
Herb Sutter
hsutter@microsoft.com

The Concur Project

1

Herb SutterHerb Sutter
Software ArchitectSoftware Architect
Microsoft Developer DivisionMicrosoft Developer Division

The Concur ProjectThe Concur Project

Some Experimental AbstractionsSome Experimental Abstractions
for Imperative Languagesfor Imperative Languages

1

TruthsTruths

ConsequencesConsequences

FuturesFutures

Herb Sutter
hsutter@microsoft.com

The Concur Project

2

2

•• Historically:Historically: Boost singleBoost single--
stream performance via stream performance via
more complex chips, first more complex chips, first
via one big feature, then via one big feature, then
via lots of smaller features.via lots of smaller features.

•• Now:Now: Deliver more cores Deliver more cores
per chip.per chip.

•• The free lunch is over for The free lunch is over for
todaytoday’’s sequential apps s sequential apps
andand many concurrent appsmany concurrent apps
(expect some regressions). (expect some regressions).
We need killer apps with We need killer apps with
lots of latent parallelism.lots of latent parallelism.

•• A generational advance A generational advance
>OO is necessary>OO is necessary to get to get
above the above the ““threads+locksthreads+locks””
programming model.programming model.

Each year we get Each year we get fasterfaster moremore processorsprocessors

Montecito

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Moore’s
Law

3

3232

16

88

4
2

16

2006 2007 2008 2009 2010 2011 2012 2013

OoO - cores

A Baseline Client Growth ProjectionA Baseline Client Growth Projection

You
are

here

Herb Sutter
hsutter@microsoft.com

The Concur Project

3

4

Two Forces and a Potential Vicious CycleTwo Forces and a Potential Vicious Cycle

Moore’s Law
> transistors
Moore’s Law
> transistors

> cores
per chip
> cores
per chip

< memory
bandwidth

per core

< memory
bandwidth

per core

trade off
< latency for
> bandwidth

trade off
< latency for
> bandwidth

> threads
per core to
hide latency

> threads
per core to
hide latency

> hardware
parallelism
> hardware
parallelism

back to
In-Order cores?
one-time 16x

(4x cores,
4x threads)

back to
In-Order cores?
one-time 16x

(4x cores,
4x threads)

< transistors
per core

< transistors
per core

5

512

256256

128 128

6464
32 3232168842 16

2006 2007 2008 2009 2010 2011 2012 2013

InO - threads
InO - cores
OoO - cores

Potential Client Growth EnvelopePotential Client Growth Envelope

You
are

here

th
e

tr
ut

h
is

 s
om

ew
he

re
 in

 h
er

e

Herb Sutter
hsutter@microsoft.com

The Concur Project

4

6

The Issue Is (Mostly) On the ClientThe Issue Is (Mostly) On the Client
WhatWhat’’s s ““already solvedalready solved”” and whatand what’’s nots not

““SolvedSolved””: Server apps (e.g., database servers, web services): Server apps (e.g., database servers, web services)
lots of independent requests lots of independent requests –– one thread per request is easyone thread per request is easy

typical to execute many copies of the same codetypical to execute many copies of the same code
shared data usually via structured databasesshared data usually via structured databases

(automatic implicit concurrency control via transactions)(automatic implicit concurrency control via transactions)
⇒⇒ with some care, with some care, ““concurrency problem is already solvedconcurrency problem is already solved”” herehere

Not solved: Typical client apps (i.e., not Photoshop)Not solved: Typical client apps (i.e., not Photoshop)
somehow employ many threads per user somehow employ many threads per user ““requestrequest””

highly atypical to execute many copies of the same codehighly atypical to execute many copies of the same code
shared data in memory, unstructured and promiscuousshared data in memory, unstructured and promiscuous

(error prone explicit locking (error prone explicit locking –– where are the transactions?)where are the transactions?)
also: legacy requirements to run on a given thread (e.g., GUI)also: legacy requirements to run on a given thread (e.g., GUI)

7

Problem: Unstructured free threading.
• Unconstrained. Arbitrary reentrancy, blocking, affinity.

