
C++ Memory Model

Don’t believe everything you read (from shared memory)

http://upload.wikimedia.org/wikipedia/commons/5/55/8-cell-simple.gif

The Plan

 Why multithreading is hard

 Warm-up example

 Sequential Consistency

 Races and fences

 The happens-before relation

 The DRF guarantee

 C++ memory model and atomics

Multithreading

From classical mechanics to quantum mechanics

http://upload.wikimedia.org/wikipedia/commons/7/7e/Double-slit_experiment_results_Tanamura_2.jpg

Single-Threaded Programs

 Execute one statement after another

 One memory access after another

 A read after a write returns the last-written value

 Execution is deterministic (like classical mechanics)

 Given the same inputs, the program will generate the same

outputs—every time!

 Reasoning about programs relatively easy

 Testing and debugging relatively easy

 Execute using a representative subset of possible inputs

 Bugs easily reproducible

Multi-threaded Programs

 Statements executed by threads are interleaved

 Exponential number of possible interleavings

 Memory accesses interleaved

 A read may return a value written by another thread

 Execution nondeterministic (like quantum mechanics)

 Same inputs but different interleavings may produce different

output

 Reasoning about programs (even short ones) difficult

 Testing and debugging extremely difficult

Memory Model

 Makes reasoning about multithreaded programs possible

(albeit not easy!)

 Tells the compiler what optimizations are not allowed

 Makes reasoning independent of the processor

 Gives multi-processor designers a set of requirements

 Java has one, C/C++ doesn’t

 Current C++

 If multithreaded programs work at all, they are not portable

between compilers/processors

 Vendor specific implementations (like volatile)

A “Simple” Example

The Infamous Double-Checked Locking Pattern

Single-threaded Singleton

 new Foo is executed only once

 Returned _foo is fully constructed

class SingletonFoo

{

private Foo _foo = null;

public Foo getFoo ()

{

if (_foo == null)

_foo = new Foo;

return _foo;

}

}

Multi-threaded Singleton

 Brute force approach: eliminate interleaving

 Only one thread at a time executes synchronized section

 About two orders of magnitude slower than single-threaded

version

class SingletonFoo

{

private Foo _foo = null;

public synchronized Foo getFoo ()

{

if (_foo == null)

_foo = new Foo;

return _foo;

}

}

Clever (but wrong) Optimization

class SingletonFoo {

private Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Clever (but wrong) Optimization

 Subtle problem: relaxed memory model

 _foo appears non-null before construction finished

 Another thread picks up uninitialized object

class SingletonFoo {

private Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Volatile Solution

 Any modification to a volatile variable (conceptually)

forces all previous writes to memory

 The snag: we might have just killed our optimization

class SingletonFoo {

private volatile Foo _foo = null;

public Foo getFoo () {

if (_foo == null) {

synchronized (this) {

if (_foo == null)

_foo = new Foo;

}

}

return _foo;

}

}

Multi-threading in C++

 volatile keyword has no multi-threaded meaning

 Some compilers cheat

 Might work on some processors

 C++ 0x will have a memory model

 Race-free programs appear sequentially consistent

 Java volatile implemented as atomic library

Sequential Consistency

The Grand Illusion

http://upload.wikimedia.org/wikipedia/commons/1/1e/Gradient-optical-illusion.svg

Uniprocessor

 Instructions are executed in program order

 Every read returns the value last written to that location

 However

 Compiler and processor are free to rearrange instructions

 Optimizing compilers move or eliminate code

 Reads and writes are buffered on a processor (memory access

costs hundreds of cycles)

 Optimizations must preserve the illusion

Multiprocessor Sequential Consistency

 Each thread/processor executes instructions in program

order

 Instructions performed by different processors are

arbitrarily interleaved

 Each instruction is atomic and instantaneous wrt. other

processors

 Conceptual switch connects one processor at a time to

memory

 This is not how the program is executed in reality!

 Compiler must enforce the illusion (even though modern

processors don’t) for a reasonable subset of programs.

Breakdown of Sequential Consistency

 Initially x = 0, r1 = 0, r2 = 0, ready = 0

 r1 and r2 thread local (registers)

 Can r1 == 1 and r2 == 0?

