Red Code / Green Code: Generalizing const

Red Code / Green Code:

Generalizing const
(2/3rds of a Proof of Concept)

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com

Voice: 503/638-6028

http://www.aristeia.com/ Fax: 503/638-6614

Scott Meyers, Software Development Consultant
http://lwww.aristeia.com/

Copyrighted material, all rights reserved.

Last Revised: 5/7/07

After the talk, Herb Sutter showed me a solution to this problem that I like
better than the one I presented. Herb describes his approach in a blog entry
at http://herbsutter.spaces.live.com/blog/cns!2D4327CC297151BB!207 .entry. I
summarize his approach later in these notes (on the slides where it’s
germane). I have not tested Herb’s solution, but I'm confident that it (or

something quite similar to it) will work

I've removed the film clip slides from this version of the presentation,
because they don’t add anything to a printed treatment.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Copyrighted material, all rights reserved.
Page 1

Red Code / Green Code

: Generalizing const

Code Constraints

const acts like a code constraint:

® Rules:
» Unconstrained (non-const) code constrained (const) code:
¢ Always okay.
» Constrained code unconstrained code:
¢ Okay only with explicit permission (i.e., a cast).

® (const is actually a data constraint, but we’ll ignore that.)
Compilers enforce the const constraint.
Other constraints are easy to imagine:

® Thread-safe.

® Exception-safe.

® LGPLed.

Goal: automatic enforcement of arbitrary user-defined code constraints.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 2
LGPLed code is covered by the LGPL. Such code can be called by non-

GPLed code, but my understanding is that if LGPLed code calls non-

LGPLed

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

code, the called code must be made available under the GPL.

Copyrighted material, all rights reserved.

Page 2

Red Code / Green Code

: Generalizing const

Approach 1: Namespaces

Red code is unconstrained, green code is constrained:

namespace green {
void greenFunc();

}

namespace red {
using namespace green;
void redFunc();

}

void green::greenFunc()

redFunc();
red::redFunc();

void red::redFunc()

greenFunc();

/I everything green is available to red

Il error!
/I okay — call explicitly allowed

/I okay

Scott Meyers, Software Development Consultant
http://lwww.aristeia.com/

Copyrighted material, all rights reserved.
Page 3

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 3

Red Code / Green Code

: Generalizing const

Problems

® Global functions.
= ADL.

® Namespaces must nest, constraints don’t.
» E.g., both of these are okay:
¢ Thread-safe thread-safe
¢ Thread-safe (thread-safe + LGPLed + exception-safe)

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 4

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 4

Red Code / Green Code

: Generalizing const

Next Thoughts

® Barton and Nackman’s use of TMP for dimensional analysis.
» But functions aren’t objects.
¢ Where put the “dimensions” for functions?

® enable_if:
» But we don’t want to change overloading resolution.
¢ Incorrect calls should be rejected, not removed from consideration.

® Traits:
» How map individual functions to traits?

» Physical separation of function body and traits increases likelihood
of inconsistency.

Common theme: TMP.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 5

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 5

Red Code / Green Code

: Generalizing const

Approach 2: Types as Constraints

Basic idea:

® Constraints are represented by UDTs.
» Just like STL iterator categories.

® A function’s constraints is represented by a set of types.

® Caller callee is okay iff (caller constraints) (callee constraints).
» Use TMP to enforce this during compilation.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 6

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 6

Red Code / Green Code

: Generalizing const

The MPL

Boost’s MPL offers STL-like functionality for TMP:
® Containers of types (e.g., mpl::vector, mpl::list, etc.)
® Algorithms over containers (e.g., mpl::find, mpl::equal, etc.)
® Jterators over containers.
® Etc.
Using the MPL definitely easier than “bare metal” TMP.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 7

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 7

Red Code / Green Code: Generalizing const

Declaring Constraints

Constraints are just types:

struct ThreadSafe {};
struct ExceptionSafe {};
struct LGPLed {};
struct Reviewed {};

Functions — always templates — create a container of constraints their
callees should obey:

template<typename CallerConstraints>
void f()

typedef mpl::vector<ExceptionSafe, Reviewed> MyConstraints;

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 8

Herb’s solution is based on functions declaring an additional parameter of a
type that includes the collection of constraints. For example:

template<typename Constraints> // details provided later
struct CallConstraints{

3
void f(CallConstraints<mpl::vector<ExceptionSafe, Reviewed> >);

This approach addresses two concerns that came up during the talk. First,
is no longer a template, so template-induced code bloat is no longer an issue.
Second, {’s constraints are part of its declaration rather than being buried in
its definition.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 8

Red Code / Green Code

: Generalizing const

Passing Constraints

Callers pass their constraints to callees:

template<typename CallerConstraints>
void g()
{

f)./.pedef mpl::container<...> MyConstraints;
1;'<.MyConstraints>();
}
Alternatively, use of an extra parameter allows for implicit type deduction:

template<typename CallerConstraints>
void f(CallerConstraints);

template<typename CallerConstraints>
void g(CallerConstraints)

f (MyConstraints());
Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 9

With Herb’s design, callers use a syntax similar to the second one above.
The call from g to f, for example, would be written like this:

f(Call

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Constraints<MyConstraints>());

Copyrighted material, all rights reserved.

