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Richard W. Hamming’s Five Main Ideas

The purpose of computing is insight, not numbers.

R. W. Hamming, Numerical Methods for Scientists and Engineers,
Second Edition, McGraw-Hill, New York etc. (1973), Chapter 1: “An
Essay on Numerical Methods”

0. Numbers: Counting, fixed-point, floating-point (Hamming
Chapter 2)

1. Purpose: Computing is intimately bound up with both the source
of the problem and the use that is going to be made of the answers
– it is not a step to be taken in isolation from reality.

2. Generality: It is necessary to study families and to relate one
family to another when possible, and to avoid isolated formulas and
isolated algorithms.
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Hamming’s Five Main Ideas
continued

3. Roundoff error: The greatest loss of significance in the numbers
occurs when two numbers of about the same size are subtracted so
that most of the leading digits cancel out.

4. Truncation error: Many of the processes of mathematics, such as
differentiation and integration, imply the use of a limit which is an
infinite process. The machine can only do a finite number of
operations in a finite length of time.

5. Feedback: Numbers at one stage are fed back into the computer
to be processed again and again. Feedback leads to the idea of
stability of the feedback loop – will a small error grow or decay
through the successive iterations?

Robert P. Goddard Stability in Numerical Programming: An Introduction



Reminder: Hamming’s Five Main Ideas
Example: Spherical Bessel Functions

First-Order ODE with Initial Conditions

Problems that involve feedback

Difference equations, e.g. recurrence relations (example next)

Indefinite integrals approximated by difference equations

Differential equations approximated by difference equations

Digital filters – specifically IIR (Infinite Impulse Response) filters

Kalman filters, used for tracking objects based on multiple
observations

Linear algebra, e.g. eigenvalue-eigenvector computation

Others: Audience?
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Spherical Bessel Functions: Why?

Problem: Compute sound scattered from a complicated object in a
(locally) uniform medium with sound speed c .

Physics: Helmholtz equation ∇2p + k2p = 0 for the sound pressure
p. (∇2 is the Laplacian)

Observation: Wavenumber k is uniform in a region near the
scatterer but outside some sphere of radius R.

Approach: Use a multipole expansion of the field in the uniform
region.

Math: Express the Helmholtz equation in spherical coordinates
(range and two angles) instead of Cartesian coordinates (X, Y, Z). It
is separable into range-dependent and direction-dependent parts.

Our interest here: Compute the range-dependent parts: the
spherical Bessel functions
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Spherical Bessel Functions: Definitions

The range-dependent part is the Spherical Bessel Equation:

z2 d2

dz2
fn(z) +

d

dz
fn(z) + (z2 − n(n + 1))fn(z) = 0

where z = kr , k = 2πc/f is the wavenumber, and n is an integer. Since
this is a second-order homogeneous differential equation, any solution is a
linear combination of two indepent solutions, of which a standard pair is

jn(z): Spherical Bessel function of the first kind. Finite at z = 0.

yn(z): Spherical Bessel function of the second kind. Pole (zn+1) at
z = 0.
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Spherical Bessel Functions: Recurrence Relation

Our computational problem is:

Compute both jn(z) and yn(z)

... for a given z of order R/λ (which can be large)

... for a range of n from 0 to nmax > z (even larger)

Fortunately, this recurrence relation holds for any kind of spherical Bessel
function:

fn+1(z) + fn−1(z) = (2n + 1)z−1fn(z)

We also have explicit formulas for the first two members:

j0(z) =
sin z

z
y0(z) = −cos z

z

j1(z) =
sin z

z2
− cos z

z
y1(z) = −cos z

z2
− sin z

z

So the answer is easy – right?
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Spherical Bessel Functions: Forward Recurrence Code

/// Compute spherical Bessel functions using forward recurrence relation
/**
* Results are written into the vector f, which must already contain
* the first two members of the set.
*
* The recurrence relation used is Abramowitz & Stegun Eq. 10.1.19.
*/

template <typename T>
void SpherBesselRecur_1( T z, std::vector<T>& f )
{

assert( z > 0.0 );
size_t nmax = f.size() - 1;
assert( nmax > 1 );

for ( size_t n = 1; n < nmax; ++n ) {
T b = T(n+n+1)/z;
f[n+1] = b*f[n] - f[n-1];

}
}
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Forward Recurrence: Result
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Forward Recurrence: What Happened?

The recurrence relation (a second-order difference equation) has two
solutions, jn(z) and yn(z).

For n > z , yn(z) grows with n, whereas jn(z) shrinks with n.

Inevitably, an error comes in.

Thereafter, the solution is a linear combination of jn(z) and yn(z),
not one or the other.

Sooner or later, the growing solution dominates the shrinking one.

Solution:

Apply the recurrence relation backward, for decreasing n.

The starting value doesn’t matter much after a few iterations
because now the solution you want is dominant.

Use the known j0(z) to renormalize the results.

(Better: Use a sum rule, more accurate if j0(z) is near zero.)
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Spherical Bessel Functions: Backward Recurrence Code

/// Compute spherical Bessel functions using backward recurrence
/**
* Results are written into the vector f, which must already contain
* the first member of the set in f[0]..
*
* The recurrence relation used is Abramowitz & Stegun Eq. 10.1.19.
*/

template <typename T>
void SpherBesselRecur_2( T z, std::vector<T>& f )
{

assert( z > 0.0 );
size_t nmax = f.size() - 1;
assert( nmax > 1 );

f[nmax] = 0;
f[nmax-1] = T(1.0e-10);
T f0 = f[0];
for ( size_t n = nmax-1; n > 0; --n ) {

T b = T(n+n+1)/z;
f[n-1] = b*f[n] - f[n+1];

}
T ratio = f0/f[0];
for ( size_t n = 0; n <= nmax; ++n )

f[n] = ratio*f[n];
}
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Backward Recurrence: Result
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Generalizing: Properties of Difference Equations

fn+1(z) + fn−1(z) = (2n + 1)z−1fn(z)

Second order difference equation: 2 starting values, 2 independent
solutions. Generalize: Order N, N starting values, N independent
solutions.