Today: Mitigate by (often) hand-coded patterns.
• Use messages (and variants, e.g., pipelines):

Clearer and easier to reason about successfully.
• Use work queues: Manual decomposition of work +

rightsized thread pool, sometimes semiautomated (e.g.,
BackgroundWorker).

Tomorrow:
• Enable better abstractions:

– Active objects with implicit messages.
– Futures.

• (“Don’t roll your own vtables.”)

Problem: Unstructured free threading.
• Unconstrained. Arbitrary reentrancy, blocking, affinity.

Today: Mitigate by (often) hand-coded patterns.
• Use messages (and variants, e.g., pipelines):

Clearer and easier to reason about successfully.
• Use work queues: Manual decomposition of work +

rightsized thread pool, sometimes semiautomated (e.g.,
BackgroundWorker).

Tomorrow:
• Enable better abstractions:

– Active objects with implicit messages.
– Futures.

• (“Don’t roll your own vtables.”)

Problem 1 (of 2): Problem 1 (of 2): ThreadsThreads

Herb Sutter
hsutter@microsoft.com

The Concur Project

5

8

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Today: Use locks. (Where are the transactions?)
• Locks are best we have, but known to be inadequate:

– Most programmers who think they know how to use locks
only think they know how to use locks. Priesthoods
abound. Even major frameworks tend to be broken.

– Not composable.
• Lock-free is sometimes applicable, but isn’t the answer:

– Hard for geniuses to get right. A new lock-free data
structure is a publishable result (often with corrections).

– Very limited. Some basic data structures have no known
lock-free implementations.

– Helps by giving users something they don’t need to lock.

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Today: Use locks. (Where are the transactions?)
• Locks are best we have, but known to be inadequate:

– Most programmers who think they know how to use locks
only think they know how to use locks. Priesthoods
abound. Even major frameworks tend to be broken.

– Not composable.
• Lock-free is sometimes applicable, but isn’t the answer:

– Hard for geniuses to get right. A new lock-free data
structure is a publishable result (often with corrections).

– Very limited. Some basic data structures have no known
lock-free implementations.

– Helps by giving users something they don’t need to lock.

Problem 2 (of 2): Problem 2 (of 2): LocksLocks
“B

oh
r”

““B
oh

r
Bo

hr
””

“Q
ua

nt
um

”

“Q
ua

nt
um

”

9

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Tomorrow: Greatly reduce locks. (Alas, not “eliminate.”)
1. Enable transactional programming: Transactional memory is

our best hope. Composable atomic{…} blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles’ heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:
(1) Which shared objects are protected by which locks.
(2) Lock hierarchies (caveat: also not composable).

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Tomorrow: Greatly reduce locks. (Alas, not “eliminate.”)
1. Enable transactional programming: Transactional memory is

our best hope. Composable atomic{…} blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles’ heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:
(1) Which shared objects are protected by which locks.
(2) Lock hierarchies (caveat: also not composable).

Problem 2 (of 2): Problem 2 (of 2): LocksLocks

Herb Sutter
hsutter@microsoft.com

The Concur Project

6

10

Automatic parallelization (e.g., compilers, ILP):
• Limited: Sequential programs tend to be… well, sequential.
• Requires accurate program analysis: Challenging for simple

languages (Fortran), intractable for languages with pointers.
• Doesn’t actually shield programmers from having to know

about concurrency.

Functional languages:
• Contain natural parallelism… except it’s too fine-grained.
• Use pure immutable data… except those in commercial use.
• Not known to be adoptable by mainstream developers.
• Borrow some key abstractions/styles from these languages

(e.g., lambdas) and support them in imperative languages.

OpenMP et al.:
• “Industrial-strength duct tape,” but useful where applicable.

Automatic parallelization (e.g., compilers, ILP):
• Limited: Sequential programs tend to be… well, sequential.
• Requires accurate program analysis: Challenging for simple

languages (Fortran), intractable for languages with pointers.
• Doesn’t actually shield programmers from having to know

about concurrency.

