aoLr

top Worrying

r: How | Learned
\nd Love Resource Management

StephanT. Lavavej
Visual C++ Libraries Developer

Version 1.2 - March 17, 2008

What Does TR1 Contain?

"ehmw§ﬁtuple,array,unordered_set(eu;)
type _traits»>

Fe'sjence_wrapper

s Cgg Compatibility (<cstdint>, etc.)

@ Special Math Functions (riemann_zeta(), etc.)

Version 1.2 - March 17, 2008

What Are The Experts Saying?

\ndrei Alexandrescu:

= "Store only values and smart pointers in
containers. To this we add: If you use [Boost] and
[C++TR204] for nothing else, use them for
shared ptr."

Version 1.2 - March 17, 2008

'hat Is shared ptr?

=]

A templated..

=]

non-intrusive...
ce-counted...

=]

. pointer...

=]

gle object)...

(=]

that works with polymorphic types...
nlete types...
and STL containers (sequence and associative)!

Version 1.2 - March 17, 2008

"Look, Mom! No backwards reading!"

Version 1.2 - March 17, 2008

shared ptr Is Non-Intrusive

YOou can instantiate shared_ptr<T> without
modifying the definition of T

5 (That is, the reference count is not embedded)
Huge usability benefit for minimal perf cost
Works with built-in types: shared_ptr<int>

You can begin using shared_ptr in your codebase
without having to modify your existing types

= You can stop using shared_ptr for a type without
having to rip machinery out of it

= A type can be sometimes held by shared _ptr and
sometimes contained by another type

Version 1.2 - March 17, 2008

red_ptr Is Deterministically
Reference-Counted

=]

containing shared_ptrsto other?)bjects... are OKAY

m Cycles of shared_ptrsare

= Someone else has to ultimately own you
= You can't own yourself!

Version 1.2 - March 17, 2008

rloads operator* () and operator->()
= Conversion function to unspecified-bool-type

m if (sp) will compile, sp * 5 will not compile
No jagged metal edges!

Version 1.2 - March 17, 2008

not an array!
ray and hand it to a shared_ptr:

t will compile
5 |t will trigger
o]g

less overhead: shared_array (in Boost, but not TR1)
s or perhaps: shared ptr<array<T, N> > (inTRz)

m Custom deleters are insufficient (no op[])

Version 1.2 - March 17, 2008

shared ptr Works With
Polymorphic Types

= dynamic_pointer_cast<Derived>(spBase)
While we're at it...

) onst_pointer cast<T>(spConstT)

= None of these throw exceptions!

m Thereisnoreinterpret pointer cast

= Note: shared ptr itself is not polymorphic

Version 1.2 - March 17, 2008

10

S e
shared ptr Works With
Incomplete Types

"Reason: If the constructor fails (e.g. to allocate
memory for a reference count), it must delete the X
before throwing, and deletion requires complete
types in general

Version 1.2 - March 17, 2008 11

-_—

snared ptr Works With Containers

= aur I‘J__,o Cr IS nherently an enemy of the STL

ared_ptris the STL's best friend
hared ptr behaves like an ordinary value type

In fact, shared_ptr wraps non-values like noncopyable
and polymorphic types in value's clothing

m vector<shared ptr<Socket> >
s vector<shared ptr<Base> >
» Comes with operator< () foruse in sets and maps

Version 1.2 - March 17, 2008

12

shared ptr s Not...

Policy Customizable

= shared_ptr chooses good policies and bakes them in

= Deleters and allocators are customizable, as they don't
affect the type

Version 1.2 - March 17, 2008

13

shared_ptr Use Cases (1/3)

Containers of shared_ptr

- vector ared_ptr<NoncopyableResource> >

N

= vector<sharedzgfr<PolymorphicBase> >

Exception safety, superseding auto_ptr
= Holding dynamically allocated objects at local scope

» Holding multiple dynamically allocated objects as
members (what does this mean? See next slide...)

