

The D Programming Language

by Walter Bright
Digital Mars

http://www.digitalmars.com/d/

Signed by Andrei Alexandrescu,
3 copies,
for the most interesting comments
and questions.

"You want to go forward, what do you
do? You put it in D."

http://voices.washingtonpost.com/44/201
0/08/obamas-latest-joke-

republicans.html

What is D?

● Systems and applications programming
language
– Native code generation

– Static typing

– Fast turnaround

● Born of decades of experience with industry
projects

● Multi-paradigm

Multiparadigm

● C style
● Imperative
● Scripting
● Heavy Metal
● Object-oriented
● RAII
● Functional
● Generic

● Generative
● Concurrent
● Compile Time

C Style: Sieve in C

#include <stdio.h>
#include <stdlib.h>

const int true = 1;
const int false = 0;
const int size = 8190;
const int sizepl = 8191;

int main() {
 int i, prime, k, count, iter;

 printf("10 iterations\n");
 char *flags = (char *)malloc(sizepl);

 for (iter = 1; iter <= 10; iter++) {
 count = 0;
 for (i = 0; i <= size; i++)
 flags[i] = true;
 for (i = 0; i <= size; i++) {
 if (flags[i]) {
 prime = i + i + 3;
 k = i + prime;
 while (k <= size) {
 flags[k] = false;
 k += prime;
 }
 count += 1;
 }
 }
 }
 free(flags);
 printf("\n%d primes", count);
 return 0;
}

Corresponding Sieve in D

import std.c.stdio;
import std.c.stdlib;

const int size = 8190;
const int sizepl = 8191;

int main() {
 int i, prime, k, count, iter;

 printf("10 iterations\n");
 char *flags = cast(char*) malloc(sizepl);

 for (iter = 1; iter <= 10; iter++) {
 count = 0;
 for (i = 0; i <= size; i++)
 flags[i] = true;
 for (i = 0; i <= size; i++) {
 if (flags[i]) {
 prime = i + i + 3;
 k = i + prime;
 while (k <= size) {
 flags[k] = false;
 k += prime;
 }
 count += 1;
 }
 }
 }
 free(flags);
 printf("\n%d primes", count);
 return 0;
}

The Only Changes

● #include => import
● true and false are predefined
● (char *) => cast(char *)

ABI Compatible With C

● Can call any C function or library
● No translation layer
● Yes, that really is C's malloc/free/printf being

called
● Writing C-style code in D will get same

performance as in C
– The same code is generated

● C and D code can be mixed and matched

Imperative Programming

import std.stdio;

void main() {
 int count;

 writeln("10 iterations");
 auto flags = new bool[8191];

 foreach (iter; 0 .. 10) {
 count = 0;
 flags[] = true;
 foreach (i, flag; flags) {
 if (flag) {
 auto prime = i + i + 3;
 for (auto k = i + prime; k < flags.length;
 k += prime) {
 flags[k] = false;
 }
 ++count;
 }
 }
 }
 writefln("\n%s primes", count);
}

Notes

● Type inference
● Foreach ranges
● Foreach over arrays
● Automatic memory management
● Automatic error management
● Array operations
● Typesafe printing

#!/usr/bin/rdmd

import std.stdio;

void main() {
 writeln(“hello world!”);
}

$ chmod u+x hello.d
$./hello.d
hello world!
$

from The D Programming Language chapter 1

Notes

● Full power of D is available
● rdmd handles the compiling, linking

– Binary is cached in temporary directory

– Automatically recompiled if it changes

● Can completely replace use of bash, etc.

Heavy Metal Programming

int *_memset32(int *p, int value, size_t count) {
 asm {
 mov EDI,p ;
 mov EAX,value ;
 mov ECX,count ;
 mov EDX,EDI ;
 rep ;
 stosd ;
 mov EAX,EDX ;
 }
}

Notes

● Function prolog/epilog added automatically
– Including which registers to save/restore

● Intel syntax
– X86 syntax portable across 4 operating systems

● Stack variable addressing modes

Object Oriented
class Shape {
 abstract void Draw ();
}

class Square : Shape {
 this(int x, int y, int w) {
 xpos = x; ypos = y;
 width = w;
 }

 void Draw() {
 writefln("Drawing Square at (%s,%s), width %s\n",
 x, y, width);
 }

 private int x, y, width;
}

Notes

● Single inheritance with interfaces
● Objects are always accessed by ref

– Always by reference (never by value)

