
C++ Memory Model

Don’t believe everything you read (from shared memory)

http://upload.wikimedia.org/wikipedia/commons/5/55/8-cell-simple.gif

The Plan

 Why multithreading is hard

 Warm-up example

 Sequential Consistency

 Races and fences

 The happens-before relation

 The DRF guarantee

 C++ memory model and atomics

Multithreading

From classical mechanics to quantum mechanics

http://upload.wikimedia.org/wikipedia/commons/7/7e/Double-slit_experiment_results_Tanamura_2.jpg

Single-Threaded Programs

 Execute one statement after another

 One memory access after another

 A read after a write returns the last-written value

 Execution is deterministic (like classical mechanics)

 Given the same inputs, the program will generate the same

outputs—every time!

 Reasoning about programs relatively easy

 Testing and debugging relatively easy

 Execute using a representative subset of possible inputs

 Bugs easily reproducible

Multi-threaded Programs

 Statements executed by threads are interleaved

 Exponential number of possible interleavings

 Memory accesses interleaved

 A read may return a value written by another thread

 Execution nondeterministic (like quantum mechanics)

 Same inputs but different interleavings may produce different

output

 Reasoning about programs (even short ones) difficult

 Testing and debugging extremely difficult

Memory Model

 Makes reasoning about multithreaded programs possible

(albeit not easy!)

 Tells the compiler what optimizations are not allowed

 Makes reasoning independent of the processor

 Gives multi-processor designers a set of requirements

 Java has one, C/C++ doesn’t

 Current C++

 If multithreaded programs work at all, they are not portable

between compilers/processors

 Vendor specific implementations (like volatile)

A “Simple” Example

The Infamous Double-Checked Locking Pattern

Single-threaded Singleton

 new Foo is executed only once

 Returned _foo is fully constructed

class SingletonFoo

{

private Foo _foo = null;

public Foo getFoo ()

{

if (_foo == null)

_foo = new Foo;

return _foo;

}

}

Multi-threaded Singleton

 Brute force approach: eliminate interleaving

 Only one thread at a time executes synchronized section

 About two orders of magnitude slower than single-threaded

version

class SingletonFoo

{

private Foo _foo = null;

public synchronized Foo getFoo ()

{

if (_foo == null)

_foo = new Foo;

return _foo;

}

}

Clever (but wrong) Optimization

class SingletonFoo {

private Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Clever (but wrong) Optimization

 Subtle problem: relaxed memory model

 _foo appears non-null before construction finished

 Another thread picks up uninitialized object

class SingletonFoo {

private Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Volatile Solution

 Any modification to a volatile variable (conceptually)

forces all previous writes to memory

 The snag: we might have just killed our optimization

class SingletonFoo {

private volatile Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Multi-threading in C++

 volatile keyword has no multi-threaded meaning

 Some compilers cheat

 Might work on some processors

 C++ 0x will have a memory model

 Race-free programs appear sequentially consistent

 Java volatile implemented as atomic library

Sequential Consistency

The Grand Illusion

http://upload.wikimedia.org/wikipedia/commons/1/1e/Gradient-optical-illusion.svg

Uniprocessor

 Instructions are executed in program order

 Every read returns the value last written to that location

 However

 Compiler and processor are free to rearrange instructions

 Optimizing compilers move or eliminate code

 Reads and writes are buffered on a processor (memory access

costs hundreds of cycles)

 Optimizations must preserve the illusion

Multiprocessor Sequential Consistency

 Each thread/processor executes instructions in program

order

 Instructions performed by different processors are

arbitrarily interleaved

 Each instruction is atomic and instantaneous wrt. other

processors

 Conceptual switch connects one processor at a time to

memory

 This is not how the program is executed in reality!

 Compiler must enforce the illusion (even though modern

processors don’t) for a reasonable subset of programs.

Breakdown of Sequential Consistency

 Initially x = 0, r1 = 0, r2 = 0, ready = 0

 r1 and r2 thread local (registers)

 Can r1 == 1 and r2 == 0?

