
FUNCTIONAL

PROGRAMMING WITH F#
Chris Smith

Microsoft

The Von Neumann bottleneck

Memory

Bus

CPU

Moore’s Law to the Rescue?

Agenda

 Intro to Functional Programming

 Intro to F#

 Functional Programming via F#

 Higher order functions

 Language Oriented Programming

 Asynchronous workflows

What is object-oriented programming?

Object-oriented programming is a style of
programming that enables you:

- Reuse code (via classes)

- Eliminate bugs (via encapsulating, data hiding)

An object-oriented language is one which supports
object-oriented programming natively.

C# is a popular object-oriented language for .NET

What is functional programming?

Functional programming is a style of programming
that enables you:

- Reuse code (via function composition)

- Eliminate bugs (via immutability)

A functional language is one which functional
programming natively.

F# is a popular functional language for .NET

Functional Programming

 Emphasis is on what is to be computed not how it

happens

 Data is immutable

 Functions are data too

What is to be computed not how

Function Composition

Pattern Matching

Discriminated Unions

List Comprehensions

Haskell is really good

at being expressive…

Data is immutable

x = x + 1;

Data is immutable (continued)

 Why should a function in C never return a pointer?

 Why should you make a copy of an internal array

before returning it from your class?

 Why is multi-threading so damn hard?

Functions are data too

Currying

Lambdas

Higher order functions

Agenda

 Intro to Functional Programming

 Intro to F#

 What functional programming offers

 Higher order functions

 Language Oriented Programming

 Asynchronous workflows

Introducing F#

F# is a .NET programming language

F# is

 Functional

 Imperative

 Object Oriented

Imperative

 Side effects

 Ability to declare and mutate variables

 Control flow (while, for, if, exceptions, etc.)

Object Oriented (and .NET)

 Classes and Interfaces

 Polymorphism and Inheritance

 Delegates and Events

 Structs and Enums

First-class Citizen of .NET

 Tools

 Visual Studio

 FXCop

 SQL Server

 Libraries

Managed DirectX

 Visual Studio Tools for Office

WinForms, WCF, WPF

Agenda

 Intro to Functional Programming

 Intro to F#

 What functional programming offers

 Functions, Records, and Discriminated Unions

 Language Oriented Programming

 Asynchronous workflows

Onto Visual Studio!

Language Oriented Programming

Concrete
Representations

Abstract
Representations

Integrated
Representations

LOP Taxonomy
XML, CSV, Text,

Strings, JSON

Parse Trees

Almost-Implicit

Parallelism

Queries

Exception Handling

Workflows

The language

is in the data

The language

is in the code

Concrete
Representations

Abstract
Representations

Integrated
Representations

LOP Techniques
XML Libraries

RegExp Libraries

Lex/Yacc

...

Discriminated Unions

Pattern Matching

F# Computation

Expressions

Expression Trees

Onto Visual Studio!

AKA Computation Expressions

Async Workflows

Definitions

 Parallel – Start doing several things at once, wait

until all of them are done before continuing.

 Asynchronous – Start doing something in the

background, it will notify you when it’s finished.

 Reactive – Something just sits there and when you

need something from it, it will respond.

Taming Asynchronous I/O

using System;
using System.IO;
using System.Threading;

public class BulkImageProcAsync
{

public const String ImageBaseName = "tmpImage-";
public const int numImages = 200;
public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number
// of times you repeat that loop to make the application more CPU-
// bound or more IO-bound.
public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect
// their access to it through a mutex.
public static int NumImagesToFinish = numImages;
public static Object[] NumImagesMutex = new Object[0];
// WaitObject is signalled when all image processing is done.
public static Object[] WaitObject = new Object[0];
public class ImageStateObject
{

public byte[] pixels;
public int imageNum;
public FileStream fs;

}

public static void ReadInImageCallback(IAsyncResult asyncResult)
{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;
Stream stream = state.fs;
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)

throw new Exception(String.Format
("In ReadInImageCallback, got the wrong number of " +
"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);
stream.Close();

// Now write out the image.
// Using asynchronous I/O here appears not to be best practice.
// It ends up swamping the threadpool, because the threadpool
// threads are blocked on I/O requests that were just queued to
// the threadpool.
FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,
4096, false);

fs.Write(state.pixels, 0, numPixels);
fs.Close();

// This application model uses too much memory.
// Releasing memory as soon as possible is a good idea,
// especially global state.
state.pixels = null;
fs = null;
// Record that an image is finished now.
lock (NumImagesMutex)
{

NumImagesToFinish--;
if (NumImagesToFinish == 0)
{

Monitor.Enter(WaitObject);
Monitor.Pulse(WaitObject);
Monitor.Exit(WaitObject);

}
}

}

public static void ProcessImagesInBulk()
{

Console.WriteLine("Processing images... ");
long t0 = Environment.TickCount;
NumImagesToFinish = numImages;
AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);
for (int i = 0; i < numImages; i++)
{

ImageStateObject state = new ImageStateObject();
state.pixels = new byte[numPixels];
state.imageNum = i;
// Very large items are read only once, so you can make the
// buffer on the FileStream very small to save memory.
FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
state.fs = fs;
fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);
}

// Determine whether all images are done being processed.
// If not, block until all are finished.
bool mustBlock = false;
lock (NumImagesMutex)
{

if (NumImagesToFinish > 0)
mustBlock = true;

}
if (mustBlock)
{

Console.WriteLine("All worker threads are queued. " +
" Blocking until they complete. numLeft: {0}",
NumImagesToFinish);

Monitor.Enter(WaitObject);
Monitor.Wait(WaitObject);
Monitor.Exit(WaitObject);

}
long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));
}

}

let ProcessImageAsync () =
async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)
let pixels' = TransformImage(pixels,i)
let outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.WriteAsync(pixels')
do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =
Async.Run (Async.Parallel

[for i in 1 .. numImages -> ProcessImageAsync i])

Processing 200

images in

parallel

let ProcessImageAsync(i) =

async { use inStream = File.OpenRead(sprintf "source%d.jpg" i)

let! pixels = inStream.ReadAsync(numPixels)

let pixels' = TransformImage(pixels,i)

use outStream = File.OpenWrite(sprintf "result%d.jpg" i)

do! outStream.WriteAsync(pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsync() =

Async.Run (Async.Parallel

[for i in 1 .. numImages -> ProcessImageAsync(i)])

Taming Asynchronous I/O

Read from the

file,
asynchronously

“!”

