Concurrent Programming
in the D Programming
Language

by Walter Bright
Digital Mars

Introduction

 What is sequential consistency across threads?

 What are the problems with it?
« D features that mitigate those problems

The Basic Problem

Many-core programming offers exciting
and compelling advantages.

but

Programming languages are
designed with single threaded view.

Sequential Consistency is assumed.

Sequential Consistency

* For statements A, B, C
* Ais completed before B is started

* B is completed before C is started

Result: cis 7

Doesn't Hold For MultiThreads

Initially, x == 0 and y ==

Double Checked Locking Bug

Problem: Implicit Sharing

Data is visible at all times from any thread

Data can be cached on the CPU chip's thread-
ocal memory caches

Indeterminate when those caches get flushed

Indeterminate when those caches get refreshed

Just Use Memory Barriers!

Complex, difficult to understand
Hard to verify they are correctly used

Hard to devise tests for them

Incorrect usage can work fine on one machine,
not on the next

Hard to track down bugs in them

Even If You Understand It

« Unintentional sharing can happen with any
static, global, or reference

» Very hard to find sharing in non-trivial code

 Impractical to verify that code does not have
sharing bugs

« Code can have latent sharing bugs for years
* Relying on code reviews doesn't scale well

Perfect Problem for Language to
Solve

e Redesigning the programmers will never work

* A language can offer guaranteed behavior

« Some problems can be defined out of existence
* D provides an opportunity for that

Types of Memory

Thread Local

» Default for globals, function locals, and
allocated data

* No thread synchronization required

» May contain references to shared or immutable
data

Immutable

Once set, it can never change

Multiple threads can simultaneously access it
No synchronization necessary

Immutability is transitive

Cannot refer to mutable data — either shared or
thread local

Shared

» Mutable

* Accessible from multiple threads

« Synchronization required

e Shared-ness is transitive

» May contain references to immutable data
» Cannot refer to thread local data

D Type Qualifiers

<no qualifier> : thread local
shared : shared among threads
immutable : can never change, implies shared

const : read-only view of thread-local or
immutable data

shared const : read-only view of shared or
immutable data

It Looks Complicated Buit...

* Once shared, cannot escape being shared

* Once immutable, cannot escape being
immutable

« Once const, cannot escape being const

It all follows from these three
simple rules.

The Code

int x; // thread local
shared inty; // multiple threads can read/write y
immutable intz =7; // z will always be 7

int* p;
const(int)* pc; // cannot change the int p points to
shared(int)* ps; // points to shared data

shared const(int)* psc; // points to shared data

p=&x; //ok ps = &x; // error, x is thread local
p=4&y; //error, pcannot point to shared ps = &y; // ok, y is shared

p=&z; // error, p cannot point to immutable| | ps = &z; // error, z is immutable
*p = 4; // ok *os=4; // ok

pc = &x; // ok to point to mutable psc = &x; // error, x is thread local
pc=&y; //error,yis shared psc = &y; // ok

pc = &z; // ok to point to immutable psc = &z; // ok

*pc = 4; // error, pointer to const *psc =4; /[error, pointer to const

Shared and Sequential Consistency

e Shared tells compiler not to reorder reads and
writes of shared data

« Compiler (not the programmer) puts read and
write barriers in for shared data access

» Double-checked locking bug is no longer
possible since checked variable must be shared

e Code is portable because compiler takes care
of memory barrier differences

One More Thing: Pure Functions

« Cannot read mutable static or global state
« Cannot write to static or global state
« Cannot have any side effects

« Parameters are values, const references or
Immutable references

e Only result is the return value

Therefore, pure functions never require
synchronization

A Pure Function

int foo();

pure int bar();

Int X;

immutable inty = 7;

pure int sum(int v, immutable(int)[] array)

{

Inti=Xx; // error, cannot access mutable global state
ints =y; // ok, y is immutable
foo(); // error, foo() is impure

S += bar(); // ok
foreach (e; array)
S +=¢; // ok, s is not visible outside of sum()

returnv + Ss;

There's a Catch

 Memory barriers are slow
* S0 accessing shared variables will be slow
 How to fix?

Minimize Shared Access

Minimize use of shared data

Maximize use of immutable data
Maximize use of pure functions

Cache shared data in thread local data

Which has another benefit...

Debugging Threading Problems

« Threading problems will be isolated to shared
data, by definition

« Shared data will be explicitly marked as shared

* S0 the scope of the bug is already reduced to a
smallish subset of the code, rather than the
entire code base as in a language with implicit
sharing

Manual Methods

 As D Is a systems programming language,
manual control of memory barriers is possible
by explicitly casting away the shared attribute

« Of course, escaping from the type system also
means accepting the responsibility of making
the code correct

Double Checked Locking Fix

Conclusion

« Very hard to verify a program is free of
sequential consistency bugs with implicit
sharing and manual insertion of memory
barriers

» Requiring explicit sharing, along with

immutability and purity, and compiler insertion
of memory barriers, greatly mitigates this

Acknowledgements

Thanks to Bartosz Milewski, Andrei Alexandrescu
and Brad Roberts for reviewing this. Any remaining
errors are solely my own.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