If any solution grows relative to the others as the equation is
iterated, that one will dominate.

You can use the equation in that directon only to compute the
dominant solution. For the other solutions, it is unstable.

Sometimes you can reverse direction to select a different solution,
dominant in that direction.

For Bessel functions, we know the general properties of the
solutions, so the behavior is no surprise.

Problem: How can we generalize this idea for other difference
equations?
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Characteristic Equation

fn+1(z)− (2n + 1)z−1fn(z) + fn−1(z) = 0

Observation: For large n, the factor (2n + 1)z−1 doesn’t change much in
a few steps. So, we can learn about local behavior by treating it as
constant. Generalize and simplify notation:

xn+1 + Bxn + Cxn−1 = 0

Guess: Try solutions of the form xn = an for some constant a. Subsitute:

a2 + Ba + C = 0 Characteristic Equation

a = −B/2±
√

(B/2)2 − C Solutions

Now the local behavior is clear:

If |a| > 1, the solution an grows exponentially in size.

If |a| < 1, the solution an shrinks exponentially in size.

If (B/2)2 − C < 0, a is complex, so the solution an is oscillatory.
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Characteristic Equation for Spherical Bessel Recurrence

fn+1(z)− 2Rfn(z) + fn−1(z) = 0 Recurrence Relation

where R ≈ (n + 1/2)/z

a2 − 2Ra + 1 = 0 Characteristic Equation

a = R ±
√

R2 − 1 Solutions for a

If R > 1, a is real, a1 > 1 and a2 < 1. Hence (a1)n grows exponentially
and (a2)n shrinks exponentially.
If R < 1, a is complex. Substitute: R = cosφ. Then

a = cosφ±
√

cos2φ− 1

= cosφ± i sinφ

= eiφ, e−iφ

so both solutions are oscillatory, and neither is dominant.
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First-Order ODE with Initial Condition

General Problem:

dy

dx
= f(x , y) y(0) = y0

Solution Approach: Fourth-order Predictor-Corrector

yn+1 = a0yn + a1yn−1 + a2yn−2 + a3yn−3

+ h2(b−1y ′n+1 + b0y ′n + b1y ′n−1 + b2y ′n−2)

+ E5
h5y (5)

5!
(θ)

Predictor: b−1 = 0

Corrector: a3 = 0 and y”n+1 from Predictor
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Coefficients for Fourth Order Convergence

Require: Exact for polynomials through degree 4: y = 1, x , x2, x3, x4.
That’s 5 equations in 7 unknowns, leaving 2 free variables. For the
corrector (a3 = 0), that works out to:

a0 = 1− a1 − a2 b0 = (19 + 13a1 + 8a2)/24

a1 = a1 b1 = (−5 + 13a1 + 32a2)/24

a2 = a2 b2 = (1− a1 + 8a2)/24

b−1 = (9− a1)/24 E5 = (−19 + 11a1 − 8a2)/6

Robert P. Goddard Stability in Numerical Programming: An Introduction



Reminder: Hamming’s Five Main Ideas
Example: Spherical Bessel Functions

First-Order ODE with Initial Conditions

Characteristic Equation, Part 1

Let zn be the true solution: z ′ = f (x , z), and let yn be the computed
solution at x = xn. If yn is put into the differential equation, it will fit
exactly, since the computed y ′ value was found from the equation. Thus
(neglecting roundoff), y ′n = f (x , yn). Set

εn = zn − yn

ε′n = z ′n − y ′n = f (x , zn)− f (x , yn)

=
∂f (x , θ)

∂y
εn = Aεn

where θ lies between yn and zn (mean value theorem).
The true solution zn does not generally satisfy the difference equation:

zn+1 = a0zn + a1zn−1 + a2zn−2 + a3zn−3

+ h2(b−1z ′n+1 + b0z ′n + b1z ′n−1 + b2z ′n−2)

+ en
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Characteristic Equation, Part 2

Subtract the difference equation with y from the version with z ,
subsititute ε′n = Aεn, and rearrange:

(1− b−1Ah)εn+1 = (a0 − b0Ah)εn + (a1 − b1Ah)εn−1

+(a2 − b2Ah)εn−2 + a3εn−3 + en

We are interested in local behavior. For that purpose, we assume en and
∂f /∂y = A are constants. Result: Difference equation in εn with
constant coefficients.
Substitute εn = ρn: That is the characteristic equation:

Ah =
ρ3 − a0ρ

2 − a1ρ− a2
b−1ρ3 + b0ρ2 + b1ρ+ b2
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Characteristic Equation Roots

The roots (3 of them for the corrector) determine stability: The formula
is unstable if |ρ| > 1 or if |ρ| = 1 and the root is a multiple root. For
Ah = 0 (i.e. if f (x , y) is effectively independent of y), the region of
stability is a triangle in the (a1, a2) plane:

1 + a1 + 2a2 ≥ 0 a1 ≤ 1 a2 ≤ 1

As |ah| increases, that triangle shrinks and becomes distorted, but it
remains within that outer triangle (Hamming Fig. 23.3.1). Within the
stability region, other factors are used to choose (a1, a2) values:

Minimize the the truncation error E5 = (−19 + 11a1 − 8a2)/6

Minimize the noise amplification Nc = 1/(1 + a1 + 2a2)

Reduce the uncorrelated noise Na = (a20 + a21 + a2)1/2
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