FUNCTIONAL
PROGRAMMING WITH F#

Cage Match to the Death!

The Von Neumann bottleneck

Moore’s Law to the Rescue?

Moore's Law
Means More Performance

Pantium® 4 Processor
100,000,000

' 10,000,000
1,000,000

o

! 100,000

] l1o.ooo g of

IIOOO

Agenda

Intro to Functional Programming
Intro to F#

Functional Programming via F#
Higher order functions
Language Oriented Programming

Asynchronous workflows

What is object-oriented programming?

Obiject-oriented programming is a style of
programming that enables you:

- Reuse code (via classes)

- Eliminate bugs (via encapsulating, data hiding)

An object-oriented language is one which supports
object-oriented programming natively.

C# is a popular object-oriented language for .NET

What is functional programming?

Functional programming is a style of programming
that enables you:

- Reuse code (via function composition)

- Eliminate bugs (via immutability)

A functional language is one which functional
programming natively.

F# is a popular functional language for .NET

Functional Programming
—

- Emphasis is on what is to be computed not how it
happens

- Data is immutable

1 Functions are data too

Pattern Matchin
] -

Whe

ompute

Discriminated Unions

// Fibonacci numbers type Suit = Heart | Diamond | Club | Spade

/f 1, 1, 2, 3, 5, 8, 13,

let rec fibonaceci = type Card =

Leoe of Suit

function I

| 0] 1-»1 | Eing of Suit

| 2 -» 2 | Gueen of Suit

| 3 -» 3 | Jack of Suit

| 4 -» & | ValueCard of int * Suit
|

X —-» fibonacci (x - 1) + fibomacci (x - 2) on CC
let deck = [

for suit in [Heart; Diamond; Club; Spade] do
for wvalue in 2 .. 10 do

/f Bize of the "My Pictures' folder in ME yield ValueCard(value, sult)

let =2izeOfMyPicturesFolder =
filesUnderFolder | GetFolderPath (SpecialFolder.MyPictury
|> Seq.map GetFileInfo
|> Seqg.map GetFileSize

vield Jack(suit); vield Queen(suit)
vield Eing(suit),; vyield Ace (=uit)

|> Seq.fold (+) OL
| > ConvertByvtesToMB

Haskell is really good

at being expressive... List Comprehensions

gsort [] = I1
gsort (®:xs5) = gsort (filter (< x) xs5) ++ [x] ++ gsort (filter (>»>= =)} xs)

Data is immutable
S

Data is immutable (continued)

Why should a function in C never return a pointer?

Why should you make a copy of an internal array
before returning it from your class?

Why is multi-threading so damn hard?

Functions are data too

Currying

let =sguares = List.map (f
// sguares = [1:; 4; 3; 16

S Lppend text to a file

et AppendFile (fileMName : string) (text : string) =
let file = new StreamWriter (fileMame, true)
file.Writeline (CeXxt)
file.Clo=el()

Higher order functions

S Lppend data to Log.TXT
let I=zEven x = (X ¥ 2 = 0) AppendFile @E"D:\Log.txt"™ "Processing Event X..."::
let ewvens = Arrav.filter IsEwven [| 1 .. 10 |]

S Only provide the first parameter, Log.txt
let CurriedhppendFile = LppendFile @"D:%Log.txt"™

let rec ForLoop =tartidx endidx £ = {// Bppend the text to Log.TXt
£() CurrieddppendFile "Processing Event Y..."
if startidx = endidx
then ()
elze ForLoop (startidx + 1) endidx £

Agenda

Intro to Functional Programming
Intro to F#

What functional programming offers
Higher order functions
Language Oriented Programming

Asynchronous workflows

Introducing F#

F# is a .NET programming language

F# is
Functional

Imperative
Object Oriented

Imperative
Side effects

Ability to declare and mutate variables

let mutakle x = "7
X «<— "Hello, World"

printfn "%I=" x

Control flow (while, for, if, exceptions, etc.)

ff Ho statements in F#, if-expressions
let thingsToDoToday =
if DateTime.HNow.DaylifWeek = DaylfWeek.Wednesday then
[givePresentation()]
else
[workCmTalk () workCnSlides()]

Obiject Oriented (and .NET)

7 Classes and Interfaces
71 Polymorphism and Inheritance
-1 Delegates and Events

1 Structs and Enums

First-class Citizen of .NET

1
11 Tools
Visual Studio
FXCop
SQL Server

0 Libraries
Managed DirectX
Visual Studio Tools for Office
WinForms, WCF, WPF

Agenda

Intro to Functional Programming
Intro to F#

What functional programming offers
Functions, Records, and Discriminated Unions
Language Oriented Programming

Asynchronous workflows

- Onto Visual Studio!

