
Or: How I Learned To Stop Worrying

And Love Resource Management

Stephan T. Lavavej
Visual C++ Libraries Developer

1Version 1.2 - March 17, 2008

 Boost Components

 shared_ptr (and weak_ptr)

 mem_fn(), bind(), and function

 regex

 <random>

 "Containers": tuple, array, unordered_set (etc.)

 <type_traits>

 reference_wrapper

 C99 Compatibility (<cstdint>, etc.)

 Special Math Functions (riemann_zeta(), etc.)

2Version 1.2 - March 17, 2008

 Effective C++, Third Edition (2005) by Scott Meyers:

 "shared_ptr may be the most widely useful
component in TR1."

 C++ Coding Standards (2005) by Herb Sutter and
Andrei Alexandrescu:

 "Store only values and smart pointers in
containers. To this we add: If you use [Boost] and
[C++TR104] for nothing else, use them for
shared_ptr."

3Version 1.2 - March 17, 2008

 A templated...

 non-intrusive...

 deterministically reference-counted...

 smart pointer...

 (to a single object)...

 that works with polymorphic types...

 incomplete types...

 and STL containers (sequence and associative)!

4Version 1.2 - March 17, 2008

 Generalizing over types without forgetting types

 shared_ptr<T>

 "shared pointer to T"

 shared_ptr<const T>

 "shared pointer to const T"

 const shared_ptr<const T>

 "const shared pointer to const T"

 "Look, Mom! No backwards reading!"

5Version 1.2 - March 17, 2008

 You can instantiate shared_ptr<T>without
modifying the definition of T

 (That is, the reference count is not embedded)

 Huge usability benefit for minimal perf cost

 Works with built-in types: shared_ptr<int>

 You can begin using shared_ptr in your codebase
without having to modify your existing types

 You can stop using shared_ptr for a type without
having to rip machinery out of it

 A type can be sometimes held by shared_ptr and
sometimes contained by another type

6Version 1.2 - March 17, 2008

 Deterministic

 shared_ptrs collectively share ownership of an object

 When the last shared_ptr dies, the object dies...

 Immediately!

 Reference-Counted

 Directed acyclic graphs of shared_ptrs to objects
containing shared_ptrs to other objects... are OKAY

 Cycles of shared_ptrs are LEAKTROCITY

 Someone else has to ultimately own you

 You can't own yourself!

7Version 1.2 - March 17, 2008

 Smart
 Unlike auto_ptr, which was a stupid smart pointer

 Sane copy constructor and copy assignment operator

 Behaves like an ordinary value type

 Pass and return by value and by reference as usual

 Plays nice with const

 Pointer
 Overloads operator*() and operator->()

 Conversion function to unspecified-bool-type

 if (sp) will compile, sp * 5 will not compile

 No jagged metal edges!

8Version 1.2 - March 17, 2008

 A single object, not an array!
 If you new up an array and hand it to a shared_ptr:
 It will compile

 It will trigger UNDEFINED BEHAVIOR

 Which might mean LEAKTROCITY or CRASHTROCITY

 If you need...
 a container: vector

 a shared container: shared_ptr<vector<T> >

 less overhead: shared_array (in Boost, but not TR1)

 or perhaps: shared_ptr<array<T, N> > (in TR1)

 Custom deleters are insufficient (no op[])

9Version 1.2 - March 17, 2008

 shared_ptr<Derived> is convertible to
shared_ptr<Base>

 Works fine, doesn't screw up the reference count

 Need to convert back?
 static_pointer_cast<Derived>(spBase)

 dynamic_pointer_cast<Derived>(spBase)

 While we're at it...
 const_pointer_cast<T>(spConstT)

 None of these throw exceptions!

