

Eliminating Code Smells

by Walter Bright
dlang.org

You Know What I'm Talking About

Pick up unfamiliar code that isn't
working. You can smell where
the bug is. But what is it that
actually smells?

Writing code for 40 years. Seen an awful lot
of code. Been finding bugs in other peoples'
code. Start to see patterns to bugs, i.e. smells.

Highly Personal

● Based on my experience
● You'll recognize many of these
● I hope you'll see some new ones

Let's Get On With It

#include <windows.h>

#include <windows.h>

● Should only appear in files that must interoperate
with the operating system

● Other files, such as the engine, should not be
dependent on the operating system

● Besides eliminating a vast amount of irrelevant
information, it makes the program more portable.

● Only the files that include windows.h need to be
ported

Nice Formatting

Sloppy formatting is like misspelled
words. Who reads text seriously when
it has misspellings in it? If the author
has taken care to format it nicely, he's
likely to have taken care writing it.

Short Global Names

● Global names should stand out
● Global names should be greppable

extern char c;

Long Local Names

for (loopIndex = 0; loopIndex < 10; ++loopIndex)

● short names suggest they are local
● long names are useless clutter
● short names don't need to be greppable
● do formulas in books ever use long names?

More Local Names

● Integer variables: i, j, k, l, m, n
● Unsigned: u, v
● Floating point: x, y, z
● Pointers: p
● Arrays: a

Put public interface
above the fold

Single Assignment

● Don't reuse variables

int i;
for (i = 0; i < 10; ++i) { … }
…
for (i = 0; i < 10; ++i) { … }

for (int i = 0; i < 10; ++i) { … }
…
for (int i = 0; i < 10; ++i) { … }

More Single Assignment

 e = e.semantic(sc);
 e = resolve(sc, e);

auto e2 = e.semantic(sc);
auto e3 = resolve(e2);

Even More

 int i = 8;
 if (condition)
 i = 9;

const i = condition ? 9 : 8;

Minimize Variable Scope

 int i;
 ...
 if (c) {
 i = 3;
 ...
 }

 ...
 if (c) {
 int i = 3;
 ...
 }

Don't Mix Queries With Actions

● is-a
– A Mustang is a car

● has-a
– A Mustang has a cup holder

● can
– A Mustang can drive

Side Channel Globals

 int x;
 ...
 int sum(int a, int b) {
 return a + b + x;
 }

Paper Over the Problem

 int x;
 int getX() { return x; }

 int sum(int a, int b) {
 return a + b + getX();
 }

Correct Fix

 int x;
 ...
 int sum(int a, int b, int x) {
 return a + b + x;
 }

Leaky Abstractions

 struct S {
 S* next;
 ...
 }

 for (S* s = start; s; s = s.next)
 ...

Let's Encapsulate!

 struct S {
 S* _next;
 S* next() { return _next; }
 ...
 }

 for (S* s = start; s; s = s.next())
 ...

 struct SRange {
 this(S* s) { this.s = s; }
 S* front() return { return s; }
 void popFront() { s = s.next; }
 bool empty() { return !s; }
 private S* s;
 }

for (sr = SRange(sl); !sr.empty(); sr.popFront())
{
 s = sr.front();
 ...
}

More Succintly

 foreach (s; SRange(sl)) {
 ...
 }

Random Globals

 uint changes;
 type_t mfoptim;
 vec_t defkill;
 ...

Aggregate Globals

 struct MyGlobals {
 uint changes;
 type_t mfoptim;
 vec_t defkill;
 ...
 }

 MyGlobals myGlobals;
 ...

 if (myGlobals.changes) ...

const For Variables

size_t length = strlen(s);

const length = strlen(s);

No Preprocessor

What Operating System Is
“Not Windows” ?

 #if !Windows
 ...
 #endif

Better

 #if Windows
 ...
 #elif Linux
 ...
 #else
 assert(0);
 #endif

Overloading Functions That
Do Something Completely

Different
● hard to grep
● there's no shortage of unique identifiers
● it's just lazy

Returning Allocated Strings

 char* cat(char* s1, char* s2) {
 const len1 = strlen(s1);
 const len2 = strlen(s2);
 auto s = cast(char*)malloc(len1 + len2 + 1);
 assert(s);
 memcpy(s, s1, len1);
 memcpy(s + len1, s2, len2 + 1);
 return s;
 }

Push Allocation Up Call Stack

 void cat(void delegate(char*) put,
 char* s1,char* s2) {
 put(s1);
 put(s2);
 }

No I/O In Low Level Functions

 int sum(int i, int j) {
 if (i > 100)
 fprintf(stderr, "i is out of range\n");
 return i + j;
 }

Push I/O Up Call Stack

 int sum(void delegate(char*) put, int i, int j) {
 if (i > 100)
 put("i is out of range");
 return i + j;
 }

Pull Request Smells

● Too many lines
● Touches too many files

– encapsulation problem?

● mixing together
– fixes

– refactors

– code motion

– reformats

git bisect !

Translating Code

● prepare code for translation
● translate with minimal diffs

– no reformatting

– no refactoring

– no bug fixes

– no enhancements

Conclusion

● My code suffers from all these defects
● I constantly work at fixing them

Trick or Treat!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

