
A Benchmark Test for Parallel Algorithmic
Differentiation

Bradley M. Bell
Applied Physics Laboratory

Institute of Health Metrics and Evaluation
University of Washington

bradbell@uw.edu

Peter Hepperger
Technische Universität München,
Garching bei München, Germany

hepperger@ma.tum.de

The Northwest C++ Users Group Meeting
March 3, 2012

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward

First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward

First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse

Types of AD
The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark

Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method

Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup

Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued

Threading System Interface
Multi-Threaded Memory Allocation

Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation

Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation

CppAD Allocation Versions
Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions

Benchmark Parameters Choices
Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices

Results

Outline
Introduction to AD

Zero Order Forward
First Order Forward
First Order Reverse
Types of AD

The Multi-Newton Benchmark
Example Use of Multi-Newton Benchmark
Bounded Newton Method
Multi-Newton Setup
Multi-Newton Continued
Threading System Interface

Multi-Threaded Memory Allocation
Motivation
CppAD Allocation Versions
Benchmark Parameters Choices
Results

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

Zero Order Forward

z(x , y) = log[exp(x) + exp(y)]

1. Input: independent variable values (x0, y0)

2. u0 = exp(x0)

3. v0 = exp(y0)

4. s0 = u0 + v0

5. z0 = log(s0)

6. Output: dependent variable values (u0, v0, s0, z0)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Forward

z1 =
∂z
∂x (x0, y0)x1 +

∂z
∂y (x0, y0)y1

1. Input: (x0, y0, u0, v0, s0, z0), (x1, y1)

2. u1 = exp(x0)x1

3. v1 = exp(y0)y1

4. s1 = u1 + v1

5. z1 = s1/s0

6. Output: (u1, v1, s1, z1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

First Order Reverse

(x1, y1) =

[
z1 ∂z
∂x (x0, y0), z1 ∂z

∂y (x0, y0)

]

1. Input: (x0, y0, u0, v0, s0, z0), z1

2. s1 = z1/s0

3. u1 = s1, v1 = s1

4. y1 = v1 exp(y0)

5. x1 = u1 exp(x0)

6. Output: (x1, y1)

AD and Global Variables

I AD by Source Code Transformation

I AD by Operator Overloading
I Tapeless Forward AD
I Recording Operations on a Tape

AD and Global Variables

I AD by Source Code Transformation
I AD by Operator Overloading

I Tapeless Forward AD
I Recording Operations on a Tape

AD and Global Variables

I AD by Source Code Transformation
I AD by Operator Overloading
I Tapeless Forward AD

I Recording Operations on a Tape

AD and Global Variables

I AD by Source Code Transformation
I AD by Operator Overloading
I Tapeless Forward AD
I Recording Operations on a Tape

Example Use of Multi-Newton Benchmark

I CppAD uses a Tape with Operator Overloading

I It comes with the the Multi-Newton benchmark test
I

Example Use of Multi-Newton Benchmark

I CppAD uses a Tape with Operator Overloading
I It comes with the the Multi-Newton benchmark test

I

Example Use of Multi-Newton Benchmark

I CppAD uses a Tape with Operator Overloading
I It comes with the the Multi-Newton benchmark test
I Version 2011 of CppAD on 32 Core Machine

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
n

e
th

re
ad

number of threads

Newton: Z=1000, J=4800, N=24000

2011

Example Use of Multi-Newton Benchmark

I CppAD uses a Tape with Operator Overloading
I It comes with the the Multi-Newton benchmark test
I Version 2011 & 2012.0 of CppAD on 32 Core Machine

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
n

e
th

re
ad

number of threads

Newton: Z=1000, J=4800, N=24000

2011
2012

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .

2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.

4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.

5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.

6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.

7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).

8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].

9. Set k = k + 1. Goto step 3

Bounded Newton Method

Set B(a, b,K , δ, f) to one or no zeros in [a, b] :
1. Input: bounds [a, b], maximum iterations K , criterion δ,

function f .
2. Set x0 = (a + b)/2, k = 0.

3. If |f (xk)| ≤ δ, output B = {xk}.
4. If k == K , output B = ∅.
5. If f (xk)f ′(xk) ≥ 0 and xk = a, output B = ∅.
6. If f (xk)f ′(xk) ≤ 0 and xk = b, output B = ∅.
7. Set yk = xk − f (xk)/f ′(xk).
8. Set xk+1 = min[b,max(a, yk)].
9. Set k = k + 1. Goto step 3

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .

2. Set sub-interval length γ = (β − α)/J , start for first thread
s1 = α, end for last thread eM = β.

3. For m = 1, . . .M, in sequential mode execute:
3.1 Number of sub-intervals for thread m

Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.
3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .
2. Set sub-interval length γ = (β − α)/J , start for first thread

s1 = α, end for last thread eM = β.

3. For m = 1, . . .M, in sequential mode execute:
3.1 Number of sub-intervals for thread m

Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.
3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .
2. Set sub-interval length γ = (β − α)/J , start for first thread

s1 = α, end for last thread eM = β.
3. For m = 1, . . .M, in sequential mode execute:

3.1 Number of sub-intervals for thread m
Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.
3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .
2. Set sub-interval length γ = (β − α)/J , start for first thread

s1 = α, end for last thread eM = β.
3. For m = 1, . . .M, in sequential mode execute:

3.1 Number of sub-intervals for thread m
Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.
3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .
2. Set sub-interval length γ = (β − α)/J , start for first thread

s1 = α, end for last thread eM = β.
3. For m = 1, . . .M, in sequential mode execute:

3.1 Number of sub-intervals for thread m
Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.

3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Setup

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
1. Input: bounds [α, β], maximum iterations K , criterion δ,

number of sub-intervals J , number of threads M, function f .
2. Set sub-interval length γ = (β − α)/J , start for first thread

s1 = α, end for last thread eM = β.
3. For m = 1, . . .M, in sequential mode execute:

3.1 Number of sub-intervals for thread m
Lm =

{
floor(J/M) + 1 if m ≤ mod (J ,M)
floor(J/M) otherwise

3.2 Start for thread m ≥ 2, sm = sm−1 + γLm.
3.3 End for thread m − 1 ≥ 1, em−1 = sm.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Multi-Newton Continued

Set S(α, β,K , δ, J ,M, f) to multiple zeros in [α, β] :
4. For m = 1, . . . ,M, in parallel mode execute:

4.1 For ` = 1, . . . , Lm, set am,` = sm + γ(`− 1), and
bm,` = am,` + γ.

4.2 Set Sm = ∪Lm
`=1B[am,`, bm,`,K , δ, f].

4.3 If difference between two elements of Sm is less than γ/2,
remove one that has larger value for |f (x)|.

5. Set S = ∪M
m=1Sm.

6. If difference between two elements of S is less than γ/2,
remove one that has larger value for |f (x)|.

7. Output S.

Threading System Interface

I m = thread num()
identifies current thread, 0 ≤ m ≤ M − 1.

I b = in parallel()
is true if in parallel execution mode, otherwise may be false.

I ok = team create(num threads)
creates a team of num threads threads.

I ok = team work(worker)
Each call runs num threads versions of worker with
corresponding thread num() between 0 and M − 1.

I ok = team destroy()
terminates all but the master thread; i.e., m = 0.

Threading System Interface

I m = thread num()
identifies current thread, 0 ≤ m ≤ M − 1.

I b = in parallel()
is true if in parallel execution mode, otherwise may be false.

I ok = team create(num threads)
creates a team of num threads threads.

I ok = team work(worker)
Each call runs num threads versions of worker with
corresponding thread num() between 0 and M − 1.

I ok = team destroy()
terminates all but the master thread; i.e., m = 0.

Threading System Interface

I m = thread num()
identifies current thread, 0 ≤ m ≤ M − 1.

I b = in parallel()
is true if in parallel execution mode, otherwise may be false.

I ok = team create(num threads)
creates a team of num threads threads.

I ok = team work(worker)
Each call runs num threads versions of worker with
corresponding thread num() between 0 and M − 1.

I ok = team destroy()
terminates all but the master thread; i.e., m = 0.

Threading System Interface

I m = thread num()
identifies current thread, 0 ≤ m ≤ M − 1.

I b = in parallel()
is true if in parallel execution mode, otherwise may be false.

I ok = team create(num threads)
creates a team of num threads threads.

I ok = team work(worker)
Each call runs num threads versions of worker with
corresponding thread num() between 0 and M − 1.

I ok = team destroy()
terminates all but the master thread; i.e., m = 0.

Threading System Interface

I m = thread num()
identifies current thread, 0 ≤ m ≤ M − 1.