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Breakdown of Sequential Consistency

 Initially x = 0, r2 = 0, ready = 0

 r1 and r2 thread local (registers)

 Can r1 == 1 and r2 == 0?

 Yes, if processor/compiler reorders writes to x and ready

 Compiler and processor optimizations are the enemies of

sequential consistency

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Multithreaded Olympics

Races and fencing

Low-level Data Race

 Data conflict

 Two processors access the same memory location

 At least one access is a write

 Data race

 There is no intervening synchronization

 Data races on both x and ready
Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Bad Bad Programmer!

 Data races are bugs!

 Data races break sequential consistency

 Language doesn’t have to specify the behavior of buggy

programs

 Warnng: presence of data races be used to maliciously

attack a program

How to Beat Relaxed Memory Model into

Submission

 Each thread may see results of writes in different order

 If the order is important, the programmer must force it

 Memory fence (or barrier)—commit pending writes

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Processor 1 Processor 2

x = 43 fence

fence r1 = ready

ready = 1 if r1 == 1

fence fence

r2 = x

Happens Before

In the absence of simultaneity

Interleavings

 Without synchronization, no guarantee the reads will see

last-written values

 If ready and x volatile (the fences), the guarantee holds

 With synchronization, the write “x = 43” happens

before the read “r2 = x” in the second execution

Processor 1 Processor 2

x = 43

fence

ready = 1

fence fence

r1 = ready // 1

if r1 == 1 // true

fence

r2 = x // 43

Happens Before Relation

 On the same processor, A happens before B if A is earlier

in the program order

 Between processors, happens-before defined by

synchronizing actions

 Write to a volatile variable happens before all subsequent

reads of that variable—in a particular execution

 Unlocking of a monitor happens before the subsequent locking

of the same monitor

 Happens-before is a transitive closure of program order

and synchronization order

DRF Guarantee

 A conflict is a race if there is at least one execution in

which one action doesn’t happen before another

 We want the language to guarantee the following

 Correctly synchronized programs (Data Race Free)

have sequentially consistent semantics

The C++ Memory Model

Do not write incorrect programs!

http://upload.wikimedia.org/wikipedia/en/4/41/Soles2.jpg

C++ Memory Model

 If a program is data race free, its execution is sequentially

consistent.

 Otherwise it’s undefined behavior

 Atomic library provides equivalents of Java “volatile”

Atomic

 In full version, load and store are templates

 CAS—atomic Compare And Swap

template <class T>

class atomic {

public:

atomic(T); // No ordering semantics, constructor not atomic.

void store(const T&);

T load();

bool cas(const T& old, const T& new_val);

T operator T() { return load<acquire>(); }

void operator=(const T& x) { return store<release>(x);

}

Atomic int and ptr

template <class T=int>

class atomic_int : public atomic<T> {

public:

atomic_int(T);

T fetch_add(T);

T fetch_and(T);

T fetch_or(T);

};

template <class T>

class atomic_ptr : public atomic<T> {

public:

atomic_ptr(T);

T fetch_and_add(ptr_diff_t);

};

Low-level Atomics

 Escape from sequential consistency

 Programmer may specify ordering constraints

 raw (or memory_model_relaxed): no constraints

 Sane programmers should never use those without

drawing a bull’s eye on their feet

enum ordering_constraint {raw, acquire, release, ordered};

template <ordering_constraint c>

void store(const T&);

// Compile-time error if c is neither raw nor release.

What Have We Learned?

 We want programs to behave in a sequentially-consistent

way so that we can reason about them

 For reasons of performance, we’ll settle for well-

synchronized programs behaving in a sequentially

consistent way

 Programs with data races are not well synchronized

 To understand data races we define synchronize-with and

happens-before relations

Bibliography

 Scott Meyers and Andrei Alexandrescu. C++ and The Perils of

Double-Checked Locking. Doctor Dobb’s Journal, Jul 2004.

 Java Memory Model,

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf

 C++ MM, http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm (this is a

revision of a revision of a revision…)

 Less formal explanation, http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html

 FAQ on C++ MM,

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