Functional languages:
• Contain natural parallelism… except it’s too fine-grained.
• Use pure immutable data… except those in commercial use.
• Not known to be adoptable by mainstream developers.
• Borrow some key abstractions/styles from these languages

(e.g., lambdas) and support them in imperative languages.

OpenMP et al.:
• “Industrial-strength duct tape,” but useful where applicable.

Some Lead Bullets Some Lead Bullets (useful, but mostly mined)(useful, but mostly mined)

11

TruthsTruths

ConsequencesConsequences

FuturesFutures

Herb Sutter
hsutter@microsoft.com

The Concur Project

7

12

13

O(1), O(K), or O(N) Concurrency?O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

• The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.

• Potentially poor responsiveness.

1. Sequential apps.
• The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
• Potentially poor responsiveness.

The bulk
of today’s

client apps

The bulk
of today’s

client apps

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Virtually all the
rest of today’s

client apps

Virtually all the
rest of today’s

client apps

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

Herb Sutter
hsutter@microsoft.com

The Concur Project

8

14

OO

Fortran, C, …

asm

threads+locks

semaphores

An OO for ConcurrencyAn OO for Concurrency

15

The Concurrency ElephantThe Concurrency Elephant

Herb Sutter
hsutter@microsoft.com

The Concur Project

9

16

ConfusionConfusion
You can see it in the vocabulary:You can see it in the vocabulary:

Acquire And-parallelism Associative
Atomic Cancel/Dismiss Consistent
Data-driven Dialogue Fairness
Fine-grain Fork-join Hierarchical
Interactive Invariant Message
Nested Overhead Performance
Priority Protocol Release
Responsiveness Schedule Serializable
Structured Systolic Throughput
Timeout Transaction Update
Virtual

17

Interacting
Infrastructure

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable
LocksLocks

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
Timeout Timeout

Asynchronous
Agents

Concurrent
Collections

Real
Resources

Herb Sutter
hsutter@microsoft.com

The Concur Project

10

18

Toward an Toward an ““OO for ConcurrencyOO for Concurrency””
Lots of work across the stack, from App to HWLots of work across the stack, from App to HW

What: Enable apps with lots of latent concurrency at every levelWhat: Enable apps with lots of latent concurrency at every level
cover both coarsecover both coarse-- and fineand fine--grained concurrency,grained concurrency,

from web services to infrom web services to in--process tasks to loop/data parallelprocess tasks to loop/data parallel
map to hardware at run time (map to hardware at run time (““rightsize merightsize me””))

How: Abstractions (no explicit threading, no casual data sharingHow: Abstractions (no explicit threading, no casual data sharing))
active objects asynchronous messages futuresactive objects asynchronous messages futures

rendezvous + collaboration parallel loopsrendezvous + collaboration parallel loops

How, part 2: ToolsHow, part 2: Tools
testing (proving quality, static analysis, testing (proving quality, static analysis, ……))

debugging (going back in time, causality, message reorder, debugging (going back in time, causality, message reorder, ……))
profiling (finding convoys, blocking paths, profiling (finding convoys, blocking paths, ……))

19

TruthsTruths

ConsequencesConsequences

FuturesFutures

Herb Sutter
hsutter@microsoft.com

The Concur Project

11

20

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• ISO C++: Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• ISO C++: Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency Tools in 2006 and BeyondConcurrency Tools in 2006 and Beyond

21

The Concur project aims to:The Concur project aims to:
•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

Concur GoalsConcur Goals

Herb Sutter
hsutter@microsoft.com

The Concur Project

12

22

Concur GoalsConcur Goals
The Concur project aims to:The Concur project aims to:

•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

above “threads + locks”

in particular C++ right now

e.g., coarse out-of-process,
long-lived in-process,

loop/data parallel

that they can reason about
easily and that is toolable

race-free and deadlock-free
by construction

exe runs well on 1 & 2-core,
“better” (responsiveness or

throughput) on 8-core,
better still on 64-core, …

23

Features of Concur that IFeatures of Concur that I’’m going to overview:m going to overview:
•• Active objects, active blocks (lambdas/closures), and futures.Active objects, active blocks (lambdas/closures), and futures.
•• Parallel loops/algorithms (overview of current thinking).Parallel loops/algorithms (overview of current thinking).

