Herb Sutter
hsutter@microsoft.com

The Concur Project

Some Experimental Abstractions
for Imperative Languages

Herb Sutter

Software Architect
Microsoft Developer Division

Truths

Consequences

Futures

The Concur Project

Herb Sutter
hsutter@microsoft.com

The Concur Project

Each year we get faster more processors

10,000,000

1,000,000

Intel CPU

(sources: Intel, Wikip
100,000

386

4

/
/1

Pl

2~

4 Power (W)
a PerfiClock (ILP)

] s (000) |
+ Clock Speed (MHz)

1970 1975 1980 1985 1990 1995

2000 2005 2010

Historically: Boost single-
stream performance via
more complex chips, first
via one big feature, then
via lots of smaller features.

Now: Deliver more cores
per chip.

The free lunch is over for
today’s sequential apps
and many concurrent apps
(expect some regressions).
We need killer apps with
lots of latent parallelism.

A generational advance
>00 is necessary to get
above the “threads+locks”
programming model.

A Baseline Client Growth Projection

—— 000 - cores

2006 2007 2008

2009

2010

32 32

2011 2012 2013

Herb Sutter The Concur Project
hsutter@microsoft.com

Two Forces and a Potential Vicious Cycle

Mogresuem;
> eSS

< memory
oarcl zy]cl‘t'n

> hardware
parallelism

transistors
oercors 4

9af cora e

hide latency

Potential Client Growth Envelope

—— |nO - threads
—— |nO - cores
—— 000 - cores

the truth is somewhere in here

2 4

2006 2007 2008 2009 2010 2011 2012 2013

Herb Sutter The Concur Project
hsutter@microsoft.com

The Issue Is (Mostly) On the Client

What's “already solved” and what's not

"Solved”: Server apps (e.qg., database servers, web services)
lots of independent requests — one thread per request is easy
typical to execute many copies of the same code
shared data usually via structured databases
(automatic implicit concurrency control via transactions)
= with some care, “concurrency problem is already solved” here

Not solved: Typical client apps (i.e., not Photoshop)

somehow employ many threads per user “request”
highly atypical to execute many copies of the same code
shared data in memory, unstructured and promiscuous
(error prone explicit locking — where are the transactions?)
also: legacy requirements to run on a given thread (e.g., GUI)

Problem 1 (of 2): Threads

Problem: Unstructured free threading.
Unconstrained. Arbitrary reentrancy, blocking, affinity.

Today: Mitigate by (often) hand-coded patterns.

Use messages (and variants, e.g., pipelines):
Clearer and easier to reason about successfully.

Use work queues: Manual decomposition of work +
rightsized thread pool, sometimes semiautomated (e.g.,
BackgroundWorker).
Tomorrow:
Enable better abstractions:
— Active objects with implicit messages.
— Futures.
("Don't roll your own vtables.”)

Herb Sutter The Concur Project
hsutter@microsoft.com

Problem 2 (of 2): Locks

Problem: Unstructured mutable shared state.
No composable solution for synchronizing access.

Today: Use locks. (Where are the transactions?)

Locks are best we have, but known to be inadequate:

— Most programmers who think they know how to use locks
only think they know how to use locks. Priesthoods
abound. Even major frameworks tend to be broken.

— Not composable.
Lock-free is sometimes applicable, but isn’t the answer:

— Hard for geniuses to get right. A new lock-free data
structure is a publishable result (often with corrections).

— Very limited. Some basic data structures have no known
lock-free implementations.

— Helps by giving users something they don’t need to lock.

Problem 2 (of 2): Locks

Problem: Unstructured mutable shared state.
No composable solution for synchronizing access.

Tomorrow: Greatly reduce locks. (Alas, not “eliminate.”)

1. Enable transactional programming: Transactional memory is
our best hope. Composable atomic{...} blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles” heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:
(1) Which shared objects are protected by which locks.
(2) Lock hierarchies (caveat: also not composable).

Herb Sutter The Concur Project
hsutter@microsoft.com

Some Lead Bullets (useful, but mostly mined)

Automatic parallelization (e.g., compilers, ILP):
Limited: Sequential programs tend to be... well, sequential.

Requires accurate program analysis: Challenging for simple
languages (Fortran), intractable for languages with pointers.

Doesn’t actually shield programmers from having to know
about concurrency.

Functional languages:
Contain natural parallelism... except it's too fine-grained.
Use pure immutable data... except those in commercial use.
Not known to be adoptable by mainstream developers.

Borrow some key abstractions/styles from these languages
(e.g., lambdas) and support them in imperative languages.