Page 9

Red Code / Green Code: Generalizing const

Overriding Constraints

Callers have two analogues to const_cast for overriding constraints:

® Pass IgnoreConstraints instead of MyConstraints.
» Implementation: typedef mpl::vector<>::type IgnoreConstraints;
» It has the effect of “casting away” all the caller’s constraints.

= Use eraseVal to “remove” constraints from MyConstraints.
=» TMP is functional, so the result is a new collection.

template<typename CallerConstraints>

void g()

{
typedef mpl::container<...> MyConstraints;
1;.<.IgnoreConstraints>();

f<eraseVal<MyConstraints, ThreadSafe> >();

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 10

The above ideas work equally well with Herb’s design.

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 10

Red Code / Green Code: Generalizing const

Enforcing Constraints

Callees just do this:

template<typename CallerConstraints>
void f()
{

t.3./.pedef mpl::container<...> MyConstraints;
BOOST_MPL_ASSERT((includes<MyConstraints, CallerConstraints>));

normal function body goes here

}

The code compiles iff MyConstraints contains all types in CallerConstraints.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 11

Constraint enforcement in Herb’s design is based on implicit type conversion.
We design things so that a call compiles iff there is an implicit conversion from
CallConstraints<CallerConstraints> to CallConstraints<CalleeConstraints>.
Like this:

template<typename Constraints>
struct CallConstraints {

template<typename CalleeConstraints>
operator CallConstraints<CalleeConstraints>() const

{
BOOST_MPL_ASSERT((includes<CalleeConstraints,Constraints>));
return CallContraints<CalleeConstraints>();
}
I3
Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.

http://www.aristeia.com/ Page 11

Red Code / Green Code: Generalizing const

The MPL has no includes metafunction, so:

template<typename Sup,
typename Sub>
struct includes
. boost::is_same<
typename mpl::find_if<Sub,

typename mpl::end<Sub>::type
>

e

Enforcing Constraints

/I returns whether Sup includes each of the elements in Sub
/I the putative superset
/Il the putative subset

mpl::not_<mpl::contains<Sup, _1> > >::type,

Scott Meyers, Software Development Consultant
http://lwww.aristeia.com/

Copyrighted material, all rights reserved.

Page 12

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Copyrighted material, all rights reserved.
Page 12

Red Code / Green Code

: Generalizing const

Speaking of Writing Metafunctions...

The MPL also lacks a metafunction that does what eraseVal does, so:

/I erase all occurrences of T in Seq

template<typename Seq, typename T>

struct eraseVal

: mpl::copy_if<Seq, mpl::not_<boost::iis_same<_1,T> > >

i3

For this application, this is needed only as a workaround:

" mpl::set is broken in the current release.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 13

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 13

Red Code / Green Code: Generalizing const

Summary So Far

® Users define a type for each constraint they need.

® Each function:
» Is a template taking a CallerConstraints parameter.
» Defines MyConstraints and passes it to callees.

» Includes this assertion:
BOOST_MPL_ASSERT((includes<MyConstraints, CallerConstraints>));

Scott Meyers, Software Development Consultant
http://lwww.aristeia.com/

Copyrighted material, all rights reserved.
Page 14

Using Herb’s design, users still define a type for each constraint they need,
but functions need simply declare an extra parameter of type
CallConstraints<MyConstraints>. Everything else is handled automatically.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Copyrighted material, all rights reserved.
Page 14

Red Code / Green Code: Generalizing const

Dealing with Virtual Functions

From the Boost.Spirit doc:

® The virtual function is the meta-programmer’s hell. ... it is ... an opaque wall
where no metaprogram can get past. It kills all meta-information beyond the

virtual function call.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.

http://lwww.aristeia.com/

Page 15

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 15

Red Code / Green Code: Generalizing const

Circumventing the Opaque Wall

Two approaches:
® NVI: Use nonvirtuals to check constraints before calling virtuals.