 There is no reinterpret_pointer_cast

 Note: shared_ptr itself is not polymorphic

10Version 1.2 - March 17, 2008

 struct X;

 void fxn(const shared_ptr<X>& p);

 However, X must be complete by the time that you
instantiate certain member functions of
shared_ptr<X>, such as its constructor from X *

 Reason: If the constructor fails (e.g. to allocate
memory for a reference count), it must delete the X
before throwing, and deletion requires complete
types in general

11Version 1.2 - March 17, 2008

 auto_ptr is inherently an enemy of the STL
 The STL loves ordinary value types

 auto_ptr does not behave like an ordinary value type

 Whoever wins, we lose

 shared_ptr is the STL's best friend
 shared_ptr behaves like an ordinary value type

 In fact, shared_ptr wraps non-values like noncopyable
and polymorphic types in value's clothing

 vector<shared_ptr<Socket> >

 vector<shared_ptr<Base> >

 Comes with operator<() for use in sets and maps

12Version 1.2 - March 17, 2008

 Policy Customizable

 Loki smart pointers are extremely customizable

 Ownership: refcount, reflink, destructive, etc.

 Implicit conversion to raw pointer: allow, disallow

 And so forth

 Policies are encoded in the smart pointer's type,
preventing interoperability (sometimes, but not always,
solvable with ninja template heroics)

 shared_ptr chooses good policies and bakes them in

 Deleters and allocators are customizable, as they don't
affect the type

13Version 1.2 - March 17, 2008

 Containers of shared_ptr
 vector<shared_ptr<NoncopyableResource> >

 vector<shared_ptr<PolymorphicBase> >

 Any other STL/TR1 containers, especially caches:
 map<Key, shared_ptr<NoncopyableResource> >

 Passing around copyable but "heavy" objects
efficiently (a simple version of move semantics)

 Exception safety, superseding auto_ptr
 Holding dynamically allocated objects at local scope

 Holding multiple dynamically allocated objects as
members (what does this mean? See next slide...)

14Version 1.2 - March 17, 2008

 Behold LEAKTROCITY:
Foo::Foo() : m_p(0), m_q(0) {

m_p = new X;

m_q = new Y;

}

Foo::~Foo() {

delete m_p;

delete m_q;

}

 shared_ptr FIXES the leak:
Foo::Foo() : m_sp(new X), m_sq(new Y) { }

// Implicitly defined dtor is OK for these members

15Version 1.2 - March 17, 2008

 Guidelines:
 All occurrences of new[]/delete[] should already have been

replaced with vector

 All occurrences of new should immediately be given to a
named shared_ptr

 All occurrences of delete should vanish

 Exceptions:
 When implementing custom data structures like trees that

can't be composed from the STL and TR1

 When performance is absolutely critical

 Manual resource management is extremely difficult to
do safely; consider it to be a last resort

16Version 1.2 - March 17, 2008

shared_ptr<string> sp(new string("meow"));

cout << *sp << endl;

cout << sp->size() << endl;

 Prints:
meow

4

 Each new object is immediately given to a
shared_ptr

 Each delete statement vanishes from the source

17Version 1.2 - March 17, 2008

shared_ptr<string> sp = new string("meow");

 Compiler error (after substitution):
error C2440: 'initializing' : cannot convert from

'std::string *' to 'std::tr1::shared_ptr<std::string>'

Constructor for class 'std::tr1::shared_ptr<std::string>'
is declared 'explicit'

 Direct-initialization can use an explicit ctor

 Copy-initialization performs conversion: explicit
ctors are unavailable

 shared_ptr acquires ownership explicitly

18Version 1.2 - March 17, 2008

shared_ptr<int> a;

shared_ptr<int> b(new int(137));

cout << (a ? "a" : "X") << endl;

if (b) {

cout << "b" << endl;

} else {

cout << "Y" << endl;

}

 Prints:
X

b

 Also: if (!sp), if (sp && blah), if (sp || blah)

19Version 1.2 - March 17, 2008

 auto_ptr: Not directly testable. Instead, you
must test if (ap.get())

 auto_ptr is deprecated in C++0x!

 unique_ptr: Has a conversion function to
unspecified-bool-type just like shared_ptr

 unique_ptr is the C++0x replacement for auto_ptr
(not part of TR1)

 weak_ptr: Not directly testable. Instead, you
must test if (!wp.expired())

 weak_ptr usage is covered later in this presentation

20Version 1.2 - March 17, 2008

shared_ptr<int> foo(int n) {

shared_ptr<int> r(new int(n));