OpenMP et al.:

“Industrial-strength duct tape,” but useful where applicable.

Truths

Consequences

Futures

Herb Sutter The Concur Project

hsutter@microsoft.com

O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

» The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.
Potentially poor responsiveness.

2 Explicitly threaded apps.
Hardwired # of threads that prefer
K CPUs (for a given input workload).

Can penalize <K CPUs,
doesn’t scale > K CPUs.

3. Scalable concurrent apps.
Workload decomposed into a
“sea” of heterogeneous work
items (with ordering edges).
Lots of latent concurrency
we can map down to N cores.

O(1), O(K), or O(N) Concurrency?

...
The Bulk | 1- Sequential apps.
of today’s The freg lunch is over (if CPU—bound): Flat or
client apps merely.mcremental perf.'lmprovements.
Potentially poor responsiveness.

. 2. Explicitly threaded apps.
Virtually all th'e Hardwired # of threads that prefer
rest of today's K CPUs (for a given input workload).

client apps Can penalize <K CPUs,
doesn’t scale >K CPUs.

Essentially none of 3. Scalable concurrent apps.

today’s client apps Workload decomposed into a

. : “sea” of heterogeneous work
(outside limited niche uses, e.g.: items (with ordering edges).

OpenMP, background workers, Lots of atent
pure functional languages) OIb cleNL concUTeEnsy
we can map down to N cores.

Herb Sutter The Concur Project
hsutter@microsoft.com

An OO for Concurrency

Herb Sutter
hsutter@microsoft.com

The Concur Project

Confusion

You can see it in the vocabulary:

Acquire
Atomic
Data-driven
Fine-grain
Interactive
Nested

Priority
Responsiveness
Structured
Timeout

And-parallelism
Cancel/Dismiss
Dialogue
Fork-join
Invariant
Overhead
Protocol
Schedule
Systolic
Transaction

Associative
Consistent
Fairness
Hierarchical
Message
Performance
Release
Serializable
Throughput
Update

Virtual

Clusters of terms

Transaction
Atomic
Update
Associative
Consistent
Contention
Overhead
Invariant
Serializable
Locks

Responsiveness
Interactive
Dialogue
Protocol

Cancel

Dismiss
Fairness
Priority
Message
Timeout

Throughput
Homogenous

And-
parallelism

Fine-grain
Fork-join
Overhead
Systolic
Data-driven
Nested
Hierarchical
Performance

Acquire
Release
Schedule
Virtual
Read?
Write
Open

Real
Resources

Concurrent
Collections

Interacting
Infrastructure

Herb Sutter The Concur Project

hsutter@microsoft.com

Toward an “O0 for Concurrency”
Lots of work across the stack, from App to HW

What: Enable apps with lots of latent concurrency at every level
cover both coarse- and fine-grained concurrency,
from web services to in-process tasks to loop/data parallel

map to hardware at run time (“rightsize me”)

How: Abstractions (no explicit threading, no casual data sharing)
active objects asynchronous messages futures
rendezvous + collaboration parallel loops

How, part 2: Tools
testing (proving quality, static analysis, ...)
debugging (going back in time, causality, message reorder, ...)
profiling (finding convoys, blocking paths, ...)

Truths

Consequences

Futures

10

Herb Sutter The Concur Project
hsutter@microsoft.com

Concurrency Tools in 2006 and Beyond

Concurrency-related features in recent products:
OpenMP for loop/data parallel operations (Intel, Microsoft).
Memory models for concurrency (Java, .NET, VC+ +, C++0x...).

Various projects and experiments:

ISO C+ +: Memory model for C++0x — and maybe some library
abstractions?

The Concur project. (NB: There's lots of other work going on at
MS. This just happens to be mine.)

New/experimental languages: Fortress (Sun), Cw (Microsoft).

Lots of other experimental extensions, new languages, etc.
(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

Transactional memory research (Intel, Microsoft, Sun, ...).

Concur Goals

The Concur project aims to:
define higher-level abstractions
for today’s imperative languages
that evenly support the range of concurrency granularities
to let developers write correct and efficient concurrent apps
with lots of latent parallelism (and not lots of latent bugs)
mapped to the user’s hardware to reenable the free lunch.

11

Herb Sutter The Concur Project
hsutter@microsoft.com

above “threads + locks”

in particular C++ right now

. .- . e.g., coarse out-of-process,
define higher-level abstractjéns long-lived in-process,

for today’s imperative languages loop/data parallel
that evenly support the range of concurrency granularities
to let developers write correct and efficient concurrent apps
with lots of latent parallelismand not lots of latent bugs)
mapped to the user’s hardware ¥Q reenable the free lunch.

that they can reason about
easily and that is toolable
race-free and deadlock-free
by construction

exe runs well on 1 & 2-core,

“better” (responsiveness or
throughput) on 8-core,
better still on 64-core, ...

