Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

The Future of C++ on .NET
A Tour of C++/CLI

Herb Sutter

Architect
Microsoft Visual C+ +

Quake Il Takeaways

960x720 + software-rendered on 1.2GHz PIlI-M + Fx 1.1.4322

1. It's easy to run existing C/C++ code on .NET:
100% JITted (IL) code; still native data.

Just rebuild with /clr.

1 day to port the entire Quake 2 source base. (Nearly all of
the effort was to translate from C to C++, and had nothing
to do with our compiler or the .NET platform.)

2. It's not hard to extend existing code with CLR
types.

2 days to implement the radar extension using Fx (gradient
brushes, window transparency/opacity, Matrix.RotateAt).

3. It needs to be still easier, more natural,
and “first-class” to use C++ on the CLR.

Presented to NWCPP
December 10, 2003 1

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization

Venue, players, timelines, how to participate.

Microsoft’'s Bet on .NET

Windows XP SP1 (and onward): .NET ships in the OS
Windows Longhorn: .NET is the OS API (WinFX)

(.NET)

WinFX builds on the .NET Framework
Single cross-language framework for Windows

Presented to NWCPP
December 10, 2003 2

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Microsoft's Bet on .NET

Windows Longhorn: .NET is the OS API (WinFX)

Presentation Data Communication

O wers] e S -
Document ‘J; u J Med\aj Object T/SLJ | Senvice E

Y Schemas Connectivity
Deskio Desktop Window! Controls Interop Adapive Ul Services y
ervioss Mianagér Engine Enae Peoplo__ | Group Objectspaces | Policy
y-— e Synctronization Calendar } Media | (Datagram, Reliable, | ENgIne
. pplication agolsi inFS, Win
jne | Services Composition ;) Document o J B2 Channel
Med InfoAgent Data Model - TransportChamels | s
Anima fedia__{Capture and] Designer jonand] | (rercrenceRules.) J | jioms sauxw. | (PCHTIRTCR.)
Comp rocessing | Sourcing Services Profling Services ;
> Relationships
Communications Manager
Hardware Software Renderin Menm! an, . Providers
(D [Eoftyaiak 9] Controls J L J Extensions %J (Port)

Base Operating

System Services Application Depldment ; Memory Manager | Code Execution | Loader Security Serialization
Enaine

(Click-once)

Network Services Demand Activation and Protocol Health

Hosting Layer

Storage

Internet Connection Firewall

Probes.
Auto Update,
‘Admin) Protocols

- Cache Filter TCP. UDP i | [HTTR
Mangger |~ Engne | IPV4,iPV6 'PSEC QQLJ M
T 10 Manager - >
- Device Diivers
scsiFc | 8023 | so2t
— e

ics
| Gonfia | Process |
aaaaa fanager | Manager
ager g

Hardware Abstraction Layer

Kermel

apo [puisy

.NET (aka CLI) Cross-Platform

Microsoft .NET: WinFX, PocketPC, SPOT:
Windows XP SP1 and onward: .NET ships in the OS.
Windows Longhorn: .NET is the OS API (WinFX).
PocketPC and SPOT devices ((NET Compact Framework).

Microsoft Rotor:

SSCLI: Shared-source implementation of ISO CLI.
For non-commercial use.

Runs today on Windows XP, Mac OS X, and FreeBSD.

Novell (Ximian) Mono:
First two commercial releases due Q2 2004 and Q4 2004.

Runs on Unix and Linux. Targets x86 and PowerPC directly.
Targets Arm, Sparc, HPPA, and s390 via interpreter.

Includes ISO CLI, ASP.NET, ADO.NET, and GNOME- and
Linux-specific libraries.

Presented to NWCPP
December 10, 2003 3

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

“v1": Managtd\ExtentiensC+ +/CLI)

f]ff]_), V_, f-]
SI1T]E]!] LY.

jons.

&
=
2
(@)
Q.
o
[
N
N
C
—~
(L O
L1 —_
= l_|.

Poin'ter/po] riaa disiinctior,

Copy constructior,
2331 g2,

Rationale

C++: First-class .NET development language.

Remove “Why Can’t I” usability and migration barriers:
Port and extend existing programs even more seamlessly.

Key Q: “Why should a .NET developer use C+ +?”
Deliver promise of CLR.

