A Benchmark Test for Parallel Algorithmic Differentiation

Bradley M. Bell

Applied Physics Laboratory Institute of Health Metrics and Evaluation University of Washington bradbell@uw.edu

Peter Hepperger

Technische Universität München, Garching bei München, Germany

hepperger@ma.tum.de

The Northwest C++ Users Group Meeting March 3, 2012

Introduction to AD

Introduction to AD Zero Order Forward

Introduction to AD

Zero Order Forward First Order Forward

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

Multi-Threaded Memory Allocation

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Multi-Threaded Memory Allocation

Motivation

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

Multi-Threaded Memory Allocation

Motivation CppAD Allocation Versions

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

Multi-Threaded Memory Allocation

Motivation CppAD Allocation Versions Benchmark Parameters Choices

Introduction to AD

Zero Order Forward First Order Forward First Order Reverse Types of AD

The Multi-Newton Benchmark

Example Use of Multi-Newton Benchmark Bounded Newton Method Multi-Newton Setup Multi-Newton Continued Threading System Interface

Multi-Threaded Memory Allocation

Motivation CppAD Allocation Versions Benchmark Parameters Choices Results

$$z(x,y) = \log[\exp(x) + \exp(y)]$$

$$z(x, y) = \log[\exp(x) + \exp(y)]$$

1. Input: independent variable values (x^0, y^0)

$$z(x,y) = \log[\exp(x) + \exp(y)]$$

Input: independent variable values (x⁰, y⁰)
 u⁰ = exp(x⁰)

$$z(x,y) = \log[\exp(x) + \exp(y)]$$

- 1. Input: independent variable values (x^0, y^0)
- 2. $u^0 = \exp(x^0)$ 3. $v^0 = \exp(y^0)$

$$z(x,y) = \log[\exp(x) + \exp(y)]$$

- 1. Input: independent variable values (x^0, y^0)
- 2. $u^0 = \exp(x^0)$ 3. $v^0 = \exp(y^0)$ 4. $s^0 = u^0 + v^0$

$$z(x, y) = \log[\exp(x) + \exp(y)]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. Input: independent variable values (x^0, y^0)
- 2. $u^{0} = \exp(x^{0})$ 3. $v^{0} = \exp(y^{0})$ 4. $s^{0} = u^{0} + v^{0}$ 5. $z^{0} = \log(s^{0})$

$$z(x, y) = \log[\exp(x) + \exp(y)]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 1. Input: independent variable values (x^0, y^0)
- 2. $u^0 = \exp(x^0)$ 3. $v^0 = \exp(y^0)$

4.
$$s^0 = u^0 + v^0$$

- 5. $z^0 = \log(s^0)$
- 6. Output: dependent variable values (u^0, v^0, s^0, z^0)

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

1. Input: $(x^0, y^0, u^0, v^0, s^0, z^0), (x^1, y^1)$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

1. Input:
$$(x^0, y^0, u^0, v^0, s^0, z^0), (x^1, y^1)$$

2. $u^1 = \exp(x^0)x^1$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

1. Input:
$$(x^0, y^0, u^0, v^0, s^0, z^0), (x^1, y^1)$$

2. $u^1 = \exp(x^0)x^1$
3. $v^1 = \exp(y^0)y^1$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

IHME D

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), (x^{1}, y^{1})$$

2. $u^{1} = \exp(x^{0})x^{1}$
3. $v^{1} = \exp(y^{0})y^{1}$
4. $s^{1} = u^{1} + v^{1}$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), (x^{1}, y^{1})$$

2. $u^{1} = \exp(x^{0})x^{1}$
3. $v^{1} = \exp(y^{0})y^{1}$
4. $s^{1} = u^{1} + v^{1}$
5. $z^{1} = s^{1}/s^{0}$

$$z^{1} = \frac{\partial z}{\partial x}(x^{0}, y^{0})x^{1} + \frac{\partial z}{\partial y}(x^{0}, y^{0})y^{1}$$

