
The copyright to this material is held by Scott Meyers Page 1
or by Addison Wesley Longman, Inc. Last Revised: 11/10/02

The Meaning of “f(x)” in C++

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/638-6614

The copyright to this material is held by Scott Meyers Page 2
or by Addison Wesley Longman, Inc.

Buy This Book!

The M
ar

k

of a
 Tru

e

Pro
fe

ss
io

nal!

The copyright to this material is held by Scott Meyers Page 3
or by Addison Wesley Longman, Inc.

Function Calls and Implicit Type Conversions
Consider:

void f(double d);

int x;

...

f(x); // call f with an int

Should this compile?

■ x is of the wrong type.

C says yes. So does C++.

■ Note: this is an attempt to read minds.

The copyright to this material is held by Scott Meyers Page 4
or by Addison Wesley Longman, Inc.

Function Calls and Overloading
Consider:

void f(int);
void f(double);

Should this compile?

■ f is overloaded

C++ says yes.

The copyright to this material is held by Scott Meyers Page 5
or by Addison Wesley Longman, Inc.

Overloading Meets Type Conversions
Now consider an abstract view of a set of overloaded functions and a
potential call:

void f(SomeParamType1);
void f(SomeParamType2);
...
void f(SomeParamTypeN);

SomeType x;
f(x); // A call to f, but which one?

C++ specifies five levels of parameter matching that can be applied:

1. Exact match (includes “trivial conversions”)

2. Match with promotions (value-preserving)

3. Match with standard conversions (not always value-preserving,
includes inheritance-based conversions)

4. Match with user-defined conversions

5. Match with ellipsis

The copyright to this material is held by Scott Meyers Page 6
or by Addison Wesley Longman, Inc.

Resolving Function Calls
These rules largely determine which, if any, function should be called.
Example:

void f(int);
void f(int*);
void f(...)

f(10); // calls f(int) — exact match
f(0); // calls f(int) — exact match

string *ps = new string;

f(ps); // calls f(...) — match with ellipsis

Functions taking multiple parameters do the same thing, only more so.

■ For a call to compile, the called function must:
➠ Be at least as good a match on each parameter as all the other

candidate functions and
➠ Be a strictly better match on at least one parameter.

Note: this is still an attempt to read minds.

The copyright to this material is held by Scott Meyers Page 7
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
Consider:

template<typename T>
void f(T);

int x;

f(x); // Deduce that this is a call to f<int>

Note that no type conversion is ever necessary.

■ T can always be the passed type.

The copyright to this material is held by Scott Meyers Page 8
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
It gets more interesting with one type parameter but multiple function
parameters:

template<typename T>
void f(const T& x, const T& y);

Should mixed-type calls compile?

int i;
const int ci = 5;

f(i, ci); // Valid? If so,what is T?

double d;

f(i, d); // Valid? If so,what is T?

The copyright to this material is held by Scott Meyers Page 9
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
And of course there is the inheritance issue:

class Base { ... };
class Derived:

public Base { ... };

Derived d;
Base& rb = d;

f(rb, d); // Valid? If so,what is T?

The copyright to this material is held by Scott Meyers Page 10
or by Addison Wesley Longman, Inc.

Type Conversions and
Implicit Template Type Deduction

C++ allows some type conversions during implicit type deduction:

■ The first and third examples are legal. The second is not.

The allowed conversions are more constrained than for function calls:

■ Exact match (with some “trivial conversions”)

■ Match with inheritance-based conversions

What’s missing?

■ Promotions

■ Standard conversions other than inheritance-based ones

■ User-defined conversions

Note: again, this is an attempt to read minds.

The copyright to this material is held by Scott Meyers Page 11
or by Addison Wesley Longman, Inc.

The Crux of the Issue
Consider:

f(x); // What is this?

Is this a function call?

■ If so, conversion rules for function calls apply.

Is it a request to instantiate and call a template function?

■ If so, conversion rules for template instantiation apply.

The copyright to this material is held by Scott Meyers Page 12
or by Addison Wesley Longman, Inc.

The Rubber Hits the Road
The problem is not purely theoretical:

void f(vector<int>::const_iterator it1, vector<int>::const_iterator it2);

vector<int> v;
...
vector<int>::iterator begin = v.begin();
vector<int>::const_iterator end = v.end();

f(begin, end); // fine, this is a function call, so the user-defined
// iterator ⇒ const_iterator conversion applies

template<typename It> void g(It it1, It it2);

g(begin, end); // error, this is a template instantiation, so
// no user-defined conversions apply;
// no type for It can be deduced.