I b = in parallel()
is true if in parallel execution mode, otherwise may be false.

I ok = team create(num threads)
creates a team of num threads threads.

I ok = team work(worker)
Each call runs num threads versions of worker with
corresponding thread num() between 0 and M − 1.

I ok = team destroy()
terminates all but the master thread; i.e., m = 0.

Motivation

The following plot is taken from
A comparison of memory allocators in multiprocessors:

http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://developers.sun.com/solaris/articles/multiproc/multiproc.html

CppAD Allocation Versions

Capacity Let c1 = 128 and for i = 2, . . . , I,
ci = 3 · floor[(ci−1 + 1)/2].

2011 Uses system memory allocation with capacity
modification above.

2012.0 For each thread m and each capacity i , a singly linked
list of available memory is retained with root Am∗I+i .
In addition, counter vectors for the number of bytes
inuse um and available am for corresponding thread.

2012.1 For each thread m, a separate structure Sm is
allocated for the inuse counter, available counter,
and vector of available roots for that thread.

CppAD Allocation Versions

Capacity Let c1 = 128 and for i = 2, . . . , I,
ci = 3 · floor[(ci−1 + 1)/2].

2011 Uses system memory allocation with capacity
modification above.

2012.0 For each thread m and each capacity i , a singly linked
list of available memory is retained with root Am∗I+i .
In addition, counter vectors for the number of bytes
inuse um and available am for corresponding thread.

2012.1 For each thread m, a separate structure Sm is
allocated for the inuse counter, available counter,
and vector of available roots for that thread.

CppAD Allocation Versions

Capacity Let c1 = 128 and for i = 2, . . . , I,
ci = 3 · floor[(ci−1 + 1)/2].

2011 Uses system memory allocation with capacity
modification above.

2012.0 For each thread m and each capacity i , a singly linked
list of available memory is retained with root Am∗I+i .
In addition, counter vectors for the number of bytes
inuse um and available am for corresponding thread.

2012.1 For each thread m, a separate structure Sm is
allocated for the inuse counter, available counter,
and vector of available roots for that thread.

CppAD Allocation Versions

Capacity Let c1 = 128 and for i = 2, . . . , I,
ci = 3 · floor[(ci−1 + 1)/2].

2011 Uses system memory allocation with capacity
modification above.

2012.0 For each thread m and each capacity i , a singly linked
list of available memory is retained with root Am∗I+i .
In addition, counter vectors for the number of bytes
inuse um and available am for corresponding thread.

2012.1 For each thread m, a separate structure Sm is
allocated for the inuse counter, available counter,
and vector of available roots for that thread.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.
α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.

Z Number of zeros Z = 1000.
α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.

α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.
α Lower search limit α = 0.

β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.
α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.

δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.
α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.

J Number of bounded Newton sub-intervals J = 4800.

Benchmark Parameters Choices

f (x) Function we are finding zeros for:

f (x) =
1
N

N∑
n=1

sin(x)

N Work load per function evaluation.
Z Number of zeros Z = 1000.
α Lower search limit α = 0.
β Upper search limit β = (Z − 1)π.
δ Convergence criterion: δ = β · 102 · ε.
J Number of bounded Newton sub-intervals J = 4800.

32 cores, N = 10000

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
ne

 th
re

ad

number of threads

Z = 1000, J = 4800

2011
2012.0
2012.1

32 cores, N = 1000

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
ne

 th
re

ad

number of threads

Z = 1000, J = 4800

2011
2012.0
2012.1

32 cores, N = 100

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
ne

 th
re

ad

number of threads

Z = 1000, J = 4800

2011
2012.0
2012.1

32 cores, N = 10

1

5

10

15

20

25

30

1 5 10 15 20 25 30

sp
ee

d
re

la
tiv

e
to

 o
ne

 th
re

ad

number of threads

Z = 1000, J = 4800

2011
2012.0
2012.1

	Introduction to AD
	Zero Order Forward
	First Order Forward
	First Order Reverse
	Types of AD

	The Multi-Newton Benchmark
	Example Use of Multi-Newton Benchmark
	Bounded Newton Method
	Multi-Newton Setup
	Multi-Newton Continued
	Threading System Interface

	Multi-Threaded Memory Allocation
	Motivation
	CppAD Allocation Versions
	Benchmark Parameters Choices
	Results