"Managed C++" insufficient: Grafting vs. integration.
Great for basic interop, migrating existing code to .NET.
Poor exposure of CLR features (e.g., __property). Poor
integration of C++ and CLR features (e.g., no templates of
CLR types). Hard to write pure (verifiable, secure) .NET apps.
Ugly and nonintuitive syntax, uneven and contorted

semantics. Failed to achieve a natural, organic,
“everything in its place” surfacing of features.

Low adoption. And those who do adopt still need to hand-
wire way too much.

Presented to NWCPP
December 10, 2003 4

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Major Goals

Feature coverage:
Provide organic support for CLR features/idioms.
Make sure they have a first-class feel.
— Example: Verifiability at first try in this complete program:
int main() { System::Console::WriteLine("Hello, world!"); }
Leave no room for a language lower than C+ +.
C++ x CLR: Why a .NET programmer should use C+ +.

"Bring C++ to .NET": Support C++’s powerful features also
for CLR types (e.g., deterministic cleanup, templates).

"Bring .NET to C++": Support the CLR’s powerful features
also for native types (e.g., verifiability, garbage collection).

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization
Venue, players, timelines, how to participate.

Presented to NWCPP
December 10, 2003 5

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

adjective class C;

Basic Class Declaration Syntax

Type are declared “adjective class”:
class N{/*...*/}; // native
ref class R{/*..*/}; // CLR reference type
value class V{/*...*/}; // CLR value type
interface class | {/*...*/}; // CLR interface type
enum class E { /*...*/}; // CLR enumeration type
C++ & .NET fundamental types are mapped to each other
(e.g., int and System::Int32 are the same type).
Examples:
ref class A abstract {}; // abstract even w/o pure virtuals
ref class B sealed : A {}; // no further derivation is allowed
refclassC:B {}; // error, B is sealed

Presented to NWCPP
December 10, 2003 6

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Properties

Basic syntax:

ref class R {
int mySize;
public:
property int Size {
int get() { return mySize; }
void set(intval) { mySize = val; }
}
1
Rr;
r.Size = 42; // use like a field; calls r.Size::set(42)

Trivial properties:
ref class R {
public:

property int Size; // compiler-generated
b // get, set, and backing store

Indexed Properties

Indexed syntax:
refclassR{// ...
map<String”,int>* m;
public:
property int Lookup][String” s] {
int get() { return (*m)[s]; }
protected:
void set(int); // defined out of line below
}
property String” default[inti] {/*..*/}

void R::Lookup[String” s J::set(int v) { (*m)[s] = v; }

Call point:

Rr;
r.Lookup["Adams"] = 42; // r.Lookup[“Adams”].set(42)
String” s = r[42]; // r.default[42].get()

Presented to NWCPP
December 10, 2003 7

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Contemplated Orcas Extensions

Overloaded and templated setters:

ref class R {
public:
property Foo Bar {
Foo get();

void set(Foo);
void set(int); // overloaded function

template<class T> // overloaded function template
void set(T);

Delegates and Events

A trivial event:
delegate void D(int);

ref class R {

public:

event D” e; // trivial event; compiler-generated members
void f() { e(42); } // invoke it

%

Rr;
r.e += gcnew D(this, &SomeMethod);
r.e += gcnew D(SomeFreeFunction);
r.f0;
Or you can write add/remove/raise yourself.

Contemplated for Orcas: Overloaded/templated raise.

Presented to NWCPP
December 10, 2003 8

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Virtual Functions and Overriding

Explicit, multiple, and renamed overriding:
interface class I1 { int f(); int h(); L
interface class 12 { int f(); int i(); 5
interface class I3 { inti(); intjQ;)

ref class R: 11, 12, I3 {
public:
virtual int e() override; // error, there is no virtual e()
virtual int f() new; // new slot, doesn’t override any f
virtual int f() sealed; // overrides & seals I1::f and 12:f
virtual int g() abstract; // same as "= 0” (for symmetry
with class declarations)

virtual int x() = // overrides I1::h
virtual int y() = // overrides 12::i
virtual int z() = // overrides 13::i and 13:;j

Delegating Constructors

Can delegate to one peer constructor. No cycle
detection is required.

ref class R {

Ss;

I

R(inti, const U& u) : s(i), t(u) { /* init */ }
public:

R() :R(42, 3.14) {}

R(inti) :R(i, 3.14){}

R(U& u) : R(53, u){}
i

Presented to NWCPP
December 10, 2003 9

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

CLR Enums

Three differences:
Scoped.
No implicit conversion to underlying type.
Can specify underlying type (defaults to int).
enum class E1 { Red, Green, Blue };
enum class E2 : long { Red, Skelton };
El el = E1::Red; // ok
E2 e2 = E2::Red; // ok
el = e2; // error

int il = (int)Red; // error
inti2 = E1::Red: // error, no implicit conversion
int i3 = (int)E1l::Red; // ok

Other Features

Param arrays:
Created when needed, preferred over varargs
void f(String” str, ... array<Object” >~ arr);
f(“Hello”, “world”, 42);

Unified CLR and C+ + operators:

Operators can how be static. Most work on handles.

ref class R { public: // ...
static R” operator+(R~ lhs, R rhs);

b

Equality tests reference identity. Can be overridden by user.

XML doc comments.

Presented to NWCPP
December 10, 2003 10

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization

Venue, players, timelines, how to participate.

% is to N
as

&isto™*

Presented to NWCPP
December 10, 2003

11

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Unified Storage/Pointer Model

Semantically, a C++ program can create object of
any type T in any storage location:

On the native heap: 1°'tl_new &

— As usual, pointers (*) are stable, even during GC.

— As usual, failure to explicitly call delete will leak.

On the gc heap: T~ t2 = gcnew T;

— Handles (”) are object references (to whole objects).

— Calling delete is optional: "Destroy now, or finalize later."
On the stack, or as a class member: | T t3;

— Q: Why would you? A: Next section: Deterministic
destruction/dispose is automatic and implicit, hooked to
stack unwinding or to the enclosing object’s lifetime.

Physically, an object may exist elsewhere.

Pointers and Handles

Native pointers (*) and handles (*):

A is like *. Differences: A points to a whole object on the gc
heap, can’t be ordered, and can’t be cast to/from void* or
an integral type. There is no void.

Widget* s1 = new Widget; // point to native heap
Widget” s2 = gcnew Widget; // point to gc heap
s1->Length(); // use -> for member access
s2->Length();

(*s1).Length(); // use * to dereference
(*s2).Length();

Use RAIl pin_ptr to get a * into the gc heap:

RA r = gcnew R;

int* pl = &r->v; // error, v is a gc-lvalue
pin_ptr<int> p2 = &r->v; // ok

CallSomeAPI(p2); // safe call, CallSomeAPI(int*)

Presented to NWCPP
December 10, 2003 12

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

References and Unary &/%

Native (&) and tracking (%) references:

% is like &. Differences: % can refer into any memory area
incl. the gc heap. For now, a % can only exist on the stack.

String& s3 = *s1; // bind
String% s4 = *s2; // bind & track

s3.Length(); // reference syntax with .
s4.Length();

void swap(Object”% o1, Object*% 02) // C# "ref”
{ Object” tmp = o01; ol = 02; 02 = tmp; }
Unary & and % for “address of":

&myobj > MyType* (or interior_ptr<MyType>, when myobj
is physically on the gc heap).

%myobj > MyType”.

Native on the GC Heap

Create a proxy for native object on gc heap.
The proxy’s finalizer will call the destructor if needed.
N2 hn = gcnew N; // native object on gc heap

GCHandle Table

N_proxy

Presented to NWCPP
December 10, 2003 13

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Ref Class on Native Heap

Already implemented as gcroot template.
No finalizer will ever run. Example:
R* pr = new R; // ref object on native heap

R_proxy

C)

GCHandle Table

Ref Class on the Stack

The type of “%R" is RA.

Rr; // ref object on stack
f(%r); // call f(Object”)

GCHandle Table

Presented to NWCPP
December 10, 2003 14

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Boxing (Value Types)

Boxing is implicit and strongly typed:
int? i = 42; // strongly typed boxed value
Object” o = i; // usual derived-to-base conversions ok
Console::WriteLine("Two numbers: {0} {1}", i, 101);

i is emitted with type Object + attribute marking it as int.
WriteLine chooses the Object overload as expected.