The copyright to this material is held by Scott Meyers Page 13
or by Addison Wesley Longman, Inc.

Specializing Templates
Aber warten Sie mal, wir gehen noch weiter.

It often makes sense to specialize templates for one or more types:

template<typename T>
void f(T); // General template

template<typename T>
void f(T*); // General Template For Pointers

template<>
void f<char*>(char *p); // Template specialization for char*

// pointers. This is not a template.

This turns out to be useful. Really :-)

The copyright to this material is held by Scott Meyers Page 14
or by Addison Wesley Longman, Inc.

Specializing Templates
Consider:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers

char *p;
...
f(p); // Which f is instantiated/called?

The copyright to this material is held by Scott Meyers Page 15
or by Addison Wesley Longman, Inc.

Specializing Templates
Critical observations:

■ Only functions can be called.

■ Function templates are not functions. They generate functions.

■ Before the compiler generates a function, it must choose the template
to instantiate.

There are only two templates to choose from:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

Here is the call again:

char *p;
...
f(p); // Which f is instantiated/called?

Which template is a better match for a pointer type?

The copyright to this material is held by Scott Meyers Page 16
or by Addison Wesley Longman, Inc.

Specializing Templates
Clearly, the template for pointers is a better match. So:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers
char *p;
...
f(p); // Calls (2), not (3)

The specialization would be considered only if (1) were the selected
template!

The results would change if (3) were declared this way:

template<>
void f<char>(char *p); // Now this specializes (2), not (1)!

The copyright to this material is held by Scott Meyers Page 17
or by Addison Wesley Longman, Inc.

Resolving Function Calls
In essence, there are three sets of interacting rules:

■ Overloading resolution

■ Template argument deduction

■ Function template partial ordering

All may apply to what looks like a simple function call:

f(x); // all of the above may be involved

The copyright to this material is held by Scott Meyers Page 18
or by Addison Wesley Longman, Inc.

Implications for C++ Programmers
■ You must know whether you are using a template name when

making a function call.

f(x); // what happens here depends on whether f is
// a function name, a template name, or both

■ You must document whether functionality you provide comes from
functions or function templates.

■ Be careful not to confuse template argument deduction with
overloading resolution.
➠ This applies also to non-type template arguments. The conversion

rules for those also differ from those for overloading resolution.

The copyright to this material is held by Scott Meyers Page 19
or by Addison Wesley Longman, Inc.

Implications for Language Designers
■ If X is a good idea and Y is a good idea, X+Y is not necessarily a good

idea.

■ The road to language Hell is paved with good intentions.

■ It’s hard to read minds.

The copyright to this material is held by Scott Meyers Page 1
or by Addison Wesley Longman, Inc. Last Revised: 9/6/05

Dimensional Analysis in C++

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/638-6614

The copyright to this material is held by Scott Meyers Page 2
or by Addison Wesley Longman, Inc.

Buy This Book!

M
ak

es
 A

Gre
at

Gift
!

The copyright to this material is held by Scott Meyers Page 3
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Scientific and engineering calculations are dependent on correct use of
units in calculations:

■ It makes no sense to assign a time value to a distance variable

■ It makes no sense to compare a mass variable with a charge variable

But most software ignores such units:

double t; // time - in seconds

double a; // acceleration - in meters/sec2

double d; // distance - in meters

...

cout << d/(t*t) - a; // okay, subtracts meters/sec2

cout << d/t - a; // should be an error, as it
// subtracts meters/sec and
// meters/sec2

The copyright to this material is held by Scott Meyers Page 4
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Typedefs just disguise the problem:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

Time t;
Acceleration a;
Distance d;

...

cout << d/t - a; // still compiles, but is still wrong

We want a way to use the C++ type system to:

■ Make unit compatibility errors impossible:
➠ They’ll be detected during compilation

■ Do so with minimal runtime performance impact:
➠ Minimal memory overhead, minimal runtime overhead
➠ As much as possible should be done during compilation

The copyright to this material is held by Scott Meyers Page 5
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Observations:

■ The number of needed types is, in principle, unlimited:
➠ Time * Time = Time2

➠ Time/Distance = Time/Distance
➠ Distance/Time2 = Distance/Time2

■ This suggests we should have templates generate the types
automatically.

