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"You want to go forward, what do you 
do? You put it in D."

http://voices.washingtonpost.com/44/201
0/08/obamas-latest-joke-

republicans.html 



  

What is D?

● Systems and applications programming 
language
– Native code generation

– Static typing

– Fast turnaround

● Born of decades of experience with industry 
projects

● Multi-paradigm



  

Multiparadigm

● C style
● Imperative
● Scripting
● Heavy Metal
● Object-oriented
● RAII
● Functional
● Generic

● Generative
● Concurrent
● Compile Time



  

C Style: Sieve in C

#include        <stdio.h>
#include        <stdlib.h>

const int true = 1;
const int false = 0;
const int size = 8190;
const int sizepl = 8191;

int main() {
    int i, prime, k, count, iter;

    printf("10 iterations\n");
    char *flags = (char *)malloc(sizepl);
 

   for (iter = 1; iter <= 10; iter++) {
       count = 0;
        for (i = 0; i <= size; i++)
            flags[i] = true;
        for (i = 0; i <= size; i++) {
            if (flags[i]) {
                prime = i + i + 3;
                k = i + prime;
                while (k <= size)  {
                    flags[k] = false;
                    k += prime;
                }
                count += 1;
            }
        }
    }
    free(flags);
    printf("\n%d primes", count);
    return 0;
}



  

Corresponding Sieve in D

import std.c.stdio;
import std.c.stdlib;

const int size = 8190;
const int sizepl = 8191;

int main() {
    int i, prime, k, count, iter;

    printf("10 iterations\n");
    char *flags = cast(char*) malloc(sizepl);

    for (iter = 1; iter <= 10; iter++) {
        count = 0;
        for (i = 0; i <= size; i++)
            flags[i] = true;
        for (i = 0; i <= size; i++) {
            if (flags[i]) {
               prime = i + i + 3;
                k = i + prime;
                while (k <= size)  {
                    flags[k] = false;
                    k += prime;
                }
                count += 1;
            }
        }
    }
    free(flags);
    printf("\n%d primes", count);
    return 0;
}



  

The Only Changes

● #include => import
● true and false are predefined
● (char *) => cast(char *)



  

ABI Compatible With C

● Can call any C function or library
● No translation layer
● Yes, that really is C's malloc/free/printf being 

called
● Writing C-style code in D will get same 

performance as in C
– The same code is generated

● C and D code can be mixed and matched



  

Imperative Programming

import std.stdio;

void main() {
  int count;

  writeln("10 iterations");
  auto flags = new bool[8191]; 

 foreach (iter; 0 .. 10) {
     count = 0;
     flags[ ] = true;
     foreach (i, flag; flags) {
     if (flag) {
        auto prime = i + i + 3;
        for (auto k = i + prime;  k < flags.length;
             k += prime) {
             flags[k] = false;
         }
         ++count;
      }
    }
  }
  writefln("\n%s primes", count);
}



  

Notes

● Type inference
● Foreach ranges
● Foreach over arrays
● Automatic memory management
● Automatic error management
● Array operations
● Typesafe printing



  

 

#!/usr/bin/rdmd

import std.stdio;

void main() {
    writeln(“hello world!”);
}

$ chmod u+x hello.d
$ ./hello.d
hello world!
$

from The D Programming Language chapter 1



  

Notes

● Full power of D is available
● rdmd handles the compiling, linking

– Binary is cached in temporary directory

– Automatically recompiled if it changes

● Can completely replace use of bash, etc.



  

Heavy Metal Programming

int *_memset32(int *p, int value, size_t count) {
    asm   {
        mov     EDI,p           ;
        mov     EAX,value   ;
        mov     ECX,count   ;
        mov     EDX,EDI     ;
        rep                           ;
        stosd                        ;
        mov     EAX,EDX   ;
    }
}



  

Notes

● Function prolog/epilog added automatically
– Including which registers to save/restore

● Intel syntax
– X86 syntax portable across 4 operating systems

● Stack variable addressing modes



  

Object Oriented
class Shape {
  abstract void Draw ();
}

 
class Square : Shape {
  this(int x, int y, int w) {
    xpos = x; ypos = y;
    width = w;
  }

  void Draw() {
    writefln("Drawing Square at (%s,%s), width %s\n",
      x, y, width);
  }

  private int x, y, width;
}



  

Notes

● Single inheritance with interfaces
● Objects are always accessed by ref

– Always by reference (never by value)

– Use structs for by value

● Compatible with COM
● Compatible with C++ single inheritance
● Destructors are always virtual



