Introduction to Scientific Computing

Robert P. Goddard

Applied Physics Laboratory
University of Washington
Seattle, WA

Northwest C++ User's Group
16 November 2011

ap!

Robert P. Goddard Introduction to Scientific Computing

Outline

o Introduction: Hamming's Five Main Ideas

© What Is Scientific Computing?
@ Definition and Requirements
@ Example: SST

© Floating Point Numbers
o |IEEE 754 Formats

e Interlude: Quiz

e Example: Second-Order ODE with Initial Conditions
@ Simple Algorithm: Truncation Vs. Roundoff
@ Second Algorithm: Better Round-off

@ Third Algorithm: Higher order BUT ... @

Robert P. Goddard Introduction to Scientific Computing

Introduction: Hamming's Five Main Ideas

Richard W. Hamming's Five Main Ideas

The purpose of computing is insight, not numbers.

R. W. Hamming, Numerical Methods for Scientists and Engineers,
Second Edition, McGraw-Hill, New York etc. (1973), Chapter 1: “An
Essay on Numerical Methods”

@ 0. Numbers: Counting, fixed-point, floating-point (Hamming
Chapter 2)

@ 1. Computing is intimately bound up with both the source of the
problem and the use that is going to be made of the answers — it is
not a step to be taken in isolation from reality.

@ 2. It is necessary to study families and to relate one family to
another when possible, and to avoid isolated formulas and isolated

algorithms. @

Robert P. Goddard Introduction to Scientific Computing

Introduction: Hamming's Five Main Ideas

Hamming's Five Main Ideas

continued

@ 3. Roundoff error. The greatest loss of significance in the numbers
occurs when two numbers of about the same size are subtracted so
that most of the leading digits cancel out.

@ 4. Truncation error. Many of the processes of mathematics, such as
differentiation and integration, imply the use of a limit which is an
infinite process. The machine can only do a finite number of
operations in a finite length of time.

@ 5. Feedback: Numbers at one stage are fed back into the computer

to be processed again and again. Feedback leads to the idea of

stability of the feedback loop — will a small error grow or decay
through the successive iterations?

Robert P. Goddard Introduction to Scientific Computing

gs T ceas
What Is Scientific Computing? Definition and Requirements

Example: SST

Outline

© What Is Scientific Computing?
@ Definition and Requirements

Robert P. Goddard Introduction to Scientific Computing

gs T ceas
What Is Scientific Computing? Definition and Requirements

Example: SST

Scientific Computing Is...

Computing that models part of the physical world.

@ Typical Inputs:

o Detailed measurements of the environment or system
o Random potential values of imperfectly known quantities
o Parameter values to be determined by fitting measurements

@ Typical Outputs:

Visual representations of data: Images, graphs, etc.
Sound, radio waves, or other signals

Predictions of success or failure of a system

Actions to control other devices or processes
Parameter values determined by fitting measurements

o Typical Algorithms:

e Solving sets of differential equations

o Integrating functions over multi-dimensional domains
o Optimization, e.g. data fitting

o Linear algebra (eigenvalues, solvers, etc.)

Robert P. Goddard Introduction to Scientific Computing

gs T ceas
What Is Scientific Computing? Definition and Requirements

Example: SST

Scientific Computing Requirements
Speed and Realism

o Typical Speed Requirements:

o Real Time (hard or soft)
o Much faster than real time (e.g. for Monte Carlo studies)
o Fast enough to fit project cost and schedule

@ Accurate Enough to Accomplish the Mission:

o Personnel training

o Performance prediction

o Advance of scientific knowledge
o Control devices or processes

o Life or death

@ What the Computer Does, Mostly:

o Read floating point numbers from memory
o Multiply and divide floating point numbers
e Add and subtract floating point numbers
o Write floating point numbers to memory

Robert P. Goddard Introduction to Scientific Computing

ap!

gs T ceas
What Is Scientific Computing? Definition and Requirements

Example: SST

Scientific Computing Requirements
Speed and Realism

o Typical Speed Requirements:

o Real Time (hard or soft)
o Much faster than real time (e.g. for Monte Carlo studies)
o Fast enough to fit project cost and schedule

@ Accurate Enough to Accomplish the Mission:

o Personnel training

o Performance prediction

o Advance of scientific knowledge
o Control devices or processes

o Life or death

@ What the Computer Does, Mostly:

o Read floating point numbers from memory
o Multiply and divide floating point numbers
e Add and subtract floating point numbers
o Write floating point numbers to memory

Robert P. Goddard Introduction to Scientific Computing

ap!

gs T ceas
What s Scientific Computing? Definition and Requirements

Example:

Outline

© What Is Scientific Computing?

