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Function Calls and Implicit Type Conversions
Consider:

void f(double d);

int x;

...

f(x); // call f with an int

Should this compile?

■ x is of the wrong type.

C says yes. So does C++.

■ Note: this is an attempt to read minds.
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Function Calls and Overloading
Consider:

void f(int);
void f(double);

Should this compile?

■ f is overloaded

C++ says yes.
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Overloading Meets Type Conversions
Now consider an abstract view of a set of overloaded functions and a 
potential call:

void f(SomeParamType1);
void f(SomeParamType2);
...
void f(SomeParamTypeN);

SomeType x;
f(x); // A call to f, but which one?

C++ specifies five levels of parameter matching that can be applied:

1. Exact match (includes “trivial conversions”)

2. Match with promotions (value-preserving)

3. Match with standard conversions (not always value-preserving, 
includes inheritance-based conversions)

4. Match with user-defined conversions

5. Match with ellipsis

The copyright to this material is held by Scott Meyers Page 6
or by Addison Wesley Longman, Inc.

Resolving Function Calls
These rules largely determine which, if any, function should be called. 
Example:

void f(int);
void f(int*);
void f(...)

f(10); // calls f(int) — exact match
f(0); // calls f(int) — exact match

string *ps = new string;

f(ps); // calls f(...) — match with ellipsis

Functions taking multiple parameters do the same thing, only more so.

■ For a call to compile, the called function must:
➠ Be at least as good a match on each parameter as all the other 

candidate functions and
➠ Be a strictly better match on at least one parameter.

Note: this is still an attempt to read minds.
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Implicit Template Type Deduction
Consider:

template<typename T>
void f(T);

int x;

f(x); // Deduce that this is a call to f<int>

Note that no type conversion is ever necessary.

■ T can always be the passed type.
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Implicit Template Type Deduction
It gets more interesting with one type parameter but multiple function 
parameters:

template<typename T>
void f(const T& x, const T& y);

Should mixed-type calls compile?

int i;
const int ci = 5;

f(i, ci); // Valid? If so,what is T?

double d;

f(i, d); // Valid? If so,what is T?
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Implicit Template Type Deduction
And of course there is the inheritance issue:

class Base { ... };
class Derived:

public Base { ... };

Derived d;
Base& rb = d;

f(rb, d); // Valid? If so,what is T?
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Type Conversions and
Implicit Template Type Deduction

C++ allows some type conversions during implicit type deduction:

■ The first and third examples are legal. The second is not.

The allowed conversions are more constrained than for function calls:

■ Exact match (with some “trivial conversions”)

■ Match with inheritance-based conversions

What’s missing?

■ Promotions

■ Standard conversions other than inheritance-based ones

■ User-defined conversions

Note: again, this is an attempt to read minds.
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The Crux of the Issue
Consider:

f(x); // What is this?

Is this a function call?

■ If so, conversion rules for function calls apply.

Is it a request to instantiate and call a template function?

■ If so, conversion rules for template instantiation apply.
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The Rubber Hits the Road
The problem is not purely theoretical:

void f(vector<int>::const_iterator it1, vector<int>::const_iterator it2);

vector<int> v;
...
vector<int>::iterator begin = v.begin();
vector<int>::const_iterator end = v.end();

f(begin, end); // fine, this is a function call, so the user-defined
// iterator ⇒ const_iterator conversion applies

template<typename It> void g(It it1, It it2);

g(begin, end); // error, this is a template instantiation, so
// no user-defined conversions apply;
// no type for It can be deduced.
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Specializing Templates
Aber warten Sie mal, wir gehen noch weiter.

It often makes sense to specialize templates for one or more types:

template<typename T>
void f(T); // General template

template<typename T>
void f(T*); // General Template For Pointers

template<>
void f<char*>(char *p); // Template specialization for char*

// pointers. This is not a template.

This turns out to be useful. Really :-)
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Specializing Templates
Consider:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers

char *p;
...
f(p); // Which f is instantiated/called?
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Specializing Templates
Critical observations:

■ Only functions can be called.

■ Function templates are not functions. They generate functions.

■ Before the compiler generates a function, it must choose the template 
to instantiate.

There are only two templates to choose from:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

Here is the call again:

char *p;
...
f(p); // Which f is instantiated/called?

Which template is a better match for a pointer type?
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Specializing Templates
Clearly, the template for pointers is a better match. So:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers
char *p;
...
f(p); // Calls (2), not (3)

The specialization would be considered only if (1) were the selected 
template!

The results would change if (3) were declared this way:

template<>
void f<char>(char *p); // Now this specializes (2), not (1)!
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Resolving Function Calls
In essence, there are three sets of interacting rules:

■ Overloading resolution

■ Template argument deduction

■ Function template partial ordering

All may apply to what looks like a simple function call:

f(x); // all of the above may be involved
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Implications for C++ Programmers
■ You must know whether you are using a template name when 

making a function call.

f(x); // what happens here depends on whether f is
// a function name, a template name, or both

■ You must document whether functionality you provide comes from 
functions or function templates.