*r += 5;

return r;

}

int main() {

shared_ptr<int> p = foo(3);

cout << *p << endl;

}

 Prints:
8

21Version 1.2 - March 17, 2008

shared_ptr<int> a(new int(1));

shared_ptr<int> b = a;

*a += 6;

cout << *a << ", " << *b << endl;

a.reset();

cout << "a: " << (a ? "owns" : "empty") << endl;

cout << "b: " << (b ? "owns" : "empty") << endl;

cout << *b << endl;

 Prints:
7, 7

a: empty

b: owns

7

22Version 1.2 - March 17, 2008

shared_ptr<int> frob(new int(100));

shared_ptr<const int> look = frob;

cout << *look << endl;

*frob /= 2;

cout << *look << endl;

// *look /= 2;

 Prints:
100

50

 Uncomment the last line to get this compiler error:
error C3892: 'look' : you cannot assign to a variable

that is const

23Version 1.2 - March 17, 2008

 cats.txt:
Abyssinian
Balinese
Chesire
Devon Rex

 dogs.txt:
Alsatian
Beagle
Collie

 people.txt:
Alan
Bjarne
Charles
Donald
Edsger

24Version 1.2 - March 17, 2008

queue<shared_ptr<ifstream> > q;

for (string s; getline(cin, s);) {
shared_ptr<ifstream> p(new ifstream(s.c_str()));
q.push(p);

}

while (!q.empty()) {
string s;

if (getline(*q.front(), s)) {
cout << s << endl;
q.push(q.front());

}

q.pop();
}

25Version 1.2 - March 17, 2008

cats.txt
dogs.txt
people.txt
^Z
Abyssinian
Alsatian
Alan
Balinese
Beagle
Bjarne
Chesire
Collie
Charles
Devon Rex
Donald
Edsger

26Version 1.2 - March 17, 2008

class Animal {

public:

explicit Animal(const string& name) : m_name(name) { }

string noise() const {

return m_name + " says " + noise_impl();

}

virtual ~Animal() { }

private:

Animal(const Animal&);

Animal& operator=(const Animal&);

virtual string noise_impl() const = 0;

string m_name;

};

27Version 1.2 - March 17, 2008

class Cat : public Animal {

public: explicit Cat(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "meow"; }

};

class Dog : public Animal {

public: explicit Dog(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "woof"; }

};

class Pig : public Animal {

public: explicit Pig(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "oink"; }

};

28Version 1.2 - March 17, 2008

vector<shared_ptr<Animal> > v;

shared_ptr<Cat> c(new Cat("Garfield"));

shared_ptr<Dog> d(new Dog("Odie"));

shared_ptr<Pig> p(new Pig("Orson"));

v.push_back(c);

v.push_back(d);

v.push_back(p);

transform(v.begin(), v.end(),

ostream_iterator<string>(cout, "\n"),

mem_fn(&Animal::noise));

29Version 1.2 - March 17, 2008

Garfield says meow

Odie says woof

Orson says oink

30Version 1.2 - March 17, 2008

shared_ptr<Cat> p(new Cat("Peppermint"));

shared_ptr<Cat> c;

shared_ptr<Animal> a;

c = p;

a = p;

cout << c->noise() << endl;

cout << a->noise() << endl;

 Prints:
Peppermint says meow

Peppermint says meow

31Version 1.2 - March 17, 2008

shared_ptr<Cat> p(new Cat("Peppermint"));

shared_ptr<Animal> a = p;

cout << (p == a ? "same" : "different") << endl;

 Prints:
same

32Version 1.2 - March 17, 2008

shared_ptr<Animal> a(new Cat("Bucky"));

cout << a->noise() << endl;

a.reset(new Dog("Satchel"));

cout << a->noise() << endl;

 Prints:
Bucky says meow

Satchel says woof

33Version 1.2 - March 17, 2008

 vector<T> reallocation conceptually involves
copying Ts into the new memory block and
destroying Ts from the old memory block

 Expensive when T is an STL container, etc.