Boxing invokes the copy constructor.
Unboxing is explicit:
Dereferencing a V» indicates the value inside the box, and
this syntax is also used for unboxing:
int k = *i; // unboxing to take a copy
int% i2 = *i; // refer into the box (no copy)

swap(*i, k); // swap contents of box with stack variable
// (no copy, modifies the contents of box)

Aside: Agnostic templates

To demonstrate the unification, consider agnostic
templates.

Example 1: Usual swap, with % instead of &.

template<class T>
void swap(1% t1, T% t2)
{Ttmp(tl); t1 = t2; t2 = tmp; }

Works for any copyable T:

Object 201, ~02; swap(ol,02); //swap handles
int Ail, Ai2; swap(il, i2); // swap handles
swap(*il, *i2); // swap values
MessageQueue *ql, *q2; swap(qgl, q2); //swap pointers
swap(*ql, *g2); // swap values
ref classR {} rl, r2; swap(rl, r2); // swap values*
value class V { } v1, v2; swap(vl, v2); //swap values
class Native {} nl, n2; swap(nl, n2); //swap values*

30 * assuming copy construction/assignment are defined

Presented to NWCPP
December 10, 2003 15

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization

Venue, players, timelines, how to participate.

Presented to NWCPP
December 10, 2003

16

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Cleanup in C++: Less Code, More Control

The CLR state of the art is great for memory.

It's not great for other resource types:

Finalizers usually run too late (e.g., files, database
connections, locks). Having lots of finalizers doesn’t scale.

The Dispose pattern (try-finally, or C# “using”) tries to
address this, but is fragile, error-prone, and requires the
user to write more code.

Instead of writing try-finally or using blocks:

Users can leverage a destructor. The C++ compiler
generates all the Dispose code automatically, including
chaining calls to Dispose. (There is no Dispose pattern.)

Types authored in C++ are naturally usable in other
languages, and vice versa.

C++: Correctness by default, potential speedup by choice.
(Other: Potential speedup by default, correctness by choice.)

Uniform Destruction/Finalization

Every type can have a destructor, ~T():
Non-trivial destructor == IDispose. Implicitly run when:
— A stack based object goes out of scope.
— A class member’s enclosing object is destroyed.
— A delete is performed on a pointer or handle. Example:
Object” o = f();
delete o; // run destructor now, collect memory later
Every type can have a finalizer, !T():

The finalizer is executed at the usual times and subject to
the usual guarantees, if the destructor has not already run.
Programs should (and do by default) use deterministic
cleanup. This promotes a style that reduces finalization
pressure.

“Finalizers as a debugging technique”: Placing assertions or
log messages in finalizers to detect objects not destroyed.

Presented to NWCPP
December 10, 2003

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Deterministic Cleanup in C++

C++ example:

void Transfer() {
MessageQueue source("server\\sourceQueue");
String” gname = (String”)source.Receive().Body;

MessageQueue dest1("server\\" + gname),
dest2("backup\\" + gname);

Message” message = source.Receive();

destl.Send(message);

dest2.Send(message);

}

On exit (return or exception) from Transfer, destructible/

disposable objects have Dispose implicitly called in
reverse order of construction. Here: dest2, destl, and
source.

No finalization.

Deterministic Cleanup in C#

Minimal C# equivalent:

void Transfer() {
MessageQueue source
("server\\sourceQueue")
String gname = (String)source.Receive().Body;

MessageQueue
destl ("server\\" + gname),
dest2 ("backup\\" + gname)
Message message = source.Receive();
destl.Send(message);
dest2.Send(message);

Presented to NWCPP
December 10, 2003

18

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Deterministic Cleanup in VB/Java

Alternative equivalent (in C# syntax):
void Transfer() {

source MessageQueue(“server\\sourceQueue");
String gname = (String)source.Receive().Body;

destl MessageQueue("server\\" + gname);
dest2 MessageQueue("backup\\" + gname);
Message message = source.Receive();

destl.Send(message);

dest2.Send(message);

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization
Venue, players, timelines, how to participate.

Presented to NWCPP
December 10, 2003 19

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

generic<typename T>

Generics x Templates

Both are supported, and can be used together.

Generics:
Run-time, cross-language, and cross-assembly.
Constraint based, less flexible than templates.
Will eventually support many template features.

Templates:

Compile-time, C++, and generally intra-assembly
(a template and its specializations in one assembly
will also be available to friend assemblies).

Intra-assembly is not a high burden because you can
expose templates through generic interfaces (e.g., expose
a_container<T> via IList<T>).