)

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), (x^{1}, y^{1})$$

2. $u^{1} = \exp(x^{0})x^{1}$
3. $v^{1} = \exp(y^{0})y^{1}$
4. $s^{1} = u^{1} + v^{1}$
5. $z^{1} = s^{1}/s^{0}$
6. Output: $(u^{1}, v^{1}, s^{1}, z^{1})$

$$(x^1, y^1) = \left[z^1 \frac{\partial z}{\partial x}(x^0, y^0), z^1 \frac{\partial z}{\partial y}(x^0, y^0)\right]$$

$$(x^1, y^1) = \left[z^1 rac{\partial z}{\partial x} (x^0, y^0), z^1 rac{\partial z}{\partial y} (x^0, y^0)
ight]$$

1. Input: $(x^0, y^0, u^0, v^0, s^0, z^0), z^1$

$$(x^{1}, y^{1}) = \left[z^{1}\frac{\partial z}{\partial x}(x^{0}, y^{0}), z^{1}\frac{\partial z}{\partial y}(x^{0}, y^{0})\right]$$

1. Input:
$$(x^0, y^0, u^0, v^0, s^0, z^0), z^1$$

2. $s^1 = z^1/s^0$

$$(x^1, y^1) = \left[z^1 \frac{\partial z}{\partial x}(x^0, y^0), z^1 \frac{\partial z}{\partial y}(x^0, y^0)\right]$$

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), z^{1}$$

2. $s^{1} = z^{1}/s^{0}$
3. $u^{1} = s^{1}, v^{1} = s^{1}$

$$(x^1, y^1) = \left[z^1 \frac{\partial z}{\partial x}(x^0, y^0), z^1 \frac{\partial z}{\partial y}(x^0, y^0)\right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), z^{1}$$

2. $s^{1} = z^{1}/s^{0}$
3. $u^{1} = s^{1}, v^{1} = s^{1}$
4. $y^{1} = v^{1} \exp(y^{0})$
5. $x^{1} = u^{1} \exp(x^{0})$
First Order Reverse

$$(x^1, y^1) = \left[z^1 \frac{\partial z}{\partial x}(x^0, y^0), z^1 \frac{\partial z}{\partial y}(x^0, y^0)\right]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

1. Input:
$$(x^{0}, y^{0}, u^{0}, v^{0}, s^{0}, z^{0}), z^{1}$$

2. $s^{1} = z^{1}/s^{0}$
3. $u^{1} = s^{1}, v^{1} = s^{1}$
4. $y^{1} = v^{1} \exp(y^{0})$
5. $x^{1} = u^{1} \exp(x^{0})$
6. Output: (x^{1}, y^{1})

► AD by Source Code Transformation

- AD by Source Code Transformation
- AD by Operator Overloading

- AD by Source Code Transformation
- AD by Operator Overloading
- Tapeless Forward AD

- AD by Source Code Transformation
- AD by Operator Overloading
- Tapeless Forward AD
- Recording Operations on a Tape

CppAD uses a Tape with Operator Overloading

- CppAD uses a Tape with Operator Overloading
- It comes with the the Multi-Newton benchmark test

- CppAD uses a Tape with Operator Overloading
- It comes with the the Multi-Newton benchmark test
- Version 2011 of CppAD on 32 Core Machine

Newton: Z=1000, J=4800, N=24000

э

(日)

- CppAD uses a Tape with Operator Overloading
- It comes with the the Multi-Newton benchmark test
- Version 2011 & 2012.0 of CppAD on 32 Core Machine

Newton: Z=1000, J=4800, N=24000

э

(日)

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.

2. Set
$$x_0 = (a + b)/2$$
, $k = 0$.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

- 1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.
- 2. Set $x_0 = (a+b)/2$, k = 0.