 VC8 detected when T was an STL container, and
swapped from the old into the new memory block

 STL containers have O(1) nofail swaps

 VC9 TR1 extends this to all TR1 types with swap()

 All sane implementations of shared_ptr<T>::swap()
never modify the reference counts

Version 1.2 - March 17, 2008 34

 shared_ptr has both member and free swap()

 Just like STL containers

 swap() is intended to be implemented efficiently

 In VC9 TR1, it is implemented efficiently

 "Efficient" means not modifying the refcounts

 This is GOOD:
shared_ptr<string> a(new string("meow")); // meow: 1

shared_ptr<string> b(new string("purr")); // purr: 1

a.swap(b); // meow: 1, purr: 1

swap(a, b); // meow: 1, purr: 1

35Version 1.2 - March 17, 2008

 Behold SLOWTROCITY:
shared_ptr<string> a(new string("meow")); // meow: 1

shared_ptr<string> b(new string("purr")); // purr: 1

{

shared_ptr<string> t(a); // ++meow: 2

a = b; // --meow: 1, ++purr: 2

b = t; // ++meow: 2, --purr: 1

} // --meow: 1

 This unnecessarily modifies the refcounts 6 times
 Even worse, this dereferences pointers 6 times

 Even worse, this uses interlocked operations 6 times

 Solution: Just use swap()

36Version 1.2 - March 17, 2008

 Correct:
shared_ptr<int> owning(new int(47));

int * raw = owning.get();

 Incorrect:
shared_ptr<int> owning(new int(47));

int * raw = owning;

 Compiler error (after substitution):
error C2440: 'initializing' : cannot convert from

'std::tr1::shared_ptr<int>' to 'int *'

No user-defined-conversion operator available
that can perform this conversion, or the operator
cannot be called

37Version 1.2 - March 17, 2008

 Which statements contain LEAKTROCITY?
f1(shared_ptr<Foo>(new Foo(args)));

f2(shared_ptr<Foo>(new Foo(args)), g());

f3(shared_ptr<Foo>(new Foo(args)),

shared_ptr<Bar>(new Bar(args)));

 Solution: Give each shared_ptr a name
shared_ptr<Foo> foo(new Foo(args));

shared_ptr<Bar> bar(new Bar(args));

f1(foo);

f2(foo, g());

f3(foo, bar);

38Version 1.2 - March 17, 2008

void foo() {

shared_ptr<int> sp(new int(1729));

int * raw = sp.get();

delete raw;

}

 Result: DOUBLE DELETION

 Unlike auto_ptr, shared_ptr has no
release() member function

 get() returns a non-owning raw pointer

39Version 1.2 - March 17, 2008

struct Ansible {

shared_ptr<Ansible> get_shared() {

shared_ptr<Ansible> ret(this);

return ret;

}

};

int main() {

shared_ptr<Ansible> a(new Ansible);

Ansible& r = *a;

shared_ptr<Ansible> b = r.get_shared();

}

 Result: DOUBLE DELETION

40Version 1.2 - March 17, 2008

struct Ansible

: public enable_shared_from_this<Ansible> { };

int main() {

shared_ptr<Ansible> a(new Ansible);

Ansible& r = *a;

shared_ptr<Ansible> b = r.shared_from_this();

}

 a and b share ownership, as if:
shared_ptr<Ansible> b = a;

41Version 1.2 - March 17, 2008

shared_ptr<int> a(new int(2161));

shared_ptr<const int> b(a);

shared_ptr<int> c(const_cast<int *>(b.get()));

 Result: DOUBLE DELETION

 Solution: Use const_pointer_cast
shared_ptr<int> c(const_pointer_cast<int>(b));

 static_pointer_cast,
dynamic_pointer_cast, and
const_pointer_cast exist for correctness, not
convenience

42Version 1.2 - March 17, 2008

void observe(const weak_ptr<int>& wp) {

shared_ptr<int> t = wp.lock();

cout << (t ? *t : 2010) << endl;

}

weak_ptr<int> wp;

{

shared_ptr<int> sp(new int(1969));

wp = sp;

observe(wp);

}

observe(wp);

 Prints:
1969

2010

43Version 1.2 - March 17, 2008

 Read: Any operation that can be performed to a const
shared_ptr (copying, dereferencing, etc.)