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Breakdown of Sequential Consistency

 Initially x = 0, r2 = 0, ready = 0

 r1 and r2 thread local (registers)

 Can r1 == 1 and r2 == 0?

 Yes, if processor/compiler reorders writes to x and ready

 Compiler and processor optimizations are the enemies of

sequential consistency

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Multithreaded Olympics

Races and fencing

Low-level Data Race

 Data conflict

 Two processors access the same memory location

 At least one access is a write

 Data race

 There is no intervening synchronization

 Data races on both x and ready
Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Bad Bad Programmer!

 Data races are bugs!

 Data races break sequential consistency

 Language doesn’t have to specify the behavior of buggy

programs

 Warnng: presence of data races be used to maliciously

attack a program

How to Beat Relaxed Memory Model into

Submission

 Each thread may see results of writes in different order

 If the order is important, the programmer must force it

 Memory fence (or barrier)—commit pending writes

Processor 1 Processor 2

x = 43 r1 = ready

ready = 1 if r1 == 1

r2 = x

Processor 1 Processor 2

x = 43 fence

fence r1 = ready

ready = 1 if r1 == 1

fence fence

r2 = x

Happens Before

In the absence of simultaneity

Interleavings

 Without synchronization, no guarantee the reads will see

last-written values

 If ready and x volatile (the fences), the guarantee holds

 With synchronization, the write “x = 43” happens

before the read “r2 = x” in the second execution

Processor 1 Processor 2

x = 43

fence

ready = 1

fence fence

r1 = ready // 1

if r1 == 1 // true

fence

r2 = x // 43

Happens Before Relation

 On the same processor, A happens before B if A is earlier

in the program order

 Between processors, happens-before defined by

synchronizing actions

 Write to a volatile variable happens before all subsequent

reads of that variable—in a particular execution

 Unlocking of a monitor happens before the subsequent locking

of the same monitor

 Happens-before is a transitive closure of program order

and synchronization order

DRF Guarantee

 A conflict is a race if there is at least one execution in

which one action doesn’t happen before another

 We want the language to guarantee the following

 Correctly synchronized programs (Data Race Free)

have sequentially consistent semantics

The C++ Memory Model

Do not write incorrect programs!

http://upload.wikimedia.org/wikipedia/en/4/41/Soles2.jpg

C++ Memory Model

 If a program is data race free, its execution is sequentially

consistent.

 Otherwise it’s undefined behavior

 Atomic library provides equivalents of Java “volatile”

Atomic

 In full version, load and store are templates

 CAS—atomic Compare And Swap

template <class T>

class atomic {

public:

atomic(T); // No ordering semantics, constructor not atomic.

void store(const T&);

T load();

bool cas(const T& old, const T& new_val);

T operator T() { return load<acquire>(); }

void operator=(const T& x) { return store<release>(x);

}

Atomic int and ptr

template <class T=int>

class atomic_int : public atomic<T> {

public:

atomic_int(T);

T fetch_add(T);

T fetch_and(T);

T fetch_or(T);

};

template <class T>

class atomic_ptr : public atomic<T> {

public:

atomic_ptr(T);

T fetch_and_add(ptr_diff_t);

};

Low-level Atomics

 Escape from sequential consistency

 Programmer may specify ordering constraints

 raw (or memory_model_relaxed): no constraints

 Sane programmers should never use those without

drawing a bull’s eye on their feet

enum ordering_constraint {raw, acquire, release, ordered};

template <ordering_constraint c>

void store(const T&);

// Compile-time error if c is neither raw nor release.

What Have We Learned?

 We want programs to behave in a sequentially-consistent

way so that we can reason about them

 For reasons of performance, we’ll settle for well-

synchronized programs behaving in a sequentially

consistent way

 Programs with data races are not well synchronized

 To understand data races we define synchronize-with and

happens-before relations

Bibliography

 Scott Meyers and Andrei Alexandrescu. C++ and The Perils of

Double-Checked Locking. Doctor Dobb’s Journal, Jul 2004.

 Java Memory Model,

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf

 C++ MM, http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm (this is a

revision of a revision of a revision…)

 Less formal explanation, http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html

 FAQ on C++ MM,

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