NYelo]o]=

Features of Concur that I'm going to overview:
Active objects, active blocks (lambdas/closures), and futures.
Parallel loops/algorithms (overview of current thinking).

Other features (some under development):

Message handling|and contracts: Message priorities and groups
(multiple messages with one handler). Stateful contracts on
message exchange. Out-of-box / network has different
characteristics and may deserve special syntax (e.g., send/receive).

Strong isolation: Truly private members. (See also “locks.”)

Atomicity: Conversation scopes, including rendezvous. Atomic
blocks (w.r.t. specific active objects, or generally with transactional
memory support).

Locks and transactions: Need to add declarative support for locks,
incl. which locks cover which objects and lock levels. Transactional
memory could greatly reduce need for locks, but is orthogonal.

Advanced parallel loops/data: Still exploring (see later in this deck).

12

Herb Sutter

The Concur Project

hsutter@microsoft.com

50,000’ View: Producing the Sea

Active objects/blocks.

active C c;

c.fO; // these calls are nonblocking; each method
c.90); // call automatically enqueues message for c

// this code can execute in parallel with f & g

x = active { /*...*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures
Parallel algorithms (sketch, under development).

for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

Active Objects and Messages

Nutshell summary:
Each active object conceptually runs on its own thread.
Method calls from other threads are async messages

processed serially o atomic w.r.t. each other, so no need to
lock the object internally or externally.

Member data can’t be dangerously exposed.
Default mainline is a prioritized FIFO pump.

Expressing thread/task lifetimes as object lifetimes lets us
exploit existing rich language semantics.

active class C {

public:

void f() { ... }

%
// in calling code, using a C object
active C ¢;

c.f(); // call is nonblocking

// this code can execute in parallel with c.f()

13

Herb Sutter The Concur Project
hsutter@microsoft.com

Futures

Return values are future values:

Return values (and “out” arguments) from async calls cannot
be used until an explicit wait for the future to materialize.

future<double> tot = calc.TotalOrders(); // call is nonblocking
... potentially:lots of: work: ... // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
No silent loss of concurrency (e.g., early “logFile << tot;"”).
Explicit block point for writing into lent objects (“out” args).
Explicit point for emitting exceptions.

Need to be able to pass futures onward to other code (e.g.,
DoSomethingWith(tot) # DoSomethingWith(tot.wait())).

Design Alternative: Implicit Futures

Mort (in particular) might prefer implicit futures:

A common case is for futures that: a) are local, and b) don’t
need to have future<T> methods called (e.g., Cancel).

double tot = calc.TotalOrders(); // call is nonblocking

... potentially: lots of work.... // parallel work

DoSomethingWith(tot); // implicitly wait to accept
Issues:

Can silently lose concurrency (e.g., early “"WriteLine(tot);"),

but Mort is still getting extra concurrency for free.

Implicit block point for emitting exceptions.

Passing futures onward to other code (e.g., calling
DoSomethingWith(tot) that is overloaded on double and
future<double>... no disambiguation?).

Requires some type system games (“exactly what type is it?”).

14

Herb Sutter The Concur Project

hsutter@microsoft.com

Comparison: FX Async Pattern

Design Guidelines base async pattern:
Nearly identical to Outlook’s native version.

Split single calls into BeginXxx/EndXxx pairs with
intermediate structures and explicit callback registrations.

Sync API:

public RetType MethodName(
Parameters params,
OutParameters outParams);

Async API:

IAsyncResult BeginMethodName(// caller explicitly calls begin/end
Parameters params,
AsyncCallback callback, // caller must supply callback
Object state); // caller usu. must supply cookie

RetType EndMethodName(// caller explicitly calls begin/end
IAsyncResult asyncResult,
OutParameters outParams);

Comparison: FX Async Pattern (2)

Issues:

Intrusive in API: Burying the async work partly inside the APIs
changes/bloats the APIs and can duplicate code.

Complex for callers: Instead of calling one function, the user
must call two functions, manage intermediate state, and
write an additional function of his own for the callback.

Hand-coded pattern, no language support/checking: The
pattern may vary; consistency depends on manual discipline.
This approach has more potential points of failure where the
programmer can go wrong.

— DG example: “Do ensure that the EndMethodName method
is always called even if the operation is known to have
already completed. This allows exceptions to be received
and any resources used in the async operation to be freed.”