Supports specialization, unique power programming idioms
(e.g., template metaprogramming, policy-based design,
STL-style generic programming).

Presented to NWCPP
December 10, 2003 20

Herb Sutter

Gen

The Future of C++ on .NET:
A Tour of C++/CLI

erics

Generics are declared much like templates:

generic<typename T>
where T : IDisposable, IFoo
ref class GR { /* ... */ };

Constraints are inheritance-based.

Using generics and templates together works.

STL

C++

Example: Generics can match template template params.

template< template<class> classV > //a TTP
void f() { V<int> v; /*..use v...*/ }
f<GR>(); // ok, matches TTP

on the CLR

enables STL on CLR:
Verifiable.
Separation of collections and algorithms.

Interoperates with Frameworks library.

C++

“for_each” and C# “for each” both work:
stdcli:zvector<String” > v;

for_each(v.begin(), v.end(), functor);
for_each(v.begin(), v.end(), 1 += "suffix”); //C++
for_each(v.begin(), v.end(), cout << _1); // lambdas

g(%v); //call g(IList<String”>")
for(String” s in v) Console:WriteLine(s);

Presented to NWCPP

December 10, 2003

21

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization

Venue, players, timelines, how to participate.

ref class R : Native { };
class Native : R { };

Presented to NWCPP
December 10, 2003

22

Herb Sutter The Future of C++ on .NET:

A Tour of C++/CLI

CLR Types in the Native World

Basic interop example:

class Data {
XmlIDocument* xmlDoc;
public:
void Load(std::string fileName) {
XmlTextReader” reader = gcnew XmiITextReader(

marshal_as<String” > (fileName));
xmlDoc = new XmlIDocument(reader);

CLR Types in the Native World (2)

Template<Ref> example:
template<class T>
void AFunctionTemplate(T) { /*...*/ };
ref class Ref { /*...*/ };
Ref ref;
AFunctionTemplate(ref); // ok

Of course, any type can be templated:

template<class T>
ref class ARefTemplate { /*...*/ }; // ok

Presented to NWCPP

December 10, 2003 23

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Native Types in the CLR World

Basic interop example:

ref class MyControl : UserControl { //... // reference type
std::vector<std::string>* words; // use native type

public:
void Add(String” s) { Add(marshal_as<std::string>(s)); }

void Add(std::string s) { words->push_back(s); }
Y
Segueing to “futures”: Generic<Native> example.

generic<class T>
where T : 11
ref class SomeGeneric { /*...*/ };

class Native : 11 { /*...*/ };
SomeGeneric<Native> g;

What Customers Are Doing

Example 1: Quake 2 extension example
(using v1 syntax):

private __gc class RadarForm
: public System::Windows::Forms::Form

{

std::vector<Radarltem>" m_items;

public:

RadarForm() : m_items(new std::vector<Radarltem>)
el

~RadarForm() { delete items; } // v1 finalizer syntax

// ... etc.

Y

Their first attempt was without the * (i.e., they naturally

tried make the vector a member), but that wasn't allowed.

Presented to NWCPP
December 10, 2003

24

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

What Customers Are Doing (2)

Example 2: Faking up base classes
(e.g., expose native types to a CLR world).

private __gc class C { // can’t inherit from Native, so...
Native* n;

public:
C() : n(new Native)) { /*...%/ };
~C() { delete n; }
void Foo(/*... a param list ...*/) { n->Foo(/*...*/); }
voidBarl /0 aparamlist. /) (i CBail @ o/)}

// etc.

Future: Unified Type System, Object Model

Arbitrary combinations of members and bases:

Any type can contain members and/or base classes of any
other type. Virtual dispatch etc. work as expected.

— At most one base class may be of ref/value/mixed type.
Overhead (regardless of mixing complexity, including deep

inheritance with mixing and virtual overriding at each level):

— For each object: At most one additional object.
— For each virtual function call: At most one additional
virtual function call.