Other features (some under development):Other features (some under development):
•• Message handling and contracts:Message handling and contracts: Message priorities and groups Message priorities and groups

(multiple messages with one handler). (multiple messages with one handler). StatefulStateful contracts on contracts on
message exchange. Outmessage exchange. Out--ofof--box / network has different box / network has different
characteristics and may deserve special syntax (e.g., send/receicharacteristics and may deserve special syntax (e.g., send/receive).ve).

•• Strong isolation:Strong isolation: Truly private members. (See also Truly private members. (See also ““locks.locks.””))
•• Atomicity:Atomicity: Conversation scopes, including rendezvous. Atomic Conversation scopes, including rendezvous. Atomic

blocks (w.r.t. specific active objects, or generally with transablocks (w.r.t. specific active objects, or generally with transactional ctional
memory support).memory support).

•• Locks and transactions:Locks and transactions: Need to add declarative support for locks, Need to add declarative support for locks,
incl. which locks cover which objects and lock levels. Transactiincl. which locks cover which objects and lock levels. Transactional onal
memory could greatly reduce need for locks, but is orthogonal.memory could greatly reduce need for locks, but is orthogonal.

•• Advanced parallel loops/data:Advanced parallel loops/data: Still exploring (see later in this deck).Still exploring (see later in this deck).

ScopeScope

Herb Sutter
hsutter@microsoft.com

The Concur Project

13

24

50,00050,000’’ View: Producing the SeaView: Producing the Sea
Active objects/blocks.

active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

Active objects/blocks.
active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

25

Nutshell summary:
• Each active object conceptually runs on its own thread.
• Method calls from other threads are async messages

processed serially � atomic w.r.t. each other, so no need to
lock the object internally or externally.

• Member data can’t be dangerously exposed.
• Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Nutshell summary:
• Each active object conceptually runs on its own thread.
•• Method calls from other threads are async messages Method calls from other threads are async messages

processed serially processed serially �� atomic w.r.t. each other, so no need to atomic w.r.t. each other, so no need to
lock the object internally or externally.lock the object internally or externally.

•• Member data canMember data can’’t be dangerously exposed.t be dangerously exposed.
•• Default mainline is a prioritized FIFO pump.Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Active Objects and MessagesActive Objects and Messages

Herb Sutter
hsutter@microsoft.com

The Concur Project

14

26

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

FuturesFutures

27

Mort (in particular) might prefer implicit futures:
• A common case is for futures that: a) are local, and b) don’t

need to have future<T> methods called (e.g., Cancel).
double tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot); // implicitly wait to accept

Issues:
• Can silently lose concurrency (e.g., early “WriteLine(tot);”),

but Mort is still getting extra concurrency for free.
• Implicit block point for emitting exceptions.
• Passing futures onward to other code (e.g., calling

DoSomethingWith(tot) that is overloaded on double and
future<double>... no disambiguation?).

• Requires some type system games (“exactly what type is it?”).

Mort (in particular) might prefer implicit futures:
• A common case is for futures that: a) are local, and b) don’t

need to have future<T> methods called (e.g., Cancel).
double tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot); // implicitly wait to accept

Issues:
• Can silently lose concurrency (e.g., early “WriteLine(tot);”),

but Mort is still getting extra concurrency for free.
• Implicit block point for emitting exceptions.
• Passing futures onward to other code (e.g., calling

DoSomethingWith(tot) that is overloaded on double and
future<double>... no disambiguation?).

• Requires some type system games (“exactly what type is it?”).

