
Or: How I Learned To Stop Worrying

And Love Resource Management

Stephan T. Lavavej
Visual C++ Libraries Developer

1Version 1.2 - March 17, 2008

 Boost Components

 shared_ptr (and weak_ptr)

 mem_fn(), bind(), and function

 regex

 <random>

 "Containers": tuple, array, unordered_set (etc.)

 <type_traits>

 reference_wrapper

 C99 Compatibility (<cstdint>, etc.)

 Special Math Functions (riemann_zeta(), etc.)

2Version 1.2 - March 17, 2008

 Effective C++, Third Edition (2005) by Scott Meyers:

 "shared_ptr may be the most widely useful
component in TR1."

 C++ Coding Standards (2005) by Herb Sutter and
Andrei Alexandrescu:

 "Store only values and smart pointers in
containers. To this we add: If you use [Boost] and
[C++TR104] for nothing else, use them for
shared_ptr."

3Version 1.2 - March 17, 2008

 A templated...

 non-intrusive...

 deterministically reference-counted...

 smart pointer...

 (to a single object)...

 that works with polymorphic types...

 incomplete types...

 and STL containers (sequence and associative)!

4Version 1.2 - March 17, 2008

 Generalizing over types without forgetting types

 shared_ptr<T>

 "shared pointer to T"

 shared_ptr<const T>

 "shared pointer to const T"

 const shared_ptr<const T>

 "const shared pointer to const T"

 "Look, Mom! No backwards reading!"

5Version 1.2 - March 17, 2008

 You can instantiate shared_ptr<T>without
modifying the definition of T

 (That is, the reference count is not embedded)

 Huge usability benefit for minimal perf cost

 Works with built-in types: shared_ptr<int>

 You can begin using shared_ptr in your codebase
without having to modify your existing types

 You can stop using shared_ptr for a type without
having to rip machinery out of it

 A type can be sometimes held by shared_ptr and
sometimes contained by another type

6Version 1.2 - March 17, 2008

 Deterministic

 shared_ptrs collectively share ownership of an object

 When the last shared_ptr dies, the object dies...

 Immediately!

 Reference-Counted

 Directed acyclic graphs of shared_ptrs to objects
containing shared_ptrs to other objects... are OKAY

 Cycles of shared_ptrs are LEAKTROCITY

 Someone else has to ultimately own you

 You can't own yourself!

7Version 1.2 - March 17, 2008

 Smart
 Unlike auto_ptr, which was a stupid smart pointer

 Sane copy constructor and copy assignment operator

 Behaves like an ordinary value type

 Pass and return by value and by reference as usual

 Plays nice with const

 Pointer
 Overloads operator*() and operator->()

 Conversion function to unspecified-bool-type

 if (sp) will compile, sp * 5 will not compile

 No jagged metal edges!

8Version 1.2 - March 17, 2008

 A single object, not an array!
 If you new up an array and hand it to a shared_ptr:
 It will compile

 It will trigger UNDEFINED BEHAVIOR

 Which might mean LEAKTROCITY or CRASHTROCITY

 If you need...
 a container: vector

 a shared container: shared_ptr<vector<T> >

 less overhead: shared_array (in Boost, but not TR1)

 or perhaps: shared_ptr<array<T, N> > (in TR1)

 Custom deleters are insufficient (no op[])

9Version 1.2 - March 17, 2008

 shared_ptr<Derived> is convertible to
shared_ptr<Base>

 Works fine, doesn't screw up the reference count

 Need to convert back?
 static_pointer_cast<Derived>(spBase)

 dynamic_pointer_cast<Derived>(spBase)

 While we're at it...
 const_pointer_cast<T>(spConstT)

 None of these throw exceptions!