– Use structs for by value

● Compatible with COM
● Compatible with C++ single inheritance
● Destructors are always virtual

RAII

 struct Buffer {
 this(size_t s) {
 buf = malloc(s)[0 .. s];
 }
 this(this) {
 auto p = malloc(buf.length)[0..buf.length];
 p[] = buf[];
 buf = p;
 }
 ~this() {
 free(buf.ptr);
 }
 void[] buf;
 }

Notes

● Used for value types (structs)
● Can be used to implement storage allocation

– Including ref counting

● Unlike C++, values can be moved in memory
● Postblit is used to “adjust” things after a move
● No inheritance of structs, no virtual members
● opAssign is synthesized by compiler

– (if not provided)

Functional

pure sum_of_squares (immutable double[] a) {
 auto sum = 0;
 foreach (i; a)
 sum += i * i;
 return sum;
}

Notes

● Immutability and purity are cornerstones of
functional programming

● Of course, nested functions, lambdas and
closures are supported

Compile Time

string decimaldigit(int n) {
 return "0123456789"[n..n+1];
}

string uitoa(uint n) {
 if (n < 10)
 return decimaldigit(n);
 else
 return uitoa(n / 10) ~ decimaldigit(n % 10);
}

string showHowMany(int n, string where, bool needcapital = false) {
 if (n > 1)
 return uitoa(n) ~ " bottles of beer" ~ where ~ "\n";
 else if (n == 1)
 return "1 bottle of beer" ~ where ~ "\n";
 else if (needcapital)
 return "No more bottles of beer" ~ where ~ "\n";
 else
 return "no more bottles of beer" ~ where ~ "\n";
}

string beer(int maxbeers, int n = -1) {
 if (n < 0)
 n = maxbeers;
 if (n > 0)
 return showHowMany(n, " on the wall,", true)
 ~ showHowMany(n, ".")
 ~ "Take one down and pass it around, " ~ "\n"
 ~ showHowMany(n - 1 , " on the wall.")
 ~ "\n" ~ beer(maxbeers, n - 1);
 else
 return showHowMany(n, " on the wall,", true)
 ~ showHowMany(n, ".")
 ~ "Go to the store and buy some more, " ~ "\n"
 ~ showHowMany(maxbeers, " on the wall.");
}

pragma(msg, beer(99));

Notes

● Operates completely at compile time
● No executable generated
● No libraries used
● Code is regular functions
● Functions must be pure

– No side effects

Generic

size_t levenshteinDistance
 (alias equals = "a == b", Range1, Range2)
 (Range1 s, Range2 t)
 if (isForwardRange!Range1 &&
 isForwardRange!Range2){
 ...
}

Notes

● Works with arbitrary predicates
– Function literals

– Delegates

– Strings

● Lightweight concepts in the form of template
constraints
– Anything that can be expressed as code that can be

executed at compile time can form a constraint

Generative

 struct A {
 int a;
 mixin(bitfields!(
 uint, "x", 2,
 int, "y", 3,
 uint, "z", 2,
 bool, "flag", 1));
 }
 A obj;
 obj.x = 2;
 obj.z = obj.x;

Notes

● Makes use of compile time execution to form
strings, which are then “mixed in”

● Mixed in strings are D code
● Of course, the strings and the D code they

contain can be arbitrarily complex

Concurrent
 import std.algorithm, std.concurrency, std.stdio;

 void main() {
 enum bufferSize = 1024 * 100;
 auto tid = spawn(&fileWriter);
 // Read loop
 foreach (immutable(ubyte)[] buffer;
 stdin.byChunk(bufferSize)) {
 send(tid, buffer);
 }
 }

 void fileWriter() {
 // Write loop
 for (;;) {
 auto buffer = receiveOnly!(immutable(ubyte)[])();
 stdout.write(buffer);
 }
 }

from The D Programming Language chapter 13

Notes

● Message passing the preferred method
● Can also do:

– Shared memory

– Lock free

– Atomics, etc.

Compilers

● Digital Mars D compiler
– Based on the Digital Mars compiler suite

● Gnu D compiler
– Based on the gnu compiler collection

● LDC compiler
– Based on the LLVM compiler

Full source code available for all of them

Platform Support

● Windows
● Linux
● OS X
● FreeBSD

Conclusion

● D supports many styles of programming
● Non-trivial programs rarely fit nicely into one

paradigm
● No need to produce hybrid programs using

multiple languages
● Investment in libraries becomes reusable

across a wide range of applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