■ Be careful not to confuse template argument deduction with 
overloading resolution.
➠ This applies also to non-type template arguments. The conversion 

rules for those also differ from those for overloading resolution.
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Implications for Language Designers
■ If X is a good idea and Y is a good idea, X+Y is not necessarily a good 

idea.

■ The road to language Hell is paved with good intentions.

■ It’s hard to read minds.
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Enforcing Dimensional Unit Correctness
Scientific and engineering calculations are dependent on correct use of 
units in calculations:

■ It makes no sense to assign a time value to a distance variable

■ It makes no sense to compare a mass variable with a charge variable

But most software ignores such units:

double t; // time - in seconds

double a; // acceleration - in meters/sec2

double d; // distance - in meters

...

cout << d/(t*t) - a; // okay, subtracts meters/sec2

cout << d/t - a; // should be an error, as it
// subtracts meters/sec and
// meters/sec2
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Enforcing Dimensional Unit Correctness
Typedefs just disguise the problem:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

Time t; 
Acceleration a;
Distance d;

...

cout << d/t - a; // still compiles, but is still wrong

We want a way to use the C++ type system to:

■ Make unit compatibility errors impossible:
➠ They’ll be detected during compilation

■ Do so with minimal runtime performance impact:
➠ Minimal memory overhead, minimal runtime overhead
➠ As much as possible should be done during compilation



The copyright to this material is held by Scott Meyers Page 5
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Observations:

■ The number of needed types is, in principle, unlimited:
➠ Time * Time = Time2

➠ Time/Distance = Time/Distance
➠ Distance/Time2 = Distance/Time2

■ This suggests we should have templates generate the types 
automatically.

■ Types change only when a unit type’s exponent changes:
➠ Unitless numbers (i.e. constants) have unit exponents of 0
➠ In Time * Time, the Time exponent goes from 1 to 2
➠ In Acceleration/Time, the Time exponent goes from -2 to -3

■ This suggests we need a template to generate types based on unit 
exponents
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Enforcing Dimensional Unit Correctness
template<int m, // exponent for mass

int d, // exponent for distance
int t> // exponent for time

class Units {
public:

explicit Units(double initVal = 0): val(initVal) {}

double value() const { return val; }
double& value() { return val; }
...

private:
double val;

};

Now we can say:

Units<1, 0, 0> m; // m is of type mass
Units<0, 1, 0> d; // d is of type distance
Units<0, 0, 1> t; // t is of type time

m = t; // error! type mismatch
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Enforcing Dimensional Unit Correctness
Typedefs for commonly-used units make things clearer:

typedef Units<1, 0, 0> Mass;
typedef Units<0, 1, 0> Distance;
typedef Units<0, 0, 1> Time;

Mass m;
Distance d;
Time t;
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Enforcing Dimensional Unit Correctness
Arithmetic operations on these kinds of types are important, so we can 
augment Units as follows:

template<int m, int d, int t>
class Units {
public:

... // as before

Units<m, d, t>& operator+=(const Units<m, d, t>& rhs)
{

val += rhs.val;
return *this;

}

Units<m, d, t>& operator*=(double rhs)
{

val *= rhs;
return *this;

}

...
};

Operators for subtraction and division are analogous.
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Enforcing Dimensional Unit Correctness
Non-assignment operators are best implemented as non-members:

template<int m, int d, int t>
const Units<m, d, t> operator+(const Units<m, d, t>& lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(lhs);
return result += rhs;

}

template<int m, int d, int t>
const Units<m, d, t> operator*(double lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(rhs);
return result *= lhs;

}

template<int m, int d, int t>
const Units<m, d, t> operator*(const Units<m, d, t>& lhs,

double rhs)
{

Units<m, d, t> result(lhs);
return result *= rhs;

}
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Enforcing Dimensional Unit Correctness
If we adopt the SI units as our standard, we can provide the following 
constants:

const Mass kilogram(1); // each of these constants sets its
const Distance meter(1); // internal val field to 1.0
const Time second(1);

Now we can start defining more interesting objects:

Distance myBatikHeight(0.5 * meter);
Distance myBatikWidth(1 * meter);

Mass willametteMeteoritesWeight(13636 * kilogram);

Time halfAMinute(30 * second);
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Enforcing Dimensional Unit Correctness
We can also define other units in terms of our standard:

const Mass pound(kilogram/2.2);

const Mass ton(907.18 * kilogram);

const Time minute(60 * second);

const Time hour(60 * minute);

const Time day(24 * hour);

const Distance inch(.0254 * meter);
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Enforcing Dimensional Unit Correctness
The real fun comes when multiplying/dividing Units:

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1+m2, d1+d2, t1+t2>
operator*( const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1+m2, d1+d2, t1+t2> ResultType;

return ResultType(lhs.value() * rhs.value());
}

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1-m2, d1-d2, t1-t2>
operator/( const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1-m2, d1-d2, t1-t2> ResultType;

return ResultType(lhs.value() / rhs.value());
}
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Enforcing Dimensional Unit Correctness
Real implementations typically use more template arguments for Units:

■ One specifies the precision of the value (typically float or double)

■ The others are for the exponents of the seven SI units:
➠ Mass
➠ Length
➠ Time
➠ Charge
➠ Temperature
➠ Intensity
➠ Angle
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Enforcing Dimensional Unit Correctness
template<class T, int m, int d, int t, int q, int k, int i, int a>
class Units {
public:

explicit Units(T initVal = 0) : val(initVal) {}
T& value() { return val; }
const T& value() const { return val; }
...

private:
T val;

};

template<class T, int m1, int d1, int t1, int q1, int k1, int i1, int a1,
int m2, int d2, int t2, int q2, int k2, int i2, int a2>

Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
operator*(const Units<T, m1, d1, t1, q1, k1, i1, a1>& lhs, 

const Units<T, m2, d2, t2, q2, k2, i2, a2>& rhs)
{

typedef Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
ResultType;

return ResultType(lhs.value() * rhs.value());
}
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Observations
Dimensionless quantities (i.e., objects of type Units<T, 0,0,0,0,0,0,0>) 
should be type-compatible with unitless types (e.g., int, double, etc.).

■ Partial template specialization can help:

template<typename T>
class Units<T, 0, 0, 0, 0, 0, 0, 0> {
public:

...
Units(T initVal = 0): val(initVal) {} // allow implicit conversion 
operator T() const { return val; } // to/from values of type T

Units& operator=(T newVal) // allow assignments from
{ val = newVal; return *this; } // values of type T
...

private:
T val;

};

If partial template specialization is unavailable, you can totally specialize 
for e.g., T = double and/or T = float.
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Observations
Some compilers refuse to place objects in registers:

■ A Units<double, ...> may thus be treated less efficiently than a raw double

■ If efficiency is a problem, you can revert to type-unsafe typedefs:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

➠ This is okay as long as the code has already been shown to compile 
using Units
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Industrial-Strength Dimensional Analysis
A state-of-the-art implementation of the Units approach is more efficient, 
powerful, and sophisticated:

■ It allows fractional exponents (e.g., distance1/2)

■ It supports multiple unit systems (beyond just SI)

■ It uses template metaprogramming to shift some computation from 
runtime to compiletime.
➠ E.g., to compute GCDs when reducing fractional exponents.
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Industrial-Strength Dimensional Analysis
It can determine whether this “simple” formula,

is correctly modeled by this C++:

Energy<> finalEnergy(Element<> const & material, Density<> const dens,
Length<> const thick, Energy<> const initEnergy) {

AtomicWeight<> const A = material->atomicWeight;
AtomicNumber<> const Z = material->atomicNumber;

Number<> const L_rad = log( 184.15 / root<3>( Z ) );
Number<> const Lp_rad = log( 1194. / root<3>(Z*Z) );

Length<> const X_0 = 4.0 * alpha * r_e * r_e * N_A / A *
( Z * Z * L_rad + Z * Lp_rad );

return initEnergy / exp( thick / X_0 );
}

(It’s not. There are three dimensional type errors.)
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Conclusions
■ Templates are useful for a lot more than just containers

■ Templates make it possible to generate and check an unknowable 
number of types during compilation

■ Templates can add type safety to code with little or no runtime 
penalty
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Further Reading
■ John J. Barton and Lee R. Nackman, “Dimensional analysis,” C++ 

Report, January 1995. Based on section 16.5 of their Scientific and 
Engineering C++: An Introduction with Advanced Techniques and 
Examples, Addison-Wesley, 1994, ISBN 0-201-53393-6.
➠ Now primarily of historical interest.

■ Walter E. Brown, “Introduction to the SI Library of Unit-Based 
Computation,” International Conference on Computing in High 
Energy Physics (CHEP ’98), August 1998. Available at
http://fnalpubs.fnal.gov/archive/1998/conf/Conf-98-328.pdf. 
➠ A user’s view of SIUNITS. Describes how five different models of 

the universe are supported.

■ Walter E. Brown, “Applied Template Metaprogramming in SIUNITS: 
the Library of Unit-Based Computation,” Second Workshop on C++ 
Template Programming, October 2001. Available at
http://www.oonumerics.org/tmpw01/brown.pdf.
➠ Another description of SIUNITS, this time focusing more on 

implementation strategies.
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Further Reading
■ Michael Kenniston, “Dimension Checking of Physical Quantities,”

C/C++ Users Journal, November 2002.
➠ A description of a slightly different approach, one focused on 

working with less conformant compilers (e.g., Visual C++ 6).

And of course:

■ Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve 
Your Programs and Designs, Addison-Wesley, 2005, ISBN 0-321-33487-6.