 There is no reinterpret_pointer_cast

 Note: shared_ptr itself is not polymorphic

10Version 1.2 - March 17, 2008

 struct X;

 void fxn(const shared_ptr<X>& p);

 However, X must be complete by the time that you
instantiate certain member functions of
shared_ptr<X>, such as its constructor from X *

 Reason: If the constructor fails (e.g. to allocate
memory for a reference count), it must delete the X
before throwing, and deletion requires complete
types in general

11Version 1.2 - March 17, 2008

 auto_ptr is inherently an enemy of the STL
 The STL loves ordinary value types

 auto_ptr does not behave like an ordinary value type

 Whoever wins, we lose

 shared_ptr is the STL's best friend
 shared_ptr behaves like an ordinary value type

 In fact, shared_ptr wraps non-values like noncopyable
and polymorphic types in value's clothing

 vector<shared_ptr<Socket> >

 vector<shared_ptr<Base> >

 Comes with operator<() for use in sets and maps

12Version 1.2 - March 17, 2008

 Policy Customizable

 Loki smart pointers are extremely customizable

 Ownership: refcount, reflink, destructive, etc.

 Implicit conversion to raw pointer: allow, disallow

 And so forth

 Policies are encoded in the smart pointer's type,
preventing interoperability (sometimes, but not always,
solvable with ninja template heroics)

 shared_ptr chooses good policies and bakes them in

 Deleters and allocators are customizable, as they don't
affect the type

13Version 1.2 - March 17, 2008

 Containers of shared_ptr
 vector<shared_ptr<NoncopyableResource> >

 vector<shared_ptr<PolymorphicBase> >

 Any other STL/TR1 containers, especially caches:
 map<Key, shared_ptr<NoncopyableResource> >

 Passing around copyable but "heavy" objects
efficiently (a simple version of move semantics)

 Exception safety, superseding auto_ptr
 Holding dynamically allocated objects at local scope

 Holding multiple dynamically allocated objects as
members (what does this mean? See next slide...)

14Version 1.2 - March 17, 2008

 Behold LEAKTROCITY:
Foo::Foo() : m_p(0), m_q(0) {

m_p = new X;

m_q = new Y;

}

Foo::~Foo() {

delete m_p;

delete m_q;

}

 shared_ptr FIXES the leak:
Foo::Foo() : m_sp(new X), m_sq(new Y) { }

// Implicitly defined dtor is OK for these members

15Version 1.2 - March 17, 2008

 Guidelines:
 All occurrences of new[]/delete[] should already have been

replaced with vector

 All occurrences of new should immediately be given to a
named shared_ptr

 All occurrences of delete should vanish

 Exceptions:
 When implementing custom data structures like trees that

can't be composed from the STL and TR1

 When performance is absolutely critical

 Manual resource management is extremely difficult to
do safely; consider it to be a last resort

16Version 1.2 - March 17, 2008

shared_ptr<string> sp(new string("meow"));

cout << *sp << endl;

cout << sp->size() << endl;

 Prints:
meow

4

 Each new object is immediately given to a
shared_ptr

 Each delete statement vanishes from the source

17Version 1.2 - March 17, 2008

shared_ptr<string> sp = new string("meow");

 Compiler error (after substitution):
error C2440: 'initializing' : cannot convert from

'std::string *' to 'std::tr1::shared_ptr<std::string>'

Constructor for class 'std::tr1::shared_ptr<std::string>'
is declared 'explicit'

 Direct-initialization can use an explicit ctor

 Copy-initialization performs conversion: explicit
ctors are unavailable

 shared_ptr acquires ownership explicitly

18Version 1.2 - March 17, 2008

shared_ptr<int> a;

shared_ptr<int> b(new int(137));

cout << (a ? "a" : "X") << endl;

if (b) {

cout << "b" << endl;

} else {

cout << "Y" << endl;

}

 Prints:
X

b

 Also: if (!sp), if (sp && blah), if (sp || blah)

19Version 1.2 - March 17, 2008

 auto_ptr: Not directly testable. Instead, you
must test if (ap.get())

 auto_ptr is deprecated in C++0x!

 unique_ptr: Has a conversion function to
unspecified-bool-type just like shared_ptr

 unique_ptr is the C++0x replacement for auto_ptr
(not part of TR1)

 weak_ptr: Not directly testable. Instead, you
must test if (!wp.expired())

 weak_ptr usage is covered later in this presentation

20Version 1.2 - March 17, 2008

shared_ptr<int> foo(int n) {

shared_ptr<int> r(new int(n));