■ Types change only when a unit type’s exponent changes:
➠ Unitless numbers (i.e. constants) have unit exponents of 0
➠ In Time * Time, the Time exponent goes from 1 to 2
➠ In Acceleration/Time, the Time exponent goes from -2 to -3

■ This suggests we need a template to generate types based on unit
exponents

The copyright to this material is held by Scott Meyers Page 6
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
template<int m, // exponent for mass

int d, // exponent for distance
int t> // exponent for time

class Units {
public:

explicit Units(double initVal = 0): val(initVal) {}

double value() const { return val; }
double& value() { return val; }
...

private:
double val;

};

Now we can say:

Units<1, 0, 0> m; // m is of type mass
Units<0, 1, 0> d; // d is of type distance
Units<0, 0, 1> t; // t is of type time

m = t; // error! type mismatch

The copyright to this material is held by Scott Meyers Page 7
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Typedefs for commonly-used units make things clearer:

typedef Units<1, 0, 0> Mass;
typedef Units<0, 1, 0> Distance;
typedef Units<0, 0, 1> Time;

Mass m;
Distance d;
Time t;

The copyright to this material is held by Scott Meyers Page 8
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Arithmetic operations on these kinds of types are important, so we can
augment Units as follows:

template<int m, int d, int t>
class Units {
public:

... // as before

Units<m, d, t>& operator+=(const Units<m, d, t>& rhs)
{

val += rhs.val;
return *this;

}

Units<m, d, t>& operator*=(double rhs)
{

val *= rhs;
return *this;

}

...
};

Operators for subtraction and division are analogous.

The copyright to this material is held by Scott Meyers Page 9
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Non-assignment operators are best implemented as non-members:

template<int m, int d, int t>
const Units<m, d, t> operator+(const Units<m, d, t>& lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(lhs);
return result += rhs;

}

template<int m, int d, int t>
const Units<m, d, t> operator*(double lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(rhs);
return result *= lhs;

}

template<int m, int d, int t>
const Units<m, d, t> operator*(const Units<m, d, t>& lhs,

double rhs)
{

Units<m, d, t> result(lhs);
return result *= rhs;

}

The copyright to this material is held by Scott Meyers Page 10
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
If we adopt the SI units as our standard, we can provide the following
constants:

const Mass kilogram(1); // each of these constants sets its
const Distance meter(1); // internal val field to 1.0
const Time second(1);

Now we can start defining more interesting objects:

Distance myBatikHeight(0.5 * meter);
Distance myBatikWidth(1 * meter);

Mass willametteMeteoritesWeight(13636 * kilogram);

Time halfAMinute(30 * second);

The copyright to this material is held by Scott Meyers Page 11
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
We can also define other units in terms of our standard:

const Mass pound(kilogram/2.2);

const Mass ton(907.18 * kilogram);

const Time minute(60 * second);

const Time hour(60 * minute);

const Time day(24 * hour);

const Distance inch(.0254 * meter);

The copyright to this material is held by Scott Meyers Page 12
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
The real fun comes when multiplying/dividing Units:

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1+m2, d1+d2, t1+t2>
operator*(const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1+m2, d1+d2, t1+t2> ResultType;

return ResultType(lhs.value() * rhs.value());
}

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1-m2, d1-d2, t1-t2>
operator/(const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1-m2, d1-d2, t1-t2> ResultType;

return ResultType(lhs.value() / rhs.value());
}

The copyright to this material is held by Scott Meyers Page 13
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
Real implementations typically use more template arguments for Units:

■ One specifies the precision of the value (typically float or double)

■ The others are for the exponents of the seven SI units:
➠ Mass
➠ Length
➠ Time
➠ Charge
➠ Temperature
➠ Intensity
➠ Angle

The copyright to this material is held by Scott Meyers Page 14
or by Addison Wesley Longman, Inc.

Enforcing Dimensional Unit Correctness
template<class T, int m, int d, int t, int q, int k, int i, int a>
class Units {
public:

explicit Units(T initVal = 0) : val(initVal) {}
T& value() { return val; }
const T& value() const { return val; }
...

private:
T val;

};

template<class T, int m1, int d1, int t1, int q1, int k1, int i1, int a1,
int m2, int d2, int t2, int q2, int k2, int i2, int a2>

Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
operator*(const Units<T, m1, d1, t1, q1, k1, i1, a1>& lhs,

const Units<T, m2, d2, t2, q2, k2, i2, a2>& rhs)
{

typedef Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
ResultType;

return ResultType(lhs.value() * rhs.value());
}

The copyright to this material is held by Scott Meyers Page 15
or by Addison Wesley Longman, Inc.