Version 1.2 - March 17, 2008 14

» e

_ptr FIXES the leak:

0::Foo() : m_sp(new X), m sqg(new Y) { }
// Imp11c1t1y defined dtor 1is OK for these members

Version 1.2 - March 17, 2008

15

shared_ptr Use Cases (3/3)

Guiaelines:
= All PECUITENECEAD ew[]/delete[] should already have been

When implementing custom data structures like trees that
an't be composed from the STL and TR1

= When performance is absolutely critical

@ Manual resource management is extremely difficult to
do safely; consider it to be a last resort

Version 1.2 - March 17, 2008 16

Version 1.2 - March 17, 2008

17

3asic shared ptr Error

initialization performs conversion: explicit
ctors are unavailable

'@ shared_ptr acquires ownership explicitly

Version 1.2 - March 17, 2008

18

_ptr In Conditionals

Sharea_ptr<int> a
shared_ptr<int> b(new int(137));

cout << (a ? "a" : "X") << endl;

Also: if (!sp), if (sp & blah), if (sp || blah)

Version 1.2 - March 17, 2008

19

S e
Using Other Smart Pointers
In Conditionals

AU’ rJ__p tr: Not directly testable. Instead, you

\ » ot part_ of TR1)

- =@ weak_ptr: Not directly testable. Instead, you
musttest if (!wp.expired())

= weak ptr usage is covered later in this presentation

Version 1.2 - March 17, 2008

20

Version 1.2 - March 17, 2008

21

shared_ptr<int>
Shared_ptr<int>
‘a += 6;

cout << *a <K << *b << endl;

<< (a ? "owns empty") << endl
<< (b ? "owns" : "empty") << endl
cout << * < endl;

= Prints:

Version 1.2 - March 17, 2008

)

J

22

Sshared_ptr<const int> look = frob;
cout << *look << endl;

“trob /=

cout << *1i

// *look

= Prints:

100

m Uncomment the last line to get this compiler error:

error C3892: 'look' : you cannot assign to a variable
that is const

Version 1.2 - March 17, 2008

23

o Noncopyable (1/3)

Version 1.2 - March 17, 2008

24

gueue<snared_ptr<

ror (string s; getli
shared_ptr% tream> p(new ifstream(s.c_str()));

q.push(p);

tline(*qg.front(), s)) {
t << s << endl;

sh(q.front());

- g.pop();

Version 1.2 - March 17, 2008 25

OO

)y () O

o Noncopyable (3/3)

Version 1.2 - March 17, 2008

26

HP'J

_____ tring& name) : m_name(name) { }

+ noise _impl();

virtual string noise_impl() const = 0;
string m_name;

Version 1.2 - March 17, 2008

27

;yblic: explicit Pig(const string& name) : Animal(name) { }

private: virtual string noise impl() const { return "oink"; }

Iy

Version 1.2 - March 17, 2008

28

red _ptrTo Polymorphic (3/4)

-

tor<shared_ptr<Animal> > v;

hared_ptr<Cat> c(new Cat("Garfield"));
n*ﬁJ_prfsJQJ‘ d(new Dog("0die"));
Jerﬂd_gg 71g> p(new Pig("Orson"));

\/

Vie
V.pushn_
V.pushn_

s

tran

form(v.begin(), v.end(),
ostream iterator<string>(cout, "\n"),

mem_fn(&Animal: :noise));

Version 1.2 - March 17, 2008

29

5dyS meow
"\ .‘ ~ - - \ - \ £
Odle says wooT

Orson says o1lnk

To Polymorphic (4/4)

Version 1.2 - March 17, 2008

30

<< endl;
noise() << endl;

Version 1.2 - March 17, 2008

31

cout << (p

Prints:

Version 1.2 - March 17, 2008

32

Version 1.2 - March 17, 2008

33

shared ptr Benefits From
. VC's Swaptimization

5 vector<T> reallocation conceptually involves

8 detected when T was an STL container, and
apped from the old into the new memory block

] s STL containers have O(z1) nofail swaps

= VCgTR1 extends this to all TR1 types with swap ()

» All sane implementations of shared _ptr<T>::swap()
never modify the reference counts

Version 1.2 - March 17, 2008 34

shared_ptr<string> b(new string("purr")); // purr: 1
~a.swap(b); // meow: 1, purr: 1
swap(a, b); // meow: 1, purr: 1

Version 1.2 - March 17, 2008 35

S‘:v ping shared _ptr (2/2)