*r += 5;

return r;

}

int main() {

shared_ptr<int> p = foo(3);

cout << *p << endl;

}

 Prints:
8

21Version 1.2 - March 17, 2008

shared_ptr<int> a(new int(1));

shared_ptr<int> b = a;

*a += 6;

cout << *a << ", " << *b << endl;

a.reset();

cout << "a: " << (a ? "owns" : "empty") << endl;

cout << "b: " << (b ? "owns" : "empty") << endl;

cout << *b << endl;

 Prints:
7, 7

a: empty

b: owns

7

22Version 1.2 - March 17, 2008

shared_ptr<int> frob(new int(100));

shared_ptr<const int> look = frob;

cout << *look << endl;

*frob /= 2;

cout << *look << endl;

// *look /= 2;

 Prints:
100

50

 Uncomment the last line to get this compiler error:
error C3892: 'look' : you cannot assign to a variable

that is const

23Version 1.2 - March 17, 2008

 cats.txt:
Abyssinian
Balinese
Chesire
Devon Rex

 dogs.txt:
Alsatian
Beagle
Collie

 people.txt:
Alan
Bjarne
Charles
Donald
Edsger

24Version 1.2 - March 17, 2008

queue<shared_ptr<ifstream> > q;

for (string s; getline(cin, s);) {
shared_ptr<ifstream> p(new ifstream(s.c_str()));
q.push(p);

}

while (!q.empty()) {
string s;

if (getline(*q.front(), s)) {
cout << s << endl;
q.push(q.front());

}

q.pop();
}

25Version 1.2 - March 17, 2008

cats.txt
dogs.txt
people.txt
^Z
Abyssinian
Alsatian
Alan
Balinese
Beagle
Bjarne
Chesire
Collie
Charles
Devon Rex
Donald
Edsger

26Version 1.2 - March 17, 2008

class Animal {

public:

explicit Animal(const string& name) : m_name(name) { }

string noise() const {

return m_name + " says " + noise_impl();

}

virtual ~Animal() { }

private:

Animal(const Animal&);

Animal& operator=(const Animal&);

virtual string noise_impl() const = 0;

string m_name;

};

27Version 1.2 - March 17, 2008

class Cat : public Animal {

public: explicit Cat(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "meow"; }

};

class Dog : public Animal {

public: explicit Dog(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "woof"; }

};

class Pig : public Animal {

public: explicit Pig(const string& name) : Animal(name) { }

private: virtual string noise_impl() const { return "oink"; }

};

28Version 1.2 - March 17, 2008

vector<shared_ptr<Animal> > v;

shared_ptr<Cat> c(new Cat("Garfield"));

shared_ptr<Dog> d(new Dog("Odie"));

shared_ptr<Pig> p(new Pig("Orson"));

v.push_back(c);

v.push_back(d);

v.push_back(p);

transform(v.begin(), v.end(),

ostream_iterator<string>(cout, "\n"),

mem_fn(&Animal::noise));

29Version 1.2 - March 17, 2008

Garfield says meow

Odie says woof

Orson says oink

30Version 1.2 - March 17, 2008

shared_ptr<Cat> p(new Cat("Peppermint"));

shared_ptr<Cat> c;

shared_ptr<Animal> a;

c = p;

a = p;

cout << c->noise() << endl;

cout << a->noise() << endl;

 Prints:
Peppermint says meow

Peppermint says meow

31Version 1.2 - March 17, 2008

shared_ptr<Cat> p(new Cat("Peppermint"));

shared_ptr<Animal> a = p;

cout << (p == a ? "same" : "different") << endl;

 Prints:
same

32Version 1.2 - March 17, 2008

shared_ptr<Animal> a(new Cat("Bucky"));

cout << a->noise() << endl;

a.reset(new Dog("Satchel"));

cout << a->noise() << endl;

 Prints:
Bucky says meow

Satchel says woof

33Version 1.2 - March 17, 2008

 vector<T> reallocation conceptually involves
copying Ts into the new memory block and
destroying Ts from the old memory block

 Expensive when T is an STL container, etc.