3. If
$$|f(x_k)| \leq \delta$$
, output $B = \{x_k\}$.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

- 1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.
- 2. Set $x_0 = (a+b)/2$, k = 0.
- 3. If $|f(x_k)| \leq \delta$, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

- 1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.
- 2. Set $x_0 = (a+b)/2$, k = 0.
- 3. If $|f(x_k)| \leq \delta$, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

5. If $f(x_k)f'(x_k) \ge 0$ and $x_k = a$, output $B = \emptyset$.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

- 1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.
- 2. Set $x_0 = (a+b)/2$, k = 0.

3. If
$$|f(x_k)| \leq \delta$$
, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

- 5. If $f(x_k)f'(x_k) \ge 0$ and $x_k = a$, output $B = \emptyset$.
- 6. If $f(x_k)f'(x_k) \leq 0$ and $x_k = b$, output $B = \emptyset$.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Set
$$x_0 = (a+b)/2$$
, $k = 0$.

3. If
$$|f(x_k)| \le \delta$$
, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

5. If
$$f(x_k)f'(x_k) \ge 0$$
 and $x_k = a$, output $B = \emptyset$.

6. If
$$f(x_k)f'(x_k) \leq 0$$
 and $x_k = b$, output $B = \emptyset$.

7. Set
$$y_k = x_k - f(x_k)/f'(x_k)$$
.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.

2. Set
$$x_0 = (a+b)/2$$
, $k = 0$.

3. If
$$|f(x_k)| \le \delta$$
, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

5. If
$$f(x_k)f'(x_k) \ge 0$$
 and $x_k = a$, output $B = \emptyset$.

6. If
$$f(x_k)f'(x_k) \leq 0$$
 and $x_k = b$, output $B = \emptyset$.

7. Set
$$y_k = x_k - f(x_k)/f'(x_k)$$
.

8. Set
$$x_{k+1} = \min[b, \max(a, y_k)]$$
.

Set $B(a, b, K, \delta, f)$ to one or no zeros in [a, b]:

1. Input: bounds [a, b], maximum iterations K, criterion δ , function f.

2. Set
$$x_0 = (a+b)/2$$
, $k = 0$.

3. If
$$|f(x_k)| \le \delta$$
, output $B = \{x_k\}$.

4. If
$$k == K$$
, output $B = \emptyset$.

5. If
$$f(x_k)f'(x_k) \ge 0$$
 and $x_k = a$, output $B = \emptyset$.

6. If
$$f(x_k)f'(x_k) \leq 0$$
 and $x_k = b$, output $B = \emptyset$.

7. Set
$$y_k = x_k - f(x_k)/f'(x_k)$$
.

8. Set
$$x_{k+1} = \min[b, \max(a, y_k)]$$
.

9. Set
$$k = k + 1$$
. Goto step 3

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

- 1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.
- 2. Set sub-interval length $\gamma = (\beta \alpha)/J$, start for first thread $s_1 = \alpha$, end for last thread $e_M = \beta$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

- 1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.
- 2. Set sub-interval length $\gamma = (\beta \alpha)/J$, start for first thread $s_1 = \alpha$, end for last thread $e_M = \beta$.
- 3. For m = 1, ..., M, in sequential mode execute:

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

- 1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.
- 2. Set sub-interval length $\gamma = (\beta \alpha)/J$, start for first thread $s_1 = \alpha$, end for last thread $e_M = \beta$.
- 3. For m = 1, ..., M, in sequential mode execute:

3.1 Number of sub-intervals for thread m $L_m = \begin{cases} \text{floor}(J/M) + 1 & \text{if } m \leq \mod(J, M) \\ \text{floor}(J/M) & \text{otherwise} \end{cases}$

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

- 1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.
- 2. Set sub-interval length $\gamma = (\beta \alpha)/J$, start for first thread $s_1 = \alpha$, end for last thread $e_M = \beta$.
- 3. For $m = 1, \dots, M$, in sequential mode execute:
 - 3.1 Number of sub-intervals for thread m $L_m = \begin{cases} floor(J/M) + 1 & \text{if } m \leq \mod(J, M) \\ floor(J/M) & \text{otherwise} \end{cases}$ 3.2 Start for thread $m \geq 2$, $s_m = s_{m-1} + \gamma L_m$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

- 1. Input: bounds $[\alpha, \beta]$, maximum iterations K, criterion δ , number of sub-intervals J, number of threads M, function f.
- 2. Set sub-interval length $\gamma = (\beta \alpha)/J$, start for first thread $s_1 = \alpha$, end for last thread $e_M = \beta$.