 Write: Any operation that cannot be performed to a
const shared_ptr (assigning, resetting, swapping,
etc.)

 Destruction counts as a write
 Multiple threads can simultaneously read a single

shared_ptr object
 Multiple threads can simultaneously read/write

different shared_ptr objects
 Even when the objects are copies that share ownership

 Anything else triggers UNDEFINED BEHAVIOR
 Both VC9 TR1 and Boost provide these guarantees

44Version 1.2 - March 17, 2008

 shared_ptr's ctor and reset() can take an
additional "deleter" argument

 A deleter is a functor that will be called with the
stored raw pointer to release the owned object

 Simplest example: free()

 The deleter's actual type is forgotten

 As if through inheritance

 The deleter stays with the owned object

 NOT with the shared_ptr

45Version 1.2 - March 17, 2008

 Allocator support is a C++0x feature (not in TR1)
 Implemented by VC9 TR1 and Boost 1.35

 shared_ptr<T> gains a three-arg ctor and reset()
 Taking (T *, Deleter, Allocator)

 The third argument:
 Must be an STL allocator (20.1.5 lists the requirements)
 Will be rebound (you can pass YourAlloc<int>)
 Will be used to allocate/deallocate the reference count

 The allocator's actual type is forgotten
 As if through inheritance

 The allocator stays with the owned object
 NOT with the shared_ptr

46Version 1.2 - March 17, 2008

 shared_ptr and weak_ptr contain two raw pointers:
 Pointer to owned object (used for dereferencing)
 Pointer to _Ref_count_base

 _Ref_count_base contains:
 Pointer to owned object (used for deleting)
 32-bit strong refcount (# of shared_ptrs)
 32-bit weak refcount (# of weak_ptrs + 1 for all shared_ptrs)

 When the strong refcount falls to zero:
 _Ref_count deletes the owned object
 _Ref_count_d uses its stored deleter to nuke the owned object
 Both decrement the weak refcount

 When the weak refcount falls to zero:
 _Ref_count deletes itself
 _Ref_count_d uses its stored allocator to nuke itself

 Takeaways:
 shared_ptr is reasonably small
 Dereferencing a shared_ptr involves ZERO OVERHEAD

47Version 1.2 - March 17, 2008

 Powered by variadic templates and rvalue references:
template <class T, class... Args>

shared_ptr<T> make_shared(Args&&... args);

 Convenient!
shared_ptr<LongTypeName> p(new LongTypeName(stuff));

// Becomes:

auto p(make_shared<LongTypeName>(stuff));

 Safe!

 Fixes the classic pitfall of shared_ptr temporaries

 FAST! Say goodbye to intrusive refcounting!

 Stores the object and its refcount in the same memory block

Version 1.2 - March 17, 2008 48

 Destructors encapsulate resource release

 Destructors are resource agnostic
 Memory, files, sockets, locks, textures, etc.

 Destructors are executed deterministically

 STL containers enabled "one owning many"

 shared_ptr enables "many owning one"

Object Category Owned By Their Destroyed When

Automatic Block Control Leaves Block

Data Members Parent Parent Dies

Elements Container Container Dies

Dynamically Allocated shared_ptrs All shared_ptrs Die

49Version 1.2 - March 17, 2008

 For more information, see:

 The TR1 draft: tinyurl.com/36lwqe

 The C++ Standard Library Extensions: A Tutorial And
Reference by Pete Becker: tinyurl.com/27jv8n

 Improving shared_ptr For C++0x, Revision 2:
tinyurl.com/2dlw3v

 Allocator Support, Aliasing Support, Object Creation, and
Move Support were voted into the C++0x Working Paper

 Improving shared_ptr For C++0x, Revision 1:
tinyurl.com/36cty7

 Atomic Access and Cycle Collection are still planned

50Version 1.2 - March 17, 2008