Design Alternative: Implicit FuturesDesign Alternative: Implicit Futures

Herb Sutter
hsutter@microsoft.com

The Concur Project

15

28

Design Guidelines base async pattern:Design Guidelines base async pattern:
•• Nearly identical to OutlookNearly identical to Outlook’’s native version.s native version.
•• Split single calls into Split single calls into BeginXxx/EndXxxBeginXxx/EndXxx pairs with pairs with

intermediate structures and explicit callback registrations.intermediate structures and explicit callback registrations.
•• Sync API:Sync API:

public public RetTypeRetType MethodNameMethodName((
Parameters Parameters paramsparams,,
OutParametersOutParameters outParamsoutParams););

•• Async API:Async API:
IAsyncResultIAsyncResult BeginMethodNameBeginMethodName((// caller explicitly calls begin/end// caller explicitly calls begin/end

Parameters Parameters paramsparams,,
AsyncCallbackAsyncCallback callback,callback, // caller must supply callback// caller must supply callback
Object state);Object state); // caller usu. must supply cookie// caller usu. must supply cookie

RetTypeRetType EndMethodNameEndMethodName((// caller explicitly calls begin/end// caller explicitly calls begin/end
IAsyncResultIAsyncResult asyncResultasyncResult,,
OutParametersOutParameters outParamsoutParams););

Comparison: FX Async PatternComparison: FX Async Pattern

29

Issues:
• Intrusive in API: Burying the async work partly inside the APIs

changes/bloats the APIs and can duplicate code.
• Complex for callers: Instead of calling one function, the user

must call two functions, manage intermediate state, and
write an additional function of his own for the callback.

• Hand-coded pattern, no language support/checking: The
pattern may vary; consistency depends on manual discipline.
This approach has more potential points of failure where the
programmer can go wrong.
– DG example: “Do ensure that the EndMethodName method

is always called even if the operation is known to have
already completed. This allows exceptions to be received
and any resources used in the async operation to be freed.”

Issues:
• Intrusive in API: Burying the async work partly inside the APIs

changes/bloats the APIs and can duplicate code.
• Complex for callers: Instead of calling one function, the user

must call two functions, manage intermediate state, and
write an additional function of his own for the callback.

• Hand-coded pattern, no language support/checking: The
pattern may vary; consistency depends on manual discipline.
This approach has more potential points of failure where the
programmer can go wrong.
– DG example: “Do ensure that the EndMethodName method

is always called even if the operation is known to have
already completed. This allows exceptions to be received
and any resources used in the async operation to be freed.”

Comparison: FX Async Pattern Comparison: FX Async Pattern (2)(2)

Herb Sutter
hsutter@microsoft.com

The Concur Project

16

30

Problem:Problem:
•• Process calls Work1, Work2, and Work3, all concurrently.Process calls Work1, Work2, and Work3, all concurrently.
•• Process computes the result of Work1 plus the result of either Process computes the result of Work1 plus the result of either

Work2 or Work3, whichever is available first (Work2 and Work3 Work2 or Work3, whichever is available first (Work2 and Work3
are redundant requests, e.g., different servers, different are redundant requests, e.g., different servers, different algosalgos).).

•• Process takes a timeout, and if the result cannot be computed Process takes a timeout, and if the result cannot be computed
before the timeout expires, Process returns before the timeout expires, Process returns --1.1.

•• Process should not busywait.Process should not busywait.
// Pseudocode// Pseudocode
int Process(Service1 s1, Service2 s2, Service3 s3, int ms) {int Process(Service1 s1, Service2 s2, Service3 s3, int ms) {

int result1 = s1.Work1(42);int result1 = s1.Work1(42); // should run asynchronously// should run asynchronously
int result2 = s2.Work2(int result2 = s2.Work2(““xyzzyxyzzy””);); // should run asynchronously// should run asynchronously
int result3 = s3.Work3(int result3 = s3.Work3(““xyzzyxyzzy””);); // should run asynchronously// should run asynchronously
if(if(Work1 and either Work2 or Work3 complete within Work1 and either Work2 or Work3 complete within ““msms”” msms) {) {

return result1 + return result1 + whichever of result2 or result3 is availablewhichever of result2 or result3 is available;;
} else {} else {

return return --1;1;
}}

}}

Example: Multiple Concurrent RequestsExample: Multiple Concurrent Requests

31

// Today, using BeginInvoke/EndInvoke

delegate int Delegate1(int i);
delegate int Delegate2or3(string s);
delegate void CleanupDelegate();

int Process(Service1 s1, Service2 s2, Service3 s3, int ms) {
int result = -1;
bool[] flagEndInvoke = { false, false, false };
DateTime endBy = DateTime.Now.AddMilliseconds(ms);