15

Herb Sutter

The Concur Project

hsutter@microsoft.com

Example: Multiple Concurrent Requests

Problem:

Process calls Work1, Work2, and Work3, all concurrently.
Process computes the result of Work1 plus the result of either
Work2 or Work3, whichever is available first (Work2 and Work3
are redundant requests, e.g., different servers, different algos).
Process takes a timeout, andlif the result cannot be computed
before the timeout expires, Process returns -1.
Process should not busywait.
// Pseudocode
int Process(Servicel s1, Service2 s2, Service3 s3, int ms) {
int resultl = s1.Work1(42); // should run asynchronously
int result2 = s2.Work2(“xyzzy"); // should run asynchronously
int result3 = s3.Work3("xyzzy"); // should run asynchronously
if(Work1 and either Work2 or Work3 complete within “ms” ms) {
return resultl + whichever of result2 or result3 is available;

} else {
return -1;

Example: Multiple Concurrent Requests

Vi

/

i

// spin ¢ // Concur (alternative 2)
Cleanug
if(!flag
if(!flag
if(!flac
k

int Process(active Servicel sl, active Service2 s2, active Service3 s3, int ms) {
future<int> resultl = s1.Work1(42),
result2 = s2.Work2(“xyzzy"),
result3 = s3.Work3(“xyzzy");
future_group g = resultl && (result2 || result3);
(g || timeout(ms)).wait();
return g.IsComplete() ? resultl.wait() + (result2 || result3).wait() : -1;

}

// and a
cleanup

{ clean
return r|)

16

Herb Sutter The Concur Project
hsutter@microsoft.com

Using Futures and Active Lambdas

Active blocks (lambdas) for queueing up work items:

x = active { foo(10) }; // call foo asynchronously
y = active {a->b(c) }; // evaluate asynchronously
p = active {new T }; // allocate and construct asynchronously

... more code, runs concurrently with all three active lambdas ...
return x.wait() * y.wait() * p-wait()->bar();

Idioms:
“Active” to call a sync function async, or get outside locks:
active { plainObj.Foo(42) } // type is future<ReturnType>
“Wait” to call an async function synchronously:

activeObj.Bar(3.14).wait(); // type is ReturnType
or wait(activeObj.Bar(3.14));

“Active...wait” to get outside locks and leave caller interruptible:
active { SomelLongOperation() }.wait();

“Active” to do something later when a future is ready:

active { int i = f.wait(); DoSomethingWith(i); /*..*/ }

Destructor/Dispose Semantics

Calling an active object’s destructor blocks the caller:
Till object’s execution ends. Only case of blocking w/o “wait.”
Join points are typically at block exits. Supports ganging.

active C c;

} // waits for ¢ to complete

Can directly express task hierarchies (tasks that own other
tasks) as composed objects by associating member lifetimes.

active class C {
active M m; // embedded member

};...
// later
{

active C c;

}// waits for c & c.m to complete

17

Herb Sutter The Concur Project
hsutter@microsoft.com

Example: Producer-Consumer

active class Consumer {
public: void Process(Message msg) { ... }

}I
active Consumer consumer; // runs asynchronously

active class Producer {
public: void Produce() {
for(inti = 0; ++i < 100;) {
Message msg = ... ;
consumer.Process(msg); // non-blocking call
}
}
5
int main() {
active Producer p; // runs asynchronously
p.Produce(); // non-blocking call
} // wait for p to end

// wait for consumer to end
Impact vs. nonconcurrent: Add active.

OpenMP and Beyond

OpenMP offers many benefits:

Portable, scalable, flexible, standardized, and performance-
oriented interface for parallelizing code.

Hides many details: Thread team created at app startup, per-
thread data allocated when #pragma entered, and work
divided into coherent chunks.

But it also has many limitations:
C, not C++ (and not C#, not Python, not ...).
Outside the language, bolted onto code via #pragmas.

Best suited to simple loops over arrays (doesn’t work well
with STL or BCL collections), and for parallel code sections.

Doesn’t take advantage of C++'s (and other langs’) superior
abstractions for type safety or generic programming.

18

Herb Sutter The Concur Project
hsutter@microsoft.com

An Experiment: Parameterized Parallelism

Motivation (in David’s Little Language syntax):

for x in c.depth_first(r) do f(x)
forall x in c.depth_first(r) do f(x)
ordered forall x in c.depth_first(r) do f(x)

Do these need explicit language support, or can they be a library?

An Experiment: Parameterized Parallelism

Motivation (in David’s Little Language syntax):

for x in c.depth_first(r) do f(x)
forall x in c.depth_first(r) do f(x)
ordered forall x in c.depth_first(r) do f(x)

Do these need explicit language support, or can they be a library?