5 Behold =

shared_ptr<string> a(new string("meow")); // meow: 1
Shared ‘TPJStrl':* ?_ne, string("purr")); // purr: 1

shared ptr<string> t(a s // ++meow: 2

= b; // --meow: 1, ++purr: 2

= t; // ++meow: 2, --purr: 1

/ --meow: 1

"his unnecessarily modifies the refcounts 6 times
= Even worse, this dereferences pointers 6 times

= Even worse, this uses interlocked operations 6 times
@ Solution: Just use swap ()

Version 1.2 - March 17, 2008 36

“From shared ptr<T>

0: 'initializing' : cannot convert from
::trl::shared ptr<int>' to "int *'

No user-defined-conversion operator available
that can perform this conversion, or the operator
cannot be called

Version 1.2 - March 17, 2008

37

itfall: shared ptr Temporaries

= Which statements contain ?
F1(shared_ptr<Foo>(new Foo(args)));

f2(s hared_ptr<Foo>(new Foo(args)), g());
F3(share d ptr<Foo>(new Foo(args)),
hared_ptr<Bar>(new Bar(args)));

= Solution: Give each shared_ptr aname
shared_ptr<Foo> foo(new Foo(args));
hared _ptr<Bar> bar(new Bar(args));
f1(fo0);

f2(foo, g());
f3(foo, bar);

Version 1.2 - March 17, 2008

auto_ptr, shared_ptr hasno
2ase () member function

returns a non-owning raw pointer

Version 1.2 - March 17, 2008

39

r =N

sible> a(new Ansible);

Version 1.2 - March 17, 2008

40

(EFGI@)
shared. new Ansible);

le& r = *a;
ptr<Ansible> b = r.shared from this();

hare ownership, as if:
shared_ptr<Ansible> b = aj;

Version 1.2 - March 17, 2008

41

-

: Using Raw Pointer Casts
With shared ptr

~dynamic_pointer_ cast, and
const_pointer_ cast exist for correctness, not
convenience

Version 1.2 - March 17, 2008

/i)

vOo1ld observe(const w

shared_ptr<int> t

cout << (t ? *t

Version 1.2 - March 17, 2008

43

nared ptr Thread Safety

rite: Any operation that cannot be performed toa
const shared_ ptr (assigning, resetting, swapping,

Mu ‘iple_threads can simultaneously read/write
different shared_ptr objects

s Even when the objects are copies that share ownership
= Anything else triggers
@ BothVCgTR1and Boost provide these guarantees

Version 1.2 - March 17, 2008

bty

shared ptr Deleters

shared_ptr's ctor and reset () can take an

if through inheritance

The deleter stays with the owned object
_ with the shared ptr

Version 1.2 - March 17, 2008

45

S e
hared ptr Allocators

Allocator ._;Jr)ﬂ is a C++ox feature (not in TR1)

llocator's actual type is forgotten
: = Asif through inheritance

= The allocator stays with the owned object
_ with the shared_ptr

Version 1.2 - March 17, 2008 AS

_Ref_count deletes itself
= Ref count_dusesits stored allocator to nuke itself
@ Takeaways:

= shared_ptr isreasonably small
= Dereferencinga shared_ptr involves ZERO OVERHEAD

Version 1.2 - March 17, 2008

L9 R1 shared ptr Internals

47

C++oxmake shared()

class... Args>
e_shared(Args&&... args);

» Fixes the classic pitfall of shared_ptr temporaries

FAST! Say goodbye to intrusive refcounting!
= Stores the object and its refcount in the same memory block

Version 1.2 - March 17, 2008

48

shared ptr Completes
1he Resource Management Story

Destructors encapsulate resource release

Destructors are resource agnostic
= Memory, files, sockets, locks, textures, etc.

Destructors are executed deterministically
STL containers enabled "one owning many"
shared_ptr enables "many owning one"

Object Category Owned By Their Destroyed When
Automatic Block Control Leaves Block
Data Members Parent Parent Dies

Elements Container Container Dies

Dynamically Allocated shared_ptrs All shared_ptrs Die

Version 1.2 - March 17, 2008 49

8 Allocator Support, Aliasing Support, Object Creation, and
Vlove Support were voted into the C++ox Working Paper

= [mproving shared_ptr For C++0x, Revision 1:
tinyurl.com/36c¢cty7

o Atomic Access and Cycle Collection are still planned

Version 1.2 - March 17, 2008

50