Pure type:
The declared type category, members, and bases are
either all CLR, or all native.
Mixed type:
Everything else. Examples:
ref class Ref : R, public N1, N2 { string s; };
class Native : 11, 12 { MessageQueue m; };

Presented to NWCPP
December 10, 2003

25

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Future: Implementing Mixed Types

1 mixed = 1 pure + 1 pure.

ref class M : 11, 12, N1, N2 {

System::String ~S1, AS2; M* pm = new M;
std::string s1, s2; MA hm = gcnew M;
1

Future: Result for Customer Code N2

V1 Syntax: V2 Syntax:

private __gc class RadarForm : public Form {| ref class RadarForm : Form, public Native {| Vi M o¥- 1> ¥
std::vector<Radarltem>* items; std::vector<Radarltem> items;

Native® n; 5

public: . .
RadarForm() ; One safe automated allocation, vs. 3iglsls K¥A
- n(new Native) N fragile handwritten allocations.

, items(new;std::vector<Radarltem>) This class is also better because it
(e also has a destructor (implements
. IDisposable). That makes it work
~RadarForm() { delete items; delete n; } well by default with C++
void Foo(/*... params .../) automatic stack semantics (and C#
{n->Foo(/%..*); } using blocks, and VB/J# dispose

atterns).
void Bar(/... params .../) P)

{n->Bar(/>...7]); }
et

Variable
M* pm
Presented to NWCPP

December 10, 2003 26

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Pure Extensions to ISO C+ +

Only three reserved words:
gcnew generic nullptr

The rest are contextual keywords:
abstract delegate event finally in initonly
interface literal override property ref sealed

value where

Overview

1. Rationale and Goals
2. Language Tour

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native
heap, gc heap).

Deterministic cleanup: Destruction/Dispose,
finalization.

Generics x templates, STL on CLR.
Mixing native/CLR, other features.

4. C++/CLI Standardization
Venue, players, timelines, how to participate.

Presented to NWCPP
December 10, 2003 27

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Why Standardize C++/CLI?

Primary motivators for C++/CLI standard:
Stability of language.
C++ community understands and demands standards.
Openness promotes adoption.

Independent implementations should interoperate.

Same TC39, new TG5: C++/CLI.
C++/CLl is a binding between ISO C++ and ISO CLI only.

Most of TG5’s seven planned meetings are co-located with
TG3 (CLI), and both standards are currently on the same
schedule.

C++/CLI Participants and Timeline

Participants:
Convener: Tom Plum
Project Editor: Rex Jaeschke
Subject Matter Experts: Bjarne Stroustrup, Herb Sutter

Participants: Dinkumware, EDG, IBM,
Microsoft, Plum Hall...

Independent conformance test suite: Plum Hall

Ecma + ISO process, estimated timeline:
Oct 1, 2003: Ecma TC39 plenary. Kicked off TG5.
Nov 21, 2003: Submitted base document to Ecma.
Dec 2003 - Sep 2004: TG5 meetings (7).

Dec 2004: Adopt Ecma standard.
Dec 2004: Kick off ISO fast-track process.
Dec 2005: Adopt ISO standard.

Presented to NWCPP
December 10, 2003 28

Herb Sutter

Overview

1. Rationale and Goals
2. Language Tour

The Future of C++ on .NET:
A Tour of C++/CLI

3. Design and Implementation Highlights

Unified pointer and storage system (stack, native

heap, gc heap).

Deterministic cleanup: Destruction/Dispose,

finalization.

Generics x templates, STL on CLR.

Mixing native/CLR, other features.

4. C++/CLI Standardization

Venue, players, timelines, how to participate.

C++ features:

Deterministic cleanup,
destructors.

Templates.
Native types.
Multiple inheritance.

STL, generic algorithms,
lambda expressions.

Pointer/pointee
distinction.

Copy construction,
assignment.

Presented to NWCPP
December 10, 2003

Summary: C++ x CLR

CLR features:

Garbage collection,
finalizers.

Generics.

Reference and value
types.
Interfaces.

Verifiability.
Security.

Properties, delegates,
events.

29

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Conclusion: The Two FAQs

Q: Is C++ relevant on modern VM / GC platforms?
Heck, yeah.

Q: Why should a .NET programmer use C++?

Preserves code base investment. Easiest migration for
existing code base: "Just use /clr."

Easiest and most efficient native interop, incl. mixed types.

Deterministic (and automatic) cleanup as usual in C++,
no coding patterns. Correctness by default.

Leverage C++'s unique strengths (e.g., templates, generic
programming, multiple inheritance, deterministic resource
management and cleanup).

Now not significantly harder or uglier than other languages.

Presented to NWCPP
December 10, 2003 30