Observations
Dimensionless quantities (i.e., objects of type Units<T, 0,0,0,0,0,0,0>)
should be type-compatible with unitless types (e.g., int, double, etc.).

■ Partial template specialization can help:

template<typename T>
class Units<T, 0, 0, 0, 0, 0, 0, 0> {
public:

...
Units(T initVal = 0): val(initVal) {} // allow implicit conversion
operator T() const { return val; } // to/from values of type T

Units& operator=(T newVal) // allow assignments from
{ val = newVal; return *this; } // values of type T
...

private:
T val;

};

If partial template specialization is unavailable, you can totally specialize
for e.g., T = double and/or T = float.

The copyright to this material is held by Scott Meyers Page 16
or by Addison Wesley Longman, Inc.

Observations
Some compilers refuse to place objects in registers:

■ A Units<double, ...> may thus be treated less efficiently than a raw double

■ If efficiency is a problem, you can revert to type-unsafe typedefs:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

➠ This is okay as long as the code has already been shown to compile
using Units

The copyright to this material is held by Scott Meyers Page 17
or by Addison Wesley Longman, Inc.

Industrial-Strength Dimensional Analysis
A state-of-the-art implementation of the Units approach is more efficient,
powerful, and sophisticated:

■ It allows fractional exponents (e.g., distance1/2)

■ It supports multiple unit systems (beyond just SI)

■ It uses template metaprogramming to shift some computation from
runtime to compiletime.
➠ E.g., to compute GCDs when reducing fractional exponents.

The copyright to this material is held by Scott Meyers Page 18
or by Addison Wesley Longman, Inc.

Industrial-Strength Dimensional Analysis
It can determine whether this “simple” formula,

is correctly modeled by this C++:

Energy<> finalEnergy(Element<> const & material, Density<> const dens,
Length<> const thick, Energy<> const initEnergy) {

AtomicWeight<> const A = material->atomicWeight;
AtomicNumber<> const Z = material->atomicNumber;

Number<> const L_rad = log(184.15 / root<3>(Z));
Number<> const Lp_rad = log(1194. / root<3>(Z*Z));

Length<> const X_0 = 4.0 * alpha * r_e * r_e * N_A / A *
(Z * Z * L_rad + Z * Lp_rad);

return initEnergy / exp(thick / X_0);
}

(It’s not. There are three dimensional type errors.)

The copyright to this material is held by Scott Meyers Page 19
or by Addison Wesley Longman, Inc.

Conclusions
■ Templates are useful for a lot more than just containers

■ Templates make it possible to generate and check an unknowable
number of types during compilation

■ Templates can add type safety to code with little or no runtime
penalty

The copyright to this material is held by Scott Meyers Page 20
or by Addison Wesley Longman, Inc.

Further Reading
■ John J. Barton and Lee R. Nackman, “Dimensional analysis,” C++

Report, January 1995. Based on section 16.5 of their Scientific and
Engineering C++: An Introduction with Advanced Techniques and
Examples, Addison-Wesley, 1994, ISBN 0-201-53393-6.
➠ Now primarily of historical interest.

■ Walter E. Brown, “Introduction to the SI Library of Unit-Based
Computation,” International Conference on Computing in High
Energy Physics (CHEP ’98), August 1998. Available at
http://fnalpubs.fnal.gov/archive/1998/conf/Conf-98-328.pdf.
➠ A user’s view of SIUNITS. Describes how five different models of

the universe are supported.

■ Walter E. Brown, “Applied Template Metaprogramming in SIUNITS:
the Library of Unit-Based Computation,” Second Workshop on C++
Template Programming, October 2001. Available at
http://www.oonumerics.org/tmpw01/brown.pdf.
➠ Another description of SIUNITS, this time focusing more on

implementation strategies.

The copyright to this material is held by Scott Meyers Page 21
or by Addison Wesley Longman, Inc.

Further Reading
■ Michael Kenniston, “Dimension Checking of Physical Quantities,”

C/C++ Users Journal, November 2002.
➠ A description of a slightly different approach, one focused on

working with less conformant compilers (e.g., Visual C++ 6).

And of course:

■ Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve
Your Programs and Designs, Addison-Wesley, 2005, ISBN 0-321-33487-6.

