
The materials shown here differ from those I used in my presentation at the Northwest
C++ Users’ Group. Compared to the materials I presented, these materials correct a
variety of technical errors whose presence became apparent in the talk. To the best of my
knowledge, these materials are correct. If you find what you believe to be errors, please
report them to me: smeyers@aristeia.com.

Image credit: http://www.123rf.com/photo_12124395_vector-illustration-of-single-isolated-
car-crash-icon.html.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Slide is animated.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

In the first two calls to doWork, the universal reference overload (T&&) is preferred, because
it can instantiate to an exact match. Choosing the const T& overload would require adding
const.

In the third call, both templates instantiate to take a parameter of type const Widget&, but
the const T& template is more specialized, so, per 14.5.6.2, it’s preferred.

In the final call, the universal reference overload would instantiate to take a const
Widget&&, and the const T& overload would instantiate to take a const Widget&. Because
the expression being passed is an rvalue, 13.3.3.2/3 bullet 1 sub-bullet 4 dictates that it
preferentially bind to the instantiation taking the rvalue reference, i.e., to the instantiation
arising from the universal reference overload.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Per 4.5 and 4.7/1-2, signed int→unsigned int is a conversion, not a promotion.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

A more accurate name for the “universal” copy/move ctor would be “universal converting
ctor”

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

These special member functions are not generated in all cases, but there are cases where
they are generated.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Because nameFromID takes an int, there is no technical need to use std::forward on its
argument, but in view of my advice to use std::forward on URefs, it’s a good habit to get
into, even when it’s not required, IMO.

std::true_type and std::false_type are motivated by the need for types; true and
false are values.

This approach due to reader comments on my 10/11/12 blog post, “Parameter Types in
Constructors.”

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

The universal ctor uses its argument to initialize its name data member—a std::string.
The copy ctor gets a Person parameter, which is not compatible with a std::string. As a
result, this code makes no sense. It’s only purpose is to show how a copy constructor can
be made to forward to a universal reference constructor.

The caller’s argument to the copy constructor must have been const, because a non-const
argument would have exact-matched the URef template.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Assuming that assignment affects only the Person’s name data member, this code make no
more sense than the code for the copy constructor on the previous slide. Again, the only
reason for showing this code is to demonstrate how to force all assignment operations
(regardless of argument) to go through the template taking a universal reference.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Slide is animated.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Regarding error detection and URefs, in the tag dispatch example, the call to the
constructor for name is three levels down: after calls to the Person public constructor and a
Person private constructor.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

The original problem statement said that perfect forwarding was a requirement, so this
approach doesn’t really correspond to the problem, but it’s still worth mentioning. Also
worth noting is that perfect forwarding is not a read-only operation, because forwarded
non-const values may be modified.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

The Universal Reference/Overloading Collision Conundruim