  

RAII

 struct Buffer {
   this(size_t s) {
     buf = malloc(s)[0 .. s];
   }
   this(this) {
     auto p = malloc(buf.length)[0..buf.length];
     p[] = buf[];
     buf = p;
   }
   ~this() {
     free(buf.ptr);
   }
   void[] buf;
 }



  

Notes

● Used for value types (structs)
● Can be used to implement storage allocation

– Including ref counting

● Unlike C++, values can be moved in memory
● Postblit is used to “adjust” things after a move
● No inheritance of structs, no virtual members
● opAssign is synthesized by compiler

– (if not provided)



  

Functional

pure sum_of_squares (immutable double[] a) {
    auto sum = 0;
    foreach (i; a)
        sum += i * i;
    return sum;
}



  

Notes

● Immutability and purity are cornerstones of 
functional programming

● Of course, nested functions, lambdas and 
closures are supported



  

Compile Time

string decimaldigit(int n) {
    return "0123456789"[n..n+1];
}

string uitoa(uint n) {
    if ( n < 10 )
        return decimaldigit(n);
    else
        return uitoa( n / 10 ) ~ decimaldigit( n % 10 );
}



  

string showHowMany(int n, string where, bool needcapital = false) {
  if ( n > 1 ) 
      return uitoa(n) ~ " bottles of beer" ~ where ~ "\n";
  else if ( n == 1 )
      return "1 bottle of beer" ~ where ~ "\n";
  else if ( needcapital )
      return "No more bottles of beer" ~ where ~ "\n";
  else 
      return "no more bottles of beer" ~ where ~ "\n";
}



  

string beer(int maxbeers, int n = -1) {
  if (n < 0)
    n = maxbeers;
  if ( n > 0 )
    return showHowMany(n, " on the wall,", true)
        ~ showHowMany(n, ".")
        ~ "Take one down and pass it around, " ~ "\n" 
        ~ showHowMany( n - 1 , " on the wall.") 
        ~ "\n" ~ beer(maxbeers, n - 1);
  else
    return showHowMany(n, " on the wall,", true)
        ~ showHowMany(n, ".")
        ~ "Go to the store and buy some more, " ~ "\n"
        ~ showHowMany( maxbeers, " on the wall.");
}

pragma(msg, beer(99));



  

Notes

● Operates completely at compile time
● No executable generated
● No libraries used
● Code is regular functions
● Functions must be pure

– No side effects



  

Generic

size_t levenshteinDistance
  (alias equals = "a == b", Range1, Range2)
  (Range1 s, Range2 t)
  if (isForwardRange!Range1 &&
      isForwardRange!Range2){
  ...
}



  

Notes

● Works with arbitrary predicates
– Function literals

– Delegates

– Strings

● Lightweight concepts in the form of template 
constraints
– Anything that can be expressed as code that can be 

executed at compile time can form a constraint



  

Generative

 struct A {
    int a;
    mixin(bitfields!(
        uint, "x",    2,
        int,  "y",    3,
        uint, "z",    2,
        bool, "flag", 1));
 }
 A obj;
 obj.x = 2;
 obj.z = obj.x;



  

Notes

● Makes use of compile time execution to form 
strings, which are then “mixed in”

● Mixed in strings are D code
● Of course, the strings and the D code they 

contain can be arbitrarily complex



  

Concurrent
 import std.algorithm, std.concurrency, std.stdio;

 void main() {
  enum bufferSize = 1024 * 100;
  auto tid = spawn(&fileWriter);
  // Read loop
  foreach (immutable(ubyte)[] buffer;
           stdin.byChunk(bufferSize)) {
    send(tid, buffer);
  }
 }

 void fileWriter() {
  // Write loop
  for (;;) {
    auto buffer = receiveOnly!(immutable(ubyte)[])();
    stdout.write(buffer);
  }
 }

from The D Programming Language chapter 13



  

Notes

● Message passing the preferred method
● Can also do:

– Shared memory

– Lock free

– Atomics, etc.



  

Compilers

● Digital Mars D compiler
– Based on the Digital Mars compiler suite

● Gnu D compiler
– Based on the gnu compiler collection

● LDC compiler
– Based on the LLVM compiler

Full source code available for all of them



  

Platform Support

● Windows
● Linux
● OS X
● FreeBSD



  

Conclusion

● D supports many styles of programming
● Non-trivial programs rarely fit nicely into one 

paradigm
● No need to produce hybrid programs using 

multiple languages
● Investment in libraries becomes reusable 

across a wide range of applications
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