 VC8 detected when T was an STL container, and
swapped from the old into the new memory block

 STL containers have O(1) nofail swaps

 VC9 TR1 extends this to all TR1 types with swap()

 All sane implementations of shared_ptr<T>::swap()
never modify the reference counts

Version 1.2 - March 17, 2008 34

 shared_ptr has both member and free swap()

 Just like STL containers

 swap() is intended to be implemented efficiently

 In VC9 TR1, it is implemented efficiently

 "Efficient" means not modifying the refcounts

 This is GOOD:
shared_ptr<string> a(new string("meow")); // meow: 1

shared_ptr<string> b(new string("purr")); // purr: 1

a.swap(b); // meow: 1, purr: 1

swap(a, b); // meow: 1, purr: 1

35Version 1.2 - March 17, 2008

 Behold SLOWTROCITY:
shared_ptr<string> a(new string("meow")); // meow: 1

shared_ptr<string> b(new string("purr")); // purr: 1

{

shared_ptr<string> t(a); // ++meow: 2

a = b; // --meow: 1, ++purr: 2

b = t; // ++meow: 2, --purr: 1

} // --meow: 1

 This unnecessarily modifies the refcounts 6 times
 Even worse, this dereferences pointers 6 times

 Even worse, this uses interlocked operations 6 times

 Solution: Just use swap()

36Version 1.2 - March 17, 2008

 Correct:
shared_ptr<int> owning(new int(47));

int * raw = owning.get();

 Incorrect:
shared_ptr<int> owning(new int(47));

int * raw = owning;

 Compiler error (after substitution):
error C2440: 'initializing' : cannot convert from

'std::tr1::shared_ptr<int>' to 'int *'

No user-defined-conversion operator available
that can perform this conversion, or the operator
cannot be called

37Version 1.2 - March 17, 2008

 Which statements contain LEAKTROCITY?
f1(shared_ptr<Foo>(new Foo(args)));

f2(shared_ptr<Foo>(new Foo(args)), g());

f3(shared_ptr<Foo>(new Foo(args)),

shared_ptr<Bar>(new Bar(args)));

 Solution: Give each shared_ptr a name
shared_ptr<Foo> foo(new Foo(args));

shared_ptr<Bar> bar(new Bar(args));

f1(foo);

f2(foo, g());

f3(foo, bar);

38Version 1.2 - March 17, 2008

void foo() {

shared_ptr<int> sp(new int(1729));

int * raw = sp.get();

delete raw;

}

 Result: DOUBLE DELETION

 Unlike auto_ptr, shared_ptr has no
release() member function

 get() returns a non-owning raw pointer

39Version 1.2 - March 17, 2008

struct Ansible {

shared_ptr<Ansible> get_shared() {

shared_ptr<Ansible> ret(this);

return ret;

}

};

int main() {

shared_ptr<Ansible> a(new Ansible);

Ansible& r = *a;

shared_ptr<Ansible> b = r.get_shared();

}

 Result: DOUBLE DELETION

40Version 1.2 - March 17, 2008

struct Ansible

: public enable_shared_from_this<Ansible> { };

int main() {

shared_ptr<Ansible> a(new Ansible);

Ansible& r = *a;

shared_ptr<Ansible> b = r.shared_from_this();

}

 a and b share ownership, as if:
shared_ptr<Ansible> b = a;

41Version 1.2 - March 17, 2008

shared_ptr<int> a(new int(2161));

shared_ptr<const int> b(a);

shared_ptr<int> c(const_cast<int *>(b.get()));

 Result: DOUBLE DELETION

 Solution: Use const_pointer_cast
shared_ptr<int> c(const_pointer_cast<int>(b));

 static_pointer_cast,
dynamic_pointer_cast, and
const_pointer_cast exist for correctness, not
convenience

42Version 1.2 - March 17, 2008

void observe(const weak_ptr<int>& wp) {

shared_ptr<int> t = wp.lock();

cout << (t ? *t : 2010) << endl;

}

weak_ptr<int> wp;

{

shared_ptr<int> sp(new int(1969));

wp = sp;

observe(wp);

}

observe(wp);

 Prints:
1969

2010

43Version 1.2 - March 17, 2008

 Read: Any operation that can be performed to a const
shared_ptr (copying, dereferencing, etc.)