= “asynchronous”

Write the result,

asynchronously

This object

coordinates

Equivalent F#

code

(same perf)

Generate the tasks

and queue them in

parallel

Open the file,

synchronously

Taming Asynchronous I/O

using System;
using System.IO;
using System.Threading;

public class BulkImageProcAsync
{

public const String ImageBaseName = "tmpImage-";
public const int numImages = 200;
public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number
// of times you repeat that loop to make the application more CPU-
// bound or more IO-bound.
public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect
// their access to it through a mutex.
public static int NumImagesToFinish = numImages;
public static Object[] NumImagesMutex = new Object[0];
// WaitObject is signalled when all image processing is done.
public static Object[] WaitObject = new Object[0];
public class ImageStateObject
{

public byte[] pixels;
public int imageNum;
public FileStream fs;

}

public static void ReadInImageCallback(IAsyncResult asyncResult)
{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;
Stream stream = state.fs;
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)

throw new Exception(String.Format
("In ReadInImageCallback, got the wrong number of " +
"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);
stream.Close();

// Now write out the image.
// Using asynchronous I/O here appears not to be best practice.
// It ends up swamping the threadpool, because the threadpool
// threads are blocked on I/O requests that were just queued to
// the threadpool.
FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,
4096, false);

fs.Write(state.pixels, 0, numPixels);
fs.Close();

// This application model uses too much memory.
// Releasing memory as soon as possible is a good idea,
// especially global state.
state.pixels = null;
fs = null;
// Record that an image is finished now.
lock (NumImagesMutex)
{

NumImagesToFinish--;
if (NumImagesToFinish == 0)
{

Monitor.Enter(WaitObject);
Monitor.Pulse(WaitObject);
Monitor.Exit(WaitObject);

}
}

}

public static void ProcessImagesInBulk()
{

Console.WriteLine("Processing images... ");
long t0 = Environment.TickCount;
NumImagesToFinish = numImages;
AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);
for (int i = 0; i < numImages; i++)
{

ImageStateObject state = new ImageStateObject();
state.pixels = new byte[numPixels];
state.imageNum = i;
// Very large items are read only once, so you can make the
// buffer on the FileStream very small to save memory.
FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
state.fs = fs;
fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);
}

// Determine whether all images are done being processed.
// If not, block until all are finished.
bool mustBlock = false;
lock (NumImagesMutex)
{

if (NumImagesToFinish > 0)
mustBlock = true;

}
if (mustBlock)
{

Console.WriteLine("All worker threads are queued. " +
" Blocking until they complete. numLeft: {0}",
NumImagesToFinish);

Monitor.Enter(WaitObject);
Monitor.Wait(WaitObject);
Monitor.Exit(WaitObject);

}
long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));
}

}

let ProcessImageAsync () =
async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)
let pixels' = TransformImage(pixels,i)
let outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.WriteAsync(pixels')
do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =
Async.Run (Async.Parallel

[for i in 1 .. numImages -> ProcessImageAsync i])

Create 10, 000s of “asynchronous tasks”

Mostly queued, suspended and executed in

the thread pool

Exceptions can be handled properly

Cancellation checks inserted automatically

Resources can be disposed properly on

failure

CPU threads are not blocked

How does it work?

 Uses Computational LOP to make writing
continuation-passing programs simpler and
compositional

 Similar to techniques used in Haskell

 A wrapper over the .NET Thread Pool and .NET
synchronization primitives

Async<T> Exception continuation

Success continuation
Execution request

Cancellation continuation

F# “Workflow” Syntax

async.Delay(fun () ->
async.Bind(readAsync "cat.jpg", (fun image ->

async.Bind(async.Return(f image),(fun image2
async.Bind(writeAsync "dog.jpg",(fun () ->

async.Bind(async.Return(printfn "done!"),(fun () ->
async.Return())))))))))

async { let! image = ReadAsync "cat.jpg"
let image2 = f image
do! writeAsync image2 "dog.jpg"
do printfn "done!"
return image2 }

Continuation/

Event callback

Asynchronous "non-blocking"

action

You're actually writing this (approximately):

Onto Visual Studio!

F# Resources

 Getting F#

 Download from http://msdn.com/fsharp

 Installs as an Add-In for Visual Studio 2008

 Books

 Expert F#

 Don Syme, Adam Granicz, and Antonio Cisternino

 Foundations of F#

 Robert Pickering

 F# for Scientists

 John Harrop

 Websites

 http://blogs.msdn.com/chrsmith

 http://cs.hubfs.net/

http://msdn.com/fsharp
http://blogs.msdn.com/chrsmith
http://blogs.msdn.com/chrsmith
http://blogs.msdn.com/chrsmith

http://cs.hubfs.net

http://msdn.com/fsharp

http://blogs.msdn.com/chrsmith

Questions

http://cs.hubfs.net/
http://msdn.com/fsharp
http://blogs.msdn.com/chrsmith

