C++ Memory Model

Don’t believe everything you read (from shared memory)


http://upload.wikimedia.org/wikipedia/commons/5/55/8-cell-simple.gif

The Plan

» Why multithreading is hard
» Warm-up example

» Sequential Consistency

» Races and fences

» The happens-before relation
» The DRF guarantee

4

C++ memory model and atomics



Multithreading

From classical mechanics to quantum mechanics



http://upload.wikimedia.org/wikipedia/commons/7/7e/Double-slit_experiment_results_Tanamura_2.jpg

Single-Threaded Programs

» Execute one statement after another

» One memory access after another

» A read after a write returns the last-written value
» Execution is deterministic (like classical mechanics)

Given the same inputs, the program will generate the same
outputs—every time!

» Reasoning about programs relatively easy
» Testing and debugging relatively easy

Execute using a representative subset of possible inputs
Bugs easily reproducible



Multi-threaded Programs

<
<
<
<
<

Statements executed by threads are interleaved
Exponential number of possible interleavings
Memory accesses interleaved

A read may return a value written by another thread

Execution nondeterministic (like quantum mechanics)

Same inputs but different interleavings may produce different
output

Reasoning about programs (even short ones) difficult

Testing and debugging extremely difficult



Memory Model

» Makes reasoning about multithreaded programs possible
(albeit not easy!)

» Tells the compiler what optimizations are not allowed
» Makes reasoning independent of the processor

» Gives multi-processor designers a set of requirements
» Java has one, C/C++ doesn’t

» Current C++

If multithreaded programs work at all, they are not portable
between compilers/processors

Vendor specific implementations (like volatile)



xXample

TN\
o)

A “Simple”

>iw
. L
TE
, % : -
i e "I!lc!!!

The Infamous Double-Checked Locking Pattern



Single-threaded Singleton

class SingletonFoo

{

private Foo foo = null;
public Foo getFoo ()

{
if (_foo == null)
_foo = new Foo;
return _foo;

}
}

» new Foo is executed only once

» Returned foo is fully constructed



Multi-threaded Singleton

class SingletonFoo

{

private Foo foo = null;
public synchronized Foo getFoo ()

{
if (_foo == null)
_foo = new Foo;
return _foo;

}
}

» Brute force approach: eliminate interleaving
» Only one thread at a time executes synchronized section

» About two orders of magnitude slower than single-threaded
version



Clever (but wrong) Optimization

class SingletonFoo {
private Foo foo = null;
public Foo getFoo () {
if (_foo == null) {
synchronized (this) {
if (_foo == null)
_foo = new Foo;
}
}

return _foo;



Clever (but wrong) Optimization

class SingletonFoo {
private Foo foo = null;
public Foo getFoo () {
if (_foo == null) {
synchronized (this) {
if (_foo == null)
_foo = new Foo;
}
}
return _foo;
}
}

» Subtle problem: relaxed memory model
» _foo appears non-null before construction finished

» Another thread picks up uninitialized object



Volatile Solution

class SingletonFoo {
private volatile Foo _foo = null;
public Foo getFoo () {
if (_foo == null) {
synchronized (this) {
if (_foo == null)
_foo = new Foo;
}
}
return _foo;
}
}

» Any modification to a volatile variable (conceptually)
forces all previous writes to memory

» The snag: we might have just killed our optimization



Multi-threading in C++

» volatile keyword has no multi-threaded meaning
Some compilers cheat
Might work on some processors

» C++ Ox will have a memory model
Race-free programs appear sequentially consistent

Java volatile implemented as atomic library





http://upload.wikimedia.org/wikipedia/commons/1/1e/Gradient-optical-illusion.svg

Uniprocessor

» Instructions are executed in program order
» Every read returns the value last written to that location

» However
Compiler and processor are free to rearrange instructions
Optimizing compilers move or eliminate code

Reads and writes are buffered on a processor (memory access
costs hundreds of cycles)

» Optimizations must preserve the illusion



Multiprocessor Sequential Consistency

4

Each thread/processor executes instructions in program
order

Instructions performed by different processors are
arbitrarily interleaved

Each instruction is atomic and instantaneous wrt. other
processors

Conceptual switch connects one processor at a time to
memory

This is not how the program is executed in reality!

Compiler must enforce the illusion (even though modern
processors don'’t) for a reasonable subset of programs.