 Write: Any operation that cannot be performed to a
const shared_ptr (assigning, resetting, swapping,
etc.)

 Destruction counts as a write
 Multiple threads can simultaneously read a single

shared_ptr object
 Multiple threads can simultaneously read/write

different shared_ptr objects
 Even when the objects are copies that share ownership

 Anything else triggers UNDEFINED BEHAVIOR
 Both VC9 TR1 and Boost provide these guarantees

44Version 1.2 - March 17, 2008

 shared_ptr's ctor and reset() can take an
additional "deleter" argument

 A deleter is a functor that will be called with the
stored raw pointer to release the owned object

 Simplest example: free()

 The deleter's actual type is forgotten

 As if through inheritance

 The deleter stays with the owned object

 NOT with the shared_ptr

45Version 1.2 - March 17, 2008

 Allocator support is a C++0x feature (not in TR1)
 Implemented by VC9 TR1 and Boost 1.35

 shared_ptr<T> gains a three-arg ctor and reset()
 Taking (T *, Deleter, Allocator)

 The third argument:
 Must be an STL allocator (20.1.5 lists the requirements)
 Will be rebound (you can pass YourAlloc<int>)
 Will be used to allocate/deallocate the reference count

 The allocator's actual type is forgotten
 As if through inheritance

 The allocator stays with the owned object
 NOT with the shared_ptr

46Version 1.2 - March 17, 2008

 shared_ptr and weak_ptr contain two raw pointers:
 Pointer to owned object (used for dereferencing)
 Pointer to _Ref_count_base

 _Ref_count_base contains:
 Pointer to owned object (used for deleting)
 32-bit strong refcount (# of shared_ptrs)
 32-bit weak refcount (# of weak_ptrs + 1 for all shared_ptrs)

 When the strong refcount falls to zero:
 _Ref_count deletes the owned object
 _Ref_count_d uses its stored deleter to nuke the owned object
 Both decrement the weak refcount

 When the weak refcount falls to zero:
 _Ref_count deletes itself
 _Ref_count_d uses its stored allocator to nuke itself

 Takeaways:
 shared_ptr is reasonably small
 Dereferencing a shared_ptr involves ZERO OVERHEAD

47Version 1.2 - March 17, 2008

 Powered by variadic templates and rvalue references:
template <class T, class... Args>

shared_ptr<T> make_shared(Args&&... args);

 Convenient!
shared_ptr<LongTypeName> p(new LongTypeName(stuff));

// Becomes:

auto p(make_shared<LongTypeName>(stuff));

 Safe!

 Fixes the classic pitfall of shared_ptr temporaries

 FAST! Say goodbye to intrusive refcounting!

 Stores the object and its refcount in the same memory block

Version 1.2 - March 17, 2008 48

 Destructors encapsulate resource release

 Destructors are resource agnostic
 Memory, files, sockets, locks, textures, etc.

 Destructors are executed deterministically

 STL containers enabled "one owning many"

 shared_ptr enables "many owning one"

Object Category Owned By Their Destroyed When

Automatic Block Control Leaves Block

Data Members Parent Parent Dies

Elements Container Container Dies

Dynamically Allocated shared_ptrs All shared_ptrs Die

49Version 1.2 - March 17, 2008

 For more information, see:

 The TR1 draft: tinyurl.com/36lwqe

 The C++ Standard Library Extensions: A Tutorial And
Reference by Pete Becker: tinyurl.com/27jv8n

 Improving shared_ptr For C++0x, Revision 2:
tinyurl.com/2dlw3v

 Allocator Support, Aliasing Support, Object Creation, and
Move Support were voted into the C++0x Working Paper

 Improving shared_ptr For C++0x, Revision 1:
tinyurl.com/36cty7

 Atomic Access and Cycle Collection are still planned

50Version 1.2 - March 17, 2008