@ Example: SST

Robert P. Goddard Introduction to Scientific Computi

gs cea
What Is Scientific Computing? Definition and Requirements

Example: SST

My Example: Sonar Simulation Toolset (SST)

@ Inputs: Detailed descriptions of sound speed, surface, bottom,
bathymetry, multi-channel listening system, sound sources &
reflectors (man-made & natural) with trajectories, etc.

o Output: Digital representation of sound, suitable for input to signal
processing systems including human ears and brains.

o Applications: Testing sonar and communication systems, testing
ideas for systems that don't exist yet, training sonar operators,
understanding observations, predicting system performance in
environment where we can't go, etc.

@ Processing: Acoustical models, geometry, random numbers, signa@

filters & delays, etc. Front end is a parser.

Robert P. Goddard Introduction to Scientific Computing

Floating Point Numbers IEEE 754 Formats

Outline

© Floating Point Numbers
o |IEEE 754 Formats

Robert P. Goddard Introduction to Scientific Computi

Floating Point Numbers IEEE 754 Formats

Format Parameters
IEEE 754-2008

Decimal Decimal

Name Common name Base Digits E min E max Notes digits | E max
binary16 | Half precision 2 10+1 -14 +15 storage, not basic 3.31 4.51
binary32 | Single precision 2 23+1 -126 +127 7.22 38.23
binary64 Double precision 2 52+1 -1022 +1023 15.95 307.95
binary128 | Quadruple precision 2 112+1 -16382 +16383 34.02 4931.77
decimal32 10 7 -95 +96 storage, not basic 7 96
decimal64 10 16, -383 +384 16 384
decimali128 10 34 -6143 +6144 34 6144

Figure from Wikipedia

Robert P. Goddard Introduction to Scientific Computing

Floating Point Numbers

Format Layout
IEEE 754

|IEEE 754 Formats

1 8 23
s e f
msb Isb Isb
1 1 52
s e f
msb Isb msb Isb

Exponent Bias: e = E + Eax: 1 <e<2% -2

Figures from IEEE 754-1985

Robert P. Goddard

Introduction to Scientific Computing

ap!

Floating Point Numbers IEEE 754 Formats

Values
|IEEE 754

Not A Number: If e =2" — 1 and f # 0, then v is NaN regardless
of s. There are 2° — 2 different NaNs: signaling/quiet,
“retrospective diagnostic information.”

Signed Infinity:lf e =2% — 1 and f =0, then v = (—1)°c0
Normalized Numbers: If 0 < e < 2% — 1, then

v = (_1)s2e—bias(1 . f)

Denormalized Numbers: If e =0 and f # 0, then

v = (_1)5217bias(0 . f)

Signed Zero: If e =0 and f =0, then v = (—1)%0

© ©6 o060

ap!

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Quiz Question 1

Hyperbolic Tangent

eX —e X
tanh(x) = ———
eX 4 e™X
1
ol |
-1 Il Il L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Give 3 reasons not to use that formula to compute tanh.

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Answer 1: Overflow
Hyperbolic Tangent

eX — X

tanh(x) = ——

anh(x) T
x =709 = e ~ 8.2 x 1037 = tanh(x) =1
x =710 = e = Inf = tanh(x) = NaN

If x is a double. Possible solution: Underflow is usually better then
overflow:

1— e—2x

T 1te
But what about x < 07 You need an “if” or an “abs” and a “sign”.
Or, test for range of |x| and just set the answer to +1 if it's big.

Robert P. Goddard Introduction to Scientific Computing

tanh(x)

Interlude: Quiz

Answer 2: Round-off and Subtraction
Hyperbolic Tangent

eX — X
tanh(x) = ——
anh(x) eX 4 e™x

Look closely around 0 £ 5 x 1071 (double precision):

x10™

-2 o 2 a 6

Solution: Use a power series for small x. That's yet another “if”. @

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Answer 3: It's in the library!
Hyperbolic Tangent

tanh(x) is in the library: FORTRAN 77 Intrinsics, C 1990, C++ 1998,
etc.

@ Small values: Green line.
e tanh(10000.0) = 1.0

Don't re-invent the wheel.

ap!