Language Oriented Programming

LOP Taxonomy

The language
is in the data

m

Concrete
Representations

) 4 ||
The language Abstract

tion
is in the code Representations

Integrated
Representations

XML, CSV, Text,

Strings, JSSON

Almost-Implicit

Parallelism

Queries

Exception Handling

Workflows

XML Libraries

LOP Techniques
— R

Concrete
Representations
Discriminated Unions

Pattern Matching

Abstract
Representations

F# Computation
Expressions

Integrated

; Expression Trees
Representations

- Onto Visual Studio!

- Async Workflows

AKA Computation Expressions

Definitions

Parallel — Start doing several things at once, wait
until all of them are done before continuing.

Asynchronous — Start doing something in the
background, it will notify you when it’s finished.

Reactive — Something just sits there and when you
need something from it, it will respond.

Taming Asynchronous | /O

using System; l
using System.IO; 1
using System.Threading; public static void ReadInImageCallback(IAsyncResult as
{ public static void ProcessImagesInBulk()
public class BulkImageProcAsync ImageStateObject state = (ImageStateObject)asyncRe {
{ Stream stream = state.fs; Console.WritelLine("Processing images... ");
public const String ImageBaseName int bytesRead = stream.EndRead(asyncResult); long t@ = Environment.TickCount;
public const int numImages = 200 if (bytesRead != numPixels) NumImagesToFinish = numImages;
public const int numPixels = 512 throw new Exception(String.Format AsyncCallback readImageCallback = new
("In ReadInImageCallback, got the wrong nu AsyncCallback(ReadInImageCallback);
// ProcessImage has a simple O(N "bytes from the image: {@}.", bytesRead)); for (int i = @; i < numImages; i++)
// of times you repeat that loop ProcessImage(state.pixels, state.imageNum); {
// bound or more IO-bound. stream.Close(); ImageStateObject state = new ImageStateObject();
public static int processImageRe state.pixels = new byte[numPixels];
// Now write out the image. state.imageNum = i;
// Threads must decrement NumIma // Using asynchronous 1/0 here appears not to be b // Very large items are read only once, so you can make the
// their access to it through a // It ends up swamping the threadpool, because the // buffer on the FileStream very small to save memory.
public static int NumImagesToFin // threads are blocked on I/0 requests that were j FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
public static Object[] NumImages // the threadpool. FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
// WaitObject is signalled when FileStream fs = new FileStream(ImageBaseName + sta state.fs = fs;
public static Object[] WaitObjec “.done”, FileMode.Create, FileAccess.Write, Fi fs.BeginRead(state.pixels, @, numPixels, readImageCallback,
public class ImageStateObject 4096, false); state);
{ fs.Write(state.pixels, @, numPixels); }
public byte[] pixels; fs.Close();
P = //_Determine whether all images are done being processed.
let ProcessImageAsync () = much memory . // block until all are finish
} async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i) ible is a good bool mustBlo
let! pixels = inStream.ReadAsync(numPixels) 5 o
let pixels"' = TransformImage(pixels,i) }OCk Ll Process'“g 200
let outStream = File.OpenWrite(sprintf "Image%d.done" i) if (NumImagesToFinish > @) . 5
do! outStream.WriteAsync(pixels') now. mustBlock = true; |mqges iINn
do Console.WriteLine "done!" }
let ProcessImagesAsyncWorkflow() = ?c Gisstiztiod:y pard"el
Async.Run (Async.Parallel Console.WriteLine("All worke . —
[for i in 1 .. numImages -> ProcessImageAsync i]) " Blocking until they complete. numLeft: {@}",
NumImagesToFinish);
Monitor.Enter(WaitObject);
g Monitor.Wait(WaitObject);
3 Monitor.Exit(WaitObject);
}
¥ long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {@}ms",
(t1 - t0));
}
}

Taming Asynchrono

Equivalent F#

Open the file,

synchronously Read from the

code file,
(same perf) asynchronously
let ProcessImageAsync (i) =
async { use 1inStream H File.OpenRead (sprint source%d. jpg" i)
let! |pixels = inStream.ReadAsync (numPixels)
let pixels' = TransformImage (pixels, i)