- 3. For $m = 1, \dots, M$, in sequential mode execute:
 - 3.1 Number of sub-intervals for thread m $L_m = \begin{cases} \text{floor}(J/M) + 1 & \text{if } m \leq \mod(J, M) \\ \text{floor}(J/M) & \text{otherwise} \end{cases}$ 3.2 Start for thread $m \geq 2$, $s_m = s_{m-1} + \gamma L_m$. 3.3 End for thread $m - 1 \geq 1$, $e_{m-1} = s_m$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$: 4. For m = 1, ..., M, in parallel mode execute:

Set
$$S(\alpha, \beta, K, \delta, J, M, f)$$
 to multiple zeros in $[\alpha, \beta]$:
4. For $m = 1, ..., M$, in parallel mode execute:
4.1 For $\ell = 1, ..., L_m$, set $a_{m,\ell} = s_m + \gamma(\ell - 1)$, and
 $b_{m,\ell} = a_{m,\ell} + \gamma$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$: 4. For m = 1, ..., M, in parallel mode execute: 4.1 For $\ell = 1, ..., L_m$, set $a_{m,\ell} = s_m + \gamma(\ell - 1)$, and $b_{m,\ell} = a_{m,\ell} + \gamma$. 4.2 Set $S_m = \bigcup_{\ell=1}^{L_m} B[a_{m,\ell}, b_{m,\ell}, K, \delta, f]$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$: 4. For m = 1, ..., M, in parallel mode execute: 4.1 For $\ell = 1, ..., L_m$, set $a_{m,\ell} = s_m + \gamma(\ell - 1)$, and $b_{m,\ell} = a_{m,\ell} + \gamma$. 4.2 Set $S_m = \bigcup_{\ell=1}^{L_m} B[a_{m,\ell}, b_{m,\ell}, K, \delta, f]$. 4.3 If difference between two elements of S_m is less than $\gamma/2$, remove one that has larger value for |f(x)|.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$: 4. For m = 1, ..., M, in parallel mode execute: 4.1 For $\ell = 1, ..., L_m$, set $a_{m,\ell} = s_m + \gamma(\ell - 1)$, and $b_{m,\ell} = a_{m,\ell} + \gamma$. 4.2 Set $S_m = \bigcup_{\ell=1}^{L_m} B[a_{m,\ell}, b_{m,\ell}, K, \delta, f]$. 4.3 If difference between two elements of S_m is less than $\gamma/2$, remove one that has larger value for |f(x)|. 5. Set $S = \bigcup_{m=1}^{M} S_m$.

Set $S(\alpha, \beta, K, \delta, J, M, f)$ to multiple zeros in $[\alpha, \beta]$:

4. For $m = 1, \ldots, M$, in parallel mode execute:

4.1 For
$$\ell = 1, \ldots, L_m$$
, set $a_{m,\ell} = s_m + \gamma(\ell - 1)$, and $b_{m,\ell} = a_{m,\ell} + \gamma$.

4.2 Set
$$S_m = \bigcup_{\ell=1}^{L_m} B[a_{m,\ell}, b_{m,\ell}, K, \delta, f].$$

4.3 If difference between two elements of S_m is less than $\gamma/2$, remove one that has larger value for |f(x)|.

5. Set
$$S = \bigcup_{m=1}^{M} S_m$$
.

- 6. If difference between two elements of S is less than $\gamma/2$, remove one that has larger value for |f(x)|.
- **7**. Output *S*.