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Quiz Question 2

Inverses

bool gq2(double x, double y)
{

return x ==y && 1.0/x != 1.0/y;
}

Can this function ever return true? If so, what are x and y?

ap!

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Quiz Question 2

Inverses

bool gq2(double x, double y)
{

return x ==y && 1.0/x != 1.0/y;
}

Can this function ever return true? If so, what are x and y?

double x = 0.0; double y = -0.0;
bool comp2 = q2(x, y);

std::cout << "g2(" <K x K< ", " <KLy <K ") =" << comp2
<< " 1.0/x = " << 1.0/x
<< " 1.0/y = " << 1.0/y << std::endl;

q2(0, -0) =1 1.0/x = inf 1.0/y = -inf @

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Quiz Question 3

Comparisons

bool gq3(double x, double y)
{ returnx ==y || x <y |l x> y; }

Can this function ever return false? If so, what are x and y?

ap!

Robert P. Goddard Introduction to Scientific Computing

Interlude: Quiz

Quiz Question 3

Comparisons

bool gq3(double x, double y)
{ returnx ==y || x <y |l x> y; }

Can this function ever return false? If so, what are x and y?

double x 0.0; double y = -0.0;

double z = x/y;

bool comp3 = q3(z, z);

std::cout << "@3(" K<z K", "KKzZz<K") ="
<< comp3 << std::endl;

93(nan, nan) =0

Every NaN is unordered. No matter what ordering operator you use, t@
answer is always false if either operand is a NaN.

Robert P. Goddard Introduction to Scientific Computing

Simple Algorithm: Truncation Vs. Roundoff
Second Algorithm: Better Round-o
Third Al hm

Example: Second-Order ODE with Initial Conditions

Outline

e Example: Second-Order ODE with Initial Conditions
@ Simple Algorithm: Truncation Vs. Roundoff

Robert P. Goddard Introduction to Scientific Computi

Simple Algorithm: Truncation Vs. Roundoff
Se Al f

Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Simple Algorithm

General Problem:
d?y
dx2 = f(x,y)
Test Problem (answer is Acos x + Bsin x):
d?y

& =Y

Simple Solution Approach

d?y i YO) =2y (x) +y(x + h)

dx? h—0 h?

O+ h) % 25(6) — y(x — B) + R)
=2y(x) — y(x — h) + h*f(x,y) @

Robert P. Goddard Introduction to Scientific Computing

Simple Algorithm: Truncation Vs. Roundoff
Second Algorithm: Better Round-off
Third ithm: H

Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Simple Algorithm: C+4+-+ Implementation

// Return the second derivative: y’’ = -
// which should compute sin(x) or cos(x)
template<typename T>

T d2sine(T x, Ty)

{ return -y; }

// Solver for ODE of form y’’ = f(x,y)
// First try: Low order, Roundoff problems
template<typename T>
T solve2a(
T (%d2)(T,T), // RHS
T x0, T yoO, // Initial y(x0)
T yi, T y2, // Initial y(x0+h) and y(x0+2%h)

T h, size_tn // Step size, Number of steps
)
{
Tx=x0+h; T yprev=y0; Ty=yl;
for (size_t i = 2u; i <=n; ++i) {
T ynext = 2.0%y - yprev + hxh*d2(x,y);
yprev = y; y = ynext; x += h;
}
return y;
}

Robert P. Goddard Introduction to Scientific Computi

Simple Algorithm: Truncation Vs. Roundoff
Second Algorithm: Better Round-off
Third ithm: H

Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions
Simple Algorithm: C++ Test Code

// Test Script for Second-Order ODE Solver
template<typename T>
void test(
T (*solver)(T (x)(T,T), T, T, T, T, T, size_t),
T (xd2)(T,T) // RHS

)
{
const size_t n_cycles = 64;
const size_t n_trials = 16;
std::cout << " h y" << std::endl;
T h = std::atan(T(1.0)); // Start at pi/4
size_t n = 8%n_cycles; // Number of steps
T x0 = 0.0f;
T yO = 0.0f;
for (size_t itrial = 0; itrial < n_trials; ++itrial) {
T y1 = std::sin(h);
T y2 = std::sin(h+h);
T y = solver(d2, x0, yO, y1, y2, h, n);
std::cout << h << " " << y << std::endl;
n *= 2u;
h /= 2.0f;
}
}