. . use outStream = File.OpenWrite(sprintf "result%d.]jpg" 1
This object ' _ £ _ Lsp h =g)
coordinates do! | outStream.WriteAsync (pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsync ()

Async.Run

= “asynchronous”

(Async.Parallel

[for i in 1

Write the result,
asynchronously

numImages —-> ProcessImageAsync (1)

1)

Generate the tasks

and queue them in

parallel

Taming Asynchronous | /O

using System; |
using System.IO;

using System.Threading; public static void ReadInImageCallback(IAsyncResult as
{
public class BulkImageProcAsync ImageStateObject state = (ImageStateObject)asyncRe Cl’eCITe 'I Ol OOOS Of “qsynChronOUS quksn
{ Stream stream = state.fs;
public const String ImageBaseNam int bytesRead = stream.EndRead(asyncResult);
public const int numImages = 200 if (bytesRead != numPixels)
public const int numPixels = 512 throw new Exception(String.Format .
[GARRVESENS IRy Sl Mostly queued, suspended and executed in
// ProcessImage has a simple O(N "bytes from the image: {@}.", bytesRead));
// of times you repeat that loop ProcessImage(state.pixels, state.imageNum); fhe Threqd pool
// bound or more IO-bound. stream.Close();

public static int processImageRe|

// Now write out the image. state.imageNum = i;
// Threads must decrement NumIma //g0sTnEgasynchionotsRvloghereappeansRnotRtofbelh // Very large items are read only once, so you can make the
// their access to it through a /f TE @il wp sElpilig i Hneelpeel, bueuee s // buffer on the FileStream very small to save memory.
public static int NumImagesToFin // threads are blocked on I/0 requests that were j FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
public static Object[] NumImages // the threadpool. FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
// WaitObject is signalled when FileStream fs = new FileStream(ImageBaseName + sta state.fs = fs;
public static Object[] WaitObject " .done*, FileMode.Create, [FileAccess.Write, K1 fs.BeginRead(state.pixels, @, numPixels, readImageCallback,
public class ImageStateObject 4096, false); state);
{ fs.Write(state.pixels, @, numPixels); }
public byte[] pixels; fs.Close();
let ProcessImageAsync () = much memory.

} async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i) ible is a good

let! pixels = inStream.ReadAsync(numPixels) Excepﬁons can be hqndled properly

let pixels’ = TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)

do! outStream.WriteAsync(pixels") now.

do Console.WriteLine "done!" }

Cancellation checks inserted automatically

let ProcessImagesAsyncWorkflow() =
Async.Run (Async.Parallel

[for i in 1 .. numImages -> ProcessImageAsync i])

Resources can be disposed properly on

7 failure

CPU threads are not blocked

How does it work?

1 Uses Computational LOP to make writing
continuation-passing programs simpler and
compositional

m Success continuation
Execution request

Exception continuation
Cancellation continuation
o Similar to techniques used in Haskell

7 A wrapper over the .NET Thread Pool and .NET
synchronization primitives

F# “Workflow” Syntax
Asynchronous "non-blocking"

async { let! image action
let image2 = f image
do! writeAsync image2 "dog.jpg" Cermirusiien/

do pr‘in"cfn “done!” Event callback
return image2 }

You're actually writing this (approximately):

async.Delay(fun () -»>
async.Bind(readAsync "cat.jpg", (fun image ->
async.Bind(async.Return(f image), (fun image2
async.Bind(writeAsync "dog.jpg",(fun () ->
async.Bind(async.Return(printfn "done!"),(fun () ->

async.Return())))))))))
y

- Onto Visual Studio!

FH# Resources
N

o1 Getting F#
o Download from hitp:/ /mscdn.com /fsharp
o Installs as an Add-In for Visual Studio 2008

1 Books
0 Expert F#
®m Don Syme, Adam Granicz, and Antonio Cisternino
11 Foundations of F#
® Robert Pickering
o F# for Scientists
® John Harrop
1 Websites
O http://blogs.msdn.com/chrsmith
O http://cs.hubfs.net/

http://msdn.com/fsharp
http://blogs.msdn.com/chrsmith
http://blogs.msdn.com/chrsmith
http://blogs.msdn.com/chrsmith

- Questions

http:/ /cs.hubfs.net
http: //msdn.com /fsharp

http:/ /blogs.msdn.com /chrsmith

http://cs.hubfs.net/
http://msdn.com/fsharp
http://blogs.msdn.com/chrsmith

