
1

Lock-Free Programming

Andrei Alexandrescu
andrei@metalanguage.com



2

“Life is just one darn thing after another”

Elbert Hubbard



3

“Multithreading is just one darn thing after, 
before, or simultaneously with another”



4

Agenda

 Architectural trends and how they affect 
programming styles

 Lock-based vs. lock-free
 CAS-based code
 Retiring old data in lock-free programming
 Conclusions



5

Architectural Trends

 Yesterday: scarce processing power, wiring 
relatively unimportant

 Today: lots of processing power, albeit hard to 
access

 Tomorrow: tons of inaccessible processing 
power

 Transistor count on the rise
 Connectivity becomes nightmarish
 Light won’t travel any more faster

 At 10 GHz: 3 cm/cycle!



6

Needs

 Need more parallelism
 ILP: ~2.5 instructions/cycle

 Need to put more on the chip
 2005: all ?P vendors will release logical MPs

 Need better on-chip data locality/retention
 Memory latency and bandwidth issues

 Power issues
 Speculative loading and execution = wasted 

power (and bandwidth munching)



7

Multithreading

 MT is one of precious few software techniques 
to increase processor utilization

 Serial code is hard to parallelize
 Parallel code is easy to parallelize

 Not all threads stall at the same time
 Do more work with less power



8

Lock-based vs. Lock-free

 Lock-based:
 Access to shared data protected by mutex 

locking/unlocking
 Inside a locked region, arbitrary operations can 

be perfrmed

 Lock-free:
 No need for locking (duh)
 Precious few ops allowed on shared data



9

Impossibility/universality

 1991: Herlihy paper “Wait-free synchronization”
 Some primitives cannot synchronize any shared 

data structure for >2 threads
 e.g., atomic queues!

 Some other primitives are enough to implement 
any shared data structure
 e.g., CAS



10

CAS

 Do this atomically:

template <class T>
bool CAS(T* addr, T expected, T fresh) {
    if (*addr != expected) return false;
    *addr = fresh;
    return true;
}
 Usually T = {int32, int64, ...}
 Implemented by all major processors

 This year: transactional memory



11

Defining terms

 Wait-free procedure: completes in a bounded 
number of steps regardless of the relative 
speeds of other threads

 Lock-free procedure: at any time, at least one 
thread is guaranteed to make progress
 Probabilistically, all threads will finish timely

 Mutex-based procedures:
 Not wait-free
 Not lock-free



12

Advantages of lock-free

 Fast (~ 4 times faster than best locks)
 Deadlock immunity
 Livelock immunity
 Thread-killing immunity

 Killing a thread won’t affect others

 Asynchronous signal immunity
 Reentrancy is automatic

 Priority inversion immunity
 Easier design



13

Disadvantages

 Priorities uncontrollable
 Can increase contention gratuitously

 Hard to program
 Herlihy’s proofs assumed infinite memory
 GC is a big helper
 Hard even with GC

 Use locks for 98% of the code
 Use CAS for 2% of the code to increase 

performance by 98%



14

Basic CAS-based idioms

 In your class, keep pointers to the shared data 
(don’t embed it)

 When updating shared data:
 Do all the work on the side in another pointer
 CAS-in the new pointer
 Do that in a loop to make sure you update the 

right data

 If garbage collection, then done!



15

Example

class Widget {
  Data * p_;
  ...
  void Use() { ... use p_ ... }
  void Update() {
    Data * pOld, * pNew = new Data;
    do {
      pOld = p_;
      ...
    } while (!CAS(&p_, pOld, pNew));
  }
};



16

Retiring Old Data

 Problem: when to delete the old p_?
 Reference counting?

 Can’t do, need DCAS
 Wait some, then delete?

 Fragile approach: how long is enough?
 (How large is a large enough buffer?)

 Keep the reference count next to p_
 Requires CAS2
 Writes are locked by reads



17

Hazard Pointers

 Idea: maintain a global singly-linked list of 
“pointers in use” – the hazard pointers (hlist)
 The list is easy to manipulate with CAS only

 Whenever a thread replaces a pointer, it puts 
the old one in a thread-local, private list (rlist)

 When rlist has grown up to a fixed size:
 Do the set difference rlist – hlist
 delete all pointers in the result set!



18

Example
void Widget::Use() { 
  hlist->add(p_);
  ... use p_ ...
  hlist->remove(p_);
}
void Widget::Update() {
  ... replace p_ with pNew ...
  rlist->add(pOld);
  if (rlist->size() > R) {
    set<Data*> d = difference(rlist, hlist);
    ... delete all in d ...
  }
};



19

Optimizations

 A set difference can be computed in O(R) if one 
of the lists is sorted (at cost O(R log R))

 Hashing would be an alternative
 O(R) expected complexity

 In any case, the algorithm is wait-free
 Scans the wait-free hlist and the thread-local 

private rlist



20

Choosing parameters

 So, complexity of the scanning algo is O(R)
 Maximum number of retired pointers that haven’t 

been deleted is N * R
 N is the number of writers
 A good choice:

 R = (1 + k) * H
 H is the max number of readers
 k > 1 small positive number
 Each scan deletes R – H = O(R) pointers

 So the amortized time to delete any unused 
pointer is constant



21

Conclusions

 Efficient programs are hip again
 Threads are hipper than ever
 Lock-free offer high-efficiency for simple 

structures
 Lock-based programming is easier for complex 

structures
 CAS-based code is cool



22

Bibliography

 Maged Michael: Scalable lock-free dynamic 
memory allocation, PLDI 2004

 Maged Michael: Hazard Pointers: Safe Memory 
Reclamation for Lock-Free Objects, IEEE TPDS 
1994

 Maurice Herlihy: Wait-Free Synchronization, 
ACM Transactions on Programming Languages 
and Systems, 13(1):124--149, January 1991

 Andrei Alexandrescu: Generic<Programming> in 
CUJ, Oct and Dec 2004 (2nd with M. Michael)


