

» Scott Meyers and Andrei Alexandrescu,

27