▶ m = thread_num() identifies current thread, 0 ≤ m ≤ M − 1.

- ▶ m = thread_num() identifies current thread, 0 ≤ m ≤ M − 1.
- ▶ $b = in_parallel()$

is true if in parallel execution mode, otherwise may be false.

- ▶ m = thread_num() identifies current thread, 0 ≤ m ≤ M − 1.
- b = in_parallel() is true if in parallel execution mode, otherwise may be false.
- ok = team_create(num_threads) creates a team of num_threads threads.

- ▶ m = thread_num() identifies current thread, 0 ≤ m ≤ M − 1.
- b = in_parallel() is true if in parallel execution mode, otherwise may be false.

(日)

- ok = team_create(num_threads) creates a team of num_threads threads.
- ok = team_work(worker)
 Each call runs num_threads versions of worker with corresponding thread_num() between 0 and M − 1.

- ▶ m = thread_num() identifies current thread, 0 ≤ m ≤ M − 1.
- b = in_parallel() is true if in parallel execution mode, otherwise may be false.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ok = team_create(num_threads) creates a team of num_threads threads.
- ▶ ok = team_work(worker) Each call runs num_threads versions of worker with corresponding thread_num() between 0 and M − 1.
- ▶ ok = team_destroy() terminates all but the master thread; i.e., m = 0.

Motivation

The following plot is taken from A comparison of memory allocators in multiprocessors:

æ

・ロト ・四ト ・ヨト ・ヨト
Capacity Let
$$c_1 = 128$$
 and for $i = 2, ..., I$,
 $c_i = 3 \cdot \text{floor}[(c_{i-1} + 1)/2].$

Capacity Let
$$c_1 = 128$$
 and for $i = 2, ..., I$,
 $c_i = 3 \cdot \text{floor}[(c_{i-1} + 1)/2].$

2011 Uses system memory allocation with capacity modification above.

- Capacity Let $c_1 = 128$ and for i = 2, ..., I, $c_i = 3 \cdot \text{floor}[(c_{i-1} + 1)/2].$
 - 2011 Uses system memory allocation with capacity modification above.
 - 2012.0 For each thread *m* and each capacity *i*, a singly linked list of available memory is retained with root A_{m*I+i} . In addition, counter vectors for the number of bytes inuse u_m and available a_m for corresponding thread.

- Capacity Let $c_1 = 128$ and for i = 2, ..., I, $c_i = 3 \cdot \text{floor}[(c_{i-1} + 1)/2].$
 - 2011 Uses system memory allocation with capacity modification above.
 - 2012.0 For each thread *m* and each capacity *i*, a singly linked list of available memory is retained with root A_{m*l+i} . In addition, counter vectors for the number of bytes inuse u_m and available a_m for corresponding thread.
 - 2012.1 For each thread m, a separate structure S_m is allocated for the inuse counter, available counter, and vector of available roots for that thread.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

N Work load per function evaluation.

Z Number of zeros Z = 1000.

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

- Z Number of zeros Z = 1000.
- α Lower search limit $\alpha = 0$.

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

- Z Number of zeros Z = 1000.
- α Lower search limit $\alpha = 0$.
- β Upper search limit $\beta = (Z 1)\pi$.

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

- Z Number of zeros Z = 1000.
- α Lower search limit $\alpha = 0$.
- β Upper search limit $\beta = (Z 1)\pi$.
 - δ Convergence criterion: $\delta = \beta \cdot 10^2 \cdot \varepsilon.$

f(x) Function we are finding zeros for:

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} \sin(x)$$

N Work load per function evaluation.

- Z Number of zeros Z = 1000.
- α Lower search limit $\alpha = 0$.
- β Upper search limit $\beta = (Z 1)\pi$.
 - δ Convergence criterion: $\delta = \beta \cdot 10^2 \cdot \varepsilon.$
 - J Number of bounded Newton sub-intervals J = 4800.

Sac

596

900

Sac