Delegate1 d1 = new Delegate1(s1.Work1);
IAsyncResult ar1 = d1.BeginInvoke(42, null, null);
WaitHandle[] handles = new WaitHandle[2];

Example: Multiple Concurrent RequestsExample: Multiple Concurrent Requests

Delegate2or3 d2 = new Delegate2or3(s2.Work2);
IAsyncResult ar2 = d2.BeginInvoke(“xyzzy”, null, null);
handles[0] = ar2.AsyncWaitHandle;

Delegate2or3 d3 = new Delegate2or3(s3.Work3);
IAsyncResult ar3 = d3.BeginInvoke(“xyzzy”, null, null);
handles[1] = ar3.AsyncWaitHandle;

DateTime now = DateTime.Now;
TimeSpan toWait = (endBy - now > TimeSpan.Zero)

? endBy - now : TimeSpan.Zero;

// first wait for Work2 or Work3
if(WaitHandle.WaitAny(handles, toWait, false)

!= WaitHandle.WaitTimeout) {

int result2or3;
if(ar2.IsCompleted) {
result2or3 = d2.EndInvoke(ar2);
flagEndInvoke[1] = true;

} else {
result2or3 = d3.EndInvoke(ar3);
flagEndInvoke[2] = true;

}

// now wait for Work1
now = DateTime.Now;
toWait = (endBy - now > TimeSpan.Zero)

? endBy - now : TimeSpan.Zero;
if(ar1.AsyncWaitHandle.WaitOne(toWait, false)) {
result = d1.EndInvoke(ar1) + result2or3;
flagEndInvoke[0] = true;

}
}

// spin off another async work item to clean up any EndInvokes
CleanupDelegate cleanup = delegate() {
if(!flagEndInvoke[0]) d1.EndInvoke(ar1);
if(!flagEndInvoke[1]) d2.EndInvoke(ar2);
if(!flagEndInvoke[2]) d3.EndInvoke(ar3);

};

// and arrange to clean up the cleaner itself, too…
cleanup.BeginInvoke(delegate(IAsyncResult ar)

{ cleanup.EndInvoke(ar); }, null);
return result;

}

// Concur (alternative 1)

int Process(Service1 s1, Service2 s2, Service3 s3, int ms) {
future<int> result1 = active { s1.Work1(42) };
future<int> result2 = active { s2.Work2(“xyzzy”) };
future<int> result3 = active { s3.Work3(“xyzzy”) };

future_group g = result1 && (result2 || result3);
(g || timeout(ms)).wait();

if(g.IsComplete())
return result1.wait() + (result2 || result3).wait();

else
return -1;

}

// Concur (alternative 2)

int Process(active Service1 s1, active Service2 s2, active Service3 s3, int ms) {
future<int> result1 = s1.Work1(42),

result2 = s2.Work2(“xyzzy”),
result3 = s3.Work3(“xyzzy”);

future_group g = result1 && (result2 || result3);
(g || timeout(ms)).wait();
return g.IsComplete() ? result1.wait() + (result2 || result3).wait() : -1;

}

Herb Sutter
hsutter@microsoft.com

The Concur Project

17

32

Active blocks (lambdas) for queueing up work items:
x = active { foo(10) }; // call foo asynchronously
y = active { a->b(c) }; // evaluate asynchronously
p = active { new T }; // allocate and construct asynchronously
… more code, runs concurrently with all three active lambdas …
return x.wait() * y.wait() * p.wait()->bar();

Idioms:
• “Active” to call a sync function async, or get outside locks:

active { plainObj.Foo(42) } // type is future<ReturnType>
• “Wait” to call an async function synchronously:

activeObj.Bar(3.14).wait(); // type is ReturnType
or wait(activeObj.Bar(3.14));