Breakdown of Sequential Consistency

Processor 1 Processor 2

X = 43 rl = ready

ready = 1 1f rl == 1
r2 = x

» Initially x = 0,rl =0,r2 = 0,ready = 0
» rl and r2 thread local (registers)
» Canrl ==1landr2 ==0?



Breakdown of Sequential Consistency

Processor 1 Processor 2

x = 43 rl = ready

ready = 1 1f rl == 1
r2 = x

» Initially x = 0,r2 = 0, ready = 0

» rl and r2 thread local (registers)

» Canrl ==1landr2 ==0?

» Yes, if processor/compiler reorders writes to x and ready

» Compiler and processor optimizations are the enemies of
sequential consistency



Multithreaded Olympics

Races and fencing




Low-level Data Race

» Data conflict
Two processors access the same memory location

At least one access is a write

» Data race

There is no intervening synchronization

» Data races on both x and ready

Processor 1 Processor 2
x = 43 rl = ready
ready = 1 if rl ==

r2 = X



Bad Bad Programmer!

» Data races are bugs!
» Data races break sequential consistency

» Language doesn’t have to specify the behavior of buggy
programs

» Warnng: presence of data races be used to maliciously
attack a program



How to Beat Relaxed Memory Model into
Submission

Processor 1 Processor 2
x = 43 rl = ready
ready = 1 1f rl ==

r2 = x

» Each thread may see results of writes in different order
» If the order is important, the programmer must force it

» Memory fence (or barrier)—commit pending writes

Processor 1 Processor 2
X = 43 fence

fence rl = ready
ready = 1 if rl ==
fence fence

r?2 = X



Happens Betore

In the absence of simultaneity




Interleavings

Processor 1 Processor 2
X = 43
fence
ready = 1
fence fence
rl = ready /1
if rl1 == 1 [/l true
fence
r2 = x /143

» Without synchronization, no guarantee the reads will see
last-written values

» If ready and x volatile (the fences), the guarantee holds

» With synchronization, the write “x = 43" happens
before the read “r2 = x” in the second execution



Happens Before Relation

» On the same processor, A happens before B if A is earlier
in the program order

» Between processors, happens-before defined by
synchronizing actions

Write to a volatile variable happens before all subsequent
reads of that variable—in a particular execution

Unlocking of a monitor happens before the subsequent locking
of the same monitor

» Happens-before is a transitive closure of program order
and synchronization order



DRF Guarantee

» A conflictis a race if there is at least one execution in
which one action doesn’t happen before another

» We want the language to guarantee the following

» Correctly synchronized programs (Data Race Free)
have sequentially consistent semantics





http://upload.wikimedia.org/wikipedia/en/4/41/Soles2.jpg

C++ Memory Model

» If a program is data race free, its execution is sequentially
consistent.

» Otherwise it’s undefined behavior

» Atomic library provides equivalents of Java “volatile”



Atomic

template <class T>
class atomic {
public:
atomic (T); // No ordering semantics, constructor not atomic.
volid store (const T&);
T load();
bool cas(const T& old, const T& new val);

T operator T () { return load<acquire>(); }
volid operator=(const T& x) { return store<release> (x);

» In full version, load and store are templates

» CAS—atomic Compare And Swap



Atomic int and ptr

template <class T=int>

class atomic_int : public atomic<T> ({

public:
atomic int (T
T fetch add(
T fetch and(
T fetch or (T

4

) ;
T)
T)

).

4

s

template <class T>
class atomic_ptr : public atomic<T> ({
public:
atomic ptr(T);
T fetch and add(ptr diff t);
by



Low-level Atomics

» Escape from sequential consistency
» Programmer may specify ordering constraints
raw (or memory_model_relaxed): no constraints

» Sane programmers should never use those without
drawing a bull’s eye on their feet

enum ordering constraint {raw, acquire, release, ordered};

template <ordering constraint c>
vold store(const T&);
// Compile-time error if c is neither raw nor release.



What Have We Learned?

» We want programs to behave in a sequentially-consistent
way so that we can reason about them

» For reasons of performance, we’ll settle for well-

synchronized programs behaving in a sequentially
consistent way

» Programs with data races are not well synchronized

» To understand data races we define synchronize-with and
happens-before relations



Bibliography

» Scott Meyers and Andrei Alexandrescu. C++ and The Perils of
Double-Checked Locking. Doctor Dobb’s Journal, Jul 2004.

» Java Memory Model,

» C++ MM,
(this is a
revision of a revision of a revision...)

» Less formal explanation,

» FAQ on C++ MM,


http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