Robert P. Goddard Introduction to Scientific Computi

Simple Algorithm: Truncation Vs. Roundoff
Second Algorithm: Better Round-off
Third ithm: H

Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Simple Algorithm: Result

test(solve2a<float>, d2sine<float>);
test(solve2a<double>, d2sine<double>);

5
s o ~
)
3
g -5¢ 1
— ode-a-float
ode—a-double|
-10 ‘ ‘ ‘ ‘
-5 -4 -3 -2 -1 0

Ioglo(step size)

Robert P. Goddard Introduction to Scientific Computi

Simple thm: Truncation V
Second Algorithm: Better Round-off
Third Algorithm BUT
Example: Second-Order ODE with Initial Conditions

Outline

e Example: Second-Order ODE with Initial Conditions

@ Second Algorithm: Better Round-off

Robert P. Goddard Introduction to Scientific Computi

Simple thm: Truncation V

Second Algorithm: Better Round-off

Third Algorithm BUT
Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Second Algorithm: Better round-off

This version avoids excessive round-off.

// Solver for ODE of form y’’ = f(x,y)
// Second try: Low order, better roundoff
template<typename T>
T solve2b(
T (*xd2)(T,T), // RHS
T x0, T yo, // Initial y(x0)
Tyl, Ty2, // Initial y(xO+h) and y(x0+2*h)
T h, size_tn // Step size, Number of steps

for (size_t i = 1; i < mn; ++i) {
dy += hxh*d2(x,y);
y +=dy;
X += h;

¥

return y;

Robert P. Goddard Introduction to Scientific Computi

Simple A Truncation V ndoff
Second Algorithm: Better Round-off
i Hig BUT
Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Second Algorithm: Result

test(solve2b<float>, d2sine<float>);
test(solve2b<double>, d2sine<double>);

5
T o |
)
e ode—a—float
8 -5t ——— ode-a-doublel-
- _ ode—b—float
- ——— ode—b—double|
-10 ‘ ‘ ‘ ‘
-5 -4 -3 -2 -1 0

Ioglo(step size)

Robert P. Goddard Introduction to Scientific Computi

Simple
Second] ound-off
Third Algorithm: Higher order BUT...
Example: Second-Order ODE with Initial Conditions

Outline

e Example: Second-Order ODE with Initial Conditions

@ Third Algorithm: Higher order BUT ...

Robert P. Goddard Introduction to Scientific Computi

Simple

Second] ound-off

Third Algorithm: Higher order BUT...
Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Third Algorithm: Higher order

This version has higher order, with error of order h®, but it's unstable!

// Third try: Higher order, unstable: Predictor from Abramowitz & Stegun 25.5.15
template<typename T>
T solve2c(

T (*d2)(T,T), // RHS

T x0, T yo, // Initial y(x0)

T yi, T y2, // Initial y(xO+h) and y(x0+2%h)

T h, size_tn // Step size, Number of steps
)
{
Tx=x0+h; Ty=y2; Tyml=yl; T ym2 = y0;
for (size_t i = 2; i < m; ++i) {
T xml = x;
x = x0 + i*h;
T ypl = ym2 + T(3.0)*(y - yml)
+ h¥h*(d2(x,y) - d2(zxml, ym1));
ym2 = ymil;
yml =y;
y = ypL;
}
return y;
}

Robert P. Goddard Introduction to Scientific Computi

Simple Algorithm: Trun / indoff

Second / 3 Y

Third Algorithm: Higher order BUT...
Example: Second-Order ODE with Initial Conditions

Example: Second-Order ODE with Initial Conditions

Third Algorithm: Unstable!

test(solve2c<float>, d2sine<float>);
test(solve2c<double>, d2sine<double>);

20 T T T ode-a-float
ode-a-double|
15} ode-b—float
ode-b—-double|
ode-c-float
. 10F ode-c—double] |
g
@
= 7 |
j=2}
o
ol]
5}]
-10
-5 -4 -3 -2 -1 0

Ioglo(step size)

Robert P. Goddard Introduction to Scientific Computing

	Introduction: Hamming's Five Main Ideas
	What Is Scientific Computing?
	Definition and Requirements
	Example: SST

	Floating Point Numbers
	IEEE 754 Formats

	Interlude: Quiz
	Example: Second-Order ODE with Initial Conditions
	Simple Algorithm: Truncation Vs. Roundoff
	Second Algorithm: Better Round-off
	Third Algorithm: Higher order BUT...