• “Active…wait” to get outside locks and leave caller interruptible:
active { SomeLongOperation() }.wait();

• “Active” to do something later when a future is ready:
active { int i = f.wait(); DoSomethingWith(i); /*…*/ }

Active blocks (lambdas) for queueing up work items:
x = active { foo(10) }; // call foo asynchronously
y = active { a->b(c) }; // evaluate asynchronously
p = active { new T }; // allocate and construct asynchronously
… more code, runs concurrently with all three active lambdas …
return x.wait() * y.wait() * p.wait()->bar();

Idioms:
• “Active” to call a sync function async, or get outside locks:

active { plainObj.Foo(42) } // type is future<ReturnType>
• “Wait” to call an async function synchronously:

activeObj.Bar(3.14).wait(); // type is ReturnType
or wait(activeObj.Bar(3.14));

• “Active…wait” to get outside locks and leave caller interruptible:
active { SomeLongOperation() }.wait();

• “Active” to do something later when a future is ready:
active { int i = f.wait(); DoSomethingWith(i); /*…*/ }

Using Futures and Active LambdasUsing Futures and Active Lambdas

33

Calling an active object’s destructor blocks the caller:
• Till object’s execution ends. Only case of blocking w/o “wait.”
• Join points are typically at block exits. Supports ganging.

{
active C c;
…

} // waits for c to complete

• Can directly express task hierarchies (tasks that own other
tasks) as composed objects by associating member lifetimes.
active class C {

active M m; // embedded member
…

};
// later
{

active C c;
…

} // waits for c & c.m to complete

Destructor/Dispose SemanticsDestructor/Dispose Semantics

Herb Sutter
hsutter@microsoft.com

The Concur Project

18

34

Example: ProducerExample: Producer--ConsumerConsumer
active active class Consumer {class Consumer {

public: void Process(Message msg) { public: void Process(Message msg) { …… }}
};};
active active Consumer Consumer consumerconsumer;; // runs asynchronously// runs asynchronously
activeactive class Producer {class Producer {

public: void Produce() {public: void Produce() {
for(int i = 0; ++i < 100;) {for(int i = 0; ++i < 100;) {

Message msg = Message msg = …… ;;
consumer.Processconsumer.Process(msg);(msg); // non// non--blocking callblocking call

}}
}}

};};
int main() {int main() {

active active Producer p;Producer p; // runs asynchronously// runs asynchronously
p.Producep.Produce();(); // non// non--blocking callblocking call

} } // wait for p to end// wait for p to end
// wait for consumer to end// wait for consumer to end

•• Impact vs. nonconcurrent: Add Impact vs. nonconcurrent: Add activeactive..

35

OpenMP offers many benefits:OpenMP offers many benefits:
•• Portable, scalable, flexible, standardized, and performancePortable, scalable, flexible, standardized, and performance--

oriented interface for parallelizing code.oriented interface for parallelizing code.
•• Hides many details: Thread team created at app startup, perHides many details: Thread team created at app startup, per--

thread data allocated when #thread data allocated when #pragmapragma entered, and work entered, and work
divided into coherent chunks.divided into coherent chunks.

But it also has many limitations:But it also has many limitations:
•• C, not C++ (and not C#, not Python, not C, not C++ (and not C#, not Python, not ……).).
•• Outside the language, bolted onto code via #Outside the language, bolted onto code via #pragmaspragmas..
•• Best suited to simple loops over arrays (doesnBest suited to simple loops over arrays (doesn’’t work well t work well

with STL or BCL collections), and for parallel code sections.with STL or BCL collections), and for parallel code sections.
•• DoesnDoesn’’t take advantage of C++t take advantage of C++’’s (and other s (and other langslangs’’) superior) superior

abstractions for type safety or generic programming.abstractions for type safety or generic programming.