Concur code (in today’s prototype):

for_each(c.depth_first(), f);
for_each(c.depth_first(), f, parallel);
for_each(c.depth_first(), f, ordered);

19

Herb Sutter The Concur Project
hsutter@microsoft.com

An Experiment: Parameterized Parallelism

Motivation (in David’s Little Language syntax):

for x in c.depth_first(r) do f(x)
forall x in c.depth_first(r) do f(x)
ordered forall x in c.depth_first(r) do f(x)

Do these need explicit language support, or can they be a library?

Concur code (in today’s prototype):

for_each(c.depth_first(), f); for_each(c.breadth_first(), f);
for_each(c.depth_first(), f, parallel); for_each(c.breadth_first(), f, parallel);
for_each(c.depth_first(), f, ordered); for_each(c.breadth_first(), f, ordered);

In STL, (1) containers and (2) algorithms are orthogonal (additive).
Now make (3) traversal and (4) concurrency policy orthogonal too.

An Experiment: Parameterized Parallelism

Motivation (in David’s Little Language syntax):

for x in c.depth_first(r) do f(x)
forall x in c.depth_first(r) do f(x)
ordered forall x in c.depth_first(r) do f(x)

Do these need explicit language support, or can they be a library?

Concur code (in today’s prototype):

for_each(c.depth_first(), f); for_each(c.breadth_first(), f);
for_each(c.depth_first(), f, parallel); for_each(c.breadth_first(), f, parallel));
for_each(c.depth_first(), f, ordered); for_each(c.breadth_first(), f, ordered);

In STL, (1) containers and (2) algorithms are orthogonal (additive).
Now make (3) traversal and (4) concurrency policy orthogonal too.

Example uses:

for_each(c.depth_first(), { _1 += 42}, parallel); //.add 42 to each
for_each(c.in_order(), { cout << _1} /%, sequential*/); // output to console

20

Herb Sutter The Concur Project
hsutter@microsoft.com

A Quick Look Under the Hood...

Calling code:
for_each(c.depth_first(), f, ordered);
(Instead of “c.depth_first()”, could also use more STL-ish style
“c.depth_first().begin(), c.depth_first().end()".)

What gets invoked:

for_each<Range,Func,Conc>(r, func, conc);
- r.Traverse<Func,Conc>(func, conc);
- r.DoTraverse<Func,Conc>(func, conc, root);

- conc.do({ Dolraverse(func, conc, left) });
conc.do({ Dolraverse(func, conc right) });
conc.wait();
conc.do(| func(p >value) });

Concurrency policy (conc) defines .unordered() and .ordered():
sequential: Do runs op synchronously, wait is no-op.
parallel: Do runs active{op} asynchronously, wait is no-op.
ordered: Do runs active{op} async, wait wait()s on the do's.

Clusters of terms

Responsiveness | | Throughput Transaction Acquire
Interactive Homogenous Atomic Release
Dialogue And- Update Schedule
Protocol p.arallelis.m Associative Virtual
Cancel Fine-grain Consistent Read?
Dismiss Fork-join Contention Write
Fairness Overhead Overhead Open
Priority Systolic Invariant

Message Data-driven Serializable

Timeout Nested Locks
Active objects Hierarchical (declarative

Active blocks Performance support for)

Futures Parallel Transactional

; memor
Bendesion: algorithms y

Asynchronous = Concurrent Interacting Real
Agents Collections | Infrastructure | Resources

21

Herb Sutter The Concur Project
hsutter@microsoft.com

Concur Summary

The Concur project aims to:
define higher-level abstractions
for today’s imperative languages
that evenly support the range of concurrency granularities
to let developers write correct and efficient concurrent apps
with lots of latent parallelism (and not lots of latent bugs)
mapped to the user’s hardware to reenable the free lunch.

Eliminate/reduce “threads+locks”:

Blocking and reentrancy: Never silently or by default,
always explicit and controlled by higher-level abstractions.

Isolation: On active object boundaries + ownership semantics
(e.g., transfer/lending). Reduce mutable sharing & locking.

Locks: Declarative support for associating data with locks,
expressing lock levels, etc. Support static/dynamic analysis.

Further Reading

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm
The article that first coined the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”

(with Jim Larus; ACM Queue, September 2005)

http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332
Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“Threads and memory model for C++" working group page
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

Lots of links to current WG21 papers and other useful
background reading on memory models and atomic operations.

22

Herb Sutter The Concur Project
hsutter@microsoft.com

Questions?

23