OpenMP and BeyondOpenMP and Beyond

Herb Sutter
hsutter@microsoft.com

The Concur Project

19

36

Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):
for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism

37

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered););

Herb Sutter
hsutter@microsoft.com

The Concur Project

20

38

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

39

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

Example uses:Example uses:
for_each(for_each(c.c.depth_firstdepth_first(), { _1 += 42 }, (), { _1 += 42 }, parallelparallel);); // add 42 to each// add 42 to each
for_each(for_each(c.c.in_orderin_order(), { (), { coutcout << _1 } << _1 } /*, sequential*//*, sequential*/);); // output to console// output to console

Herb Sutter
hsutter@microsoft.com

The Concur Project

21

40

A Quick Look Under the HoodA Quick Look Under the Hood……
Calling code:Calling code:

for_each(for_each(cc..depth_firstdepth_first(), (), f, orderedf, ordered););
•• (Instead of (Instead of ““c.depth_firstc.depth_first()()””, could also use more STL, could also use more STL--ish style ish style

““c.depth_first().beginc.depth_first().begin(), (), c.depth_first().endc.depth_first().end()()””.).)

What gets invoked:What gets invoked:
for_each<for_each<Range,Func,ConcRange,Func,Conc>(>(rr, , funcfunc, , concconc););

rr.Traverse.Traverse<<Func,ConcFunc,Conc>(>(funcfunc, , concconc););
rr.DoTraverse.DoTraverse<<Func,ConcFunc,Conc>(>(funcfunc, , concconc, , rootroot););

concconc.do.do({ ({ DoTraverseDoTraverse((funcfunc, , concconc, , leftleft)) });});
concconc.do.do({ ({ DoTraverseDoTraverse((funcfunc, , concconc, , rightright)) });});
concconc.wait.wait();();
concconc.do.do({ ({ funcfunc(p(p-->value) });>value) });

•• Concurrency policy (Concurrency policy (concconc) defines .unordered() and .ordered():) defines .unordered() and .ordered():
sequentialsequential: Do runs : Do runs opop synchronously, wait is nosynchronously, wait is no--op.op.
parallelparallel: Do runs : Do runs active{active{opop}} asynchronously, wait is noasynchronously, wait is no--op.op.
orderedordered: Do runs : Do runs active{active{opop}} async, wait async, wait wait()swait()s on the doon the do’’s.s.

41

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable
LocksLocks

(declarative(declarative
support for)support for)

TransactionalTransactional
memorymemory

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance
ParallelParallel

algorithmsalgorithms

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
TimeoutTimeout
Active objectsActive objects
Active blocksActive blocks
FuturesFutures
RendezvousRendezvous

Interacting
Infrastructure

Asynchronous
Agents

Concurrent
Collections

Real
Resources

Herb Sutter
hsutter@microsoft.com

The Concur Project

22

42

The Concur project aims to:The Concur project aims to:
•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to reenable the free lunch.s hardware to reenable the free lunch.

Eliminate/reduce Eliminate/reduce ““threads+locksthreads+locks””::
•• Blocking and reentrancy:Blocking and reentrancy: Never silently or by default, Never silently or by default,

always explicit and controlled by higheralways explicit and controlled by higher--level abstractions.level abstractions.
•• Isolation:Isolation: On active object boundaries + ownership semantics On active object boundaries + ownership semantics

(e.g., transfer/lending). Reduce mutable sharing (e.g., transfer/lending). Reduce mutable sharing & & locking.locking.
•• Locks:Locks: Declarative support for associating data with locks, Declarative support for associating data with locks,

expressing lock levels, etc. Support static/dynamic analysis.expressing lock levels, etc. Support static/dynamic analysis.

Concur SummaryConcur Summary

43

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first coined the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“Threads and memory model for C++” working group page
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

• Lots of links to current WG21 papers and other useful
background reading on memory models and atomic operations.

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first coined the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“Threads and memory model for C++” working group page
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

• Lots of links to current WG21 papers and other useful
background reading on memory models and atomic operations.

Further ReadingFurther Reading

Herb Sutter
hsutter@microsoft.com

The Concur Project

23

Questions?Questions?