® RTTI: Use constraints as base classes and RTTI to check them.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 16

Because Herb’s design includes the constraints in the function’s parameter
list, virtual functions don’t need any special treatment: virtual overrides in
derived classes have to declare the same constraints as the original virtual
function. The drawback to this approach is that if derived virtuals want to
add new constraints, they can’t add them to their signatures. They can,
however, continue to define a local MyConstraints typedef that includes the
additional constraints and use that when making calls to other functions.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 16

Red Code / Green Code

: Generalizing const

Checking Virtuals via NVI

A virtual’s constraints are part of its contract.

® Derived classes shouldn’t weaken the contract.
» Checking constraints before invoking the virtual is therefore sound.

For this to work, virtuals must be called through a nonvirtual wrapper.
® This is NVI.
® Virtuals should thus typically be private.

Undetected constraint violations can occur in two ways:

® Virtual invocation without using the wrapper.
» E.g., by members or friends.

® Derived virtuals “removing” constraints imposed by the base class.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 17

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 17

Red Code / Green Code

: Generalizing const

Checking Virtuals via RTTI
My initial idea:

® Caller and callee create objects that inherit from all their constraints.
» Inspiration: Acyclic Visitor.

g should be able
/ ‘ to call f, but not
MyConstraints MyConstraints vice-versa.
for f for g

® Constraints are satisfied iff callee object has all bases caller object does.
Problem:

® How perform the test?
» Constraint classes are arbitrary UDTs.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 18

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 18

Red Code / Green Code

: Generalizing const

Checking Virtuals via TMP+RTTI

My next idea:
® Use TMP to generate the appropriate dynamic_casts.
Challenge:
® Only caller knows what base classes to dynamic_cast to.
® No way for caller to get callee constraints.

® No way for callee to get caller constraints during compilation.
» (For virtual functions.)

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 19

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 19

Red Code / Green Code

: Generalizing const

Checking Virtuals via TMP+RTTI
Approach:

® Caller uses TMP to generate dynamic_casts inside its constraint object.
® Caller passes its constraint object to callee.

® Callee has caller object perform constraint checking.

Conceptually:
CallerBase CalleeBase C
Knows what =261 ConstraintsObject Callee constraint
constraints . |)
it needs <MyConstraints> object
Inspiration:

® Implementation of Boost’s shared_ptr.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 20

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 20

Red Code / Green Code

: Generalizing const

Declaring Constraints (Reprise)

For dynamic_cast, constraint classes must now have virtuals:
struct ThreadSafe { virtual ~ThreadSafe(){} };
struct ExceptionSafe { virtual ~ExceptionSafe(){} };
struct LGPLed { virtual ~LGPLed(){} };

struct Reviewed { virtual ~Reviewed(){} };

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.

http://lwww.aristeia.com/

Page 21

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 21

Red Code / Green Code

: Generalizing const

Caller and Callee Constraint Object Base Classes
CalleeBase need support only dynamic_cast: C

struct CalleeBase {

virtual ~CalleeBase(){} Callei;;’li“ai“t
h

CallerBase

CallerBase supports constraint checking:

ICallerConstraintsObject
struct CallerBase { <MyConstraints>

Il return whether calleeTypesObj inherits from all constraint classes.
virtual bool
arelncludedBy(const CalleeBase& calleeTypesObj) const = 0;

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 22

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 22

Red Code / Green Code

: Generalizing const

Declaring Virtuals

Virtuals take an extra CallerBase parameter:

Class Widget {
public:
virtual void vf(normal function parameters,
const CallerBase& callerConstraints);

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 23

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 23

Red Code / Green Code

: Generalizing const

Calling Virtuals

Callers simply pass a temporary CallerConstraintsObject to the virtual:

template<typename CallerConstraints>
void f(Widget& w)
{

/I the usual stuff
typedef mpl::container<...> MyConstraints;
BOOST_MPL_ASSERT((includes<MyConstraints, CallerConstraints>));

w.vf(normal parameters,
CallerConstraintsObject<MyConstraints>());

-

See the source code for CallerConstraintsObject’s implementation.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 24

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 24

Red Code / Green Code: Generalizing const

Callees:

void Widget::vf(normal function parameters,

{

typedef mpl::container<...> MyConstraints;

if (IcallerConstraints.arelncludedBy(*pch)) {
there’s been a constraint violation

}

Implementing Virtuals

® Use createCalleeObject to, um, create a callee constraint object.

® Pass that object to callerConstraints.arelncludedBy for checking:

const CallerBase& callerConstraints)

std::auto_ptr<CalleeBase> pcb(createCalleeObject<MyConstraints>());

Scott Meyers, Software Development Consultant
http://lwww.aristeia.com/

Copyrighted material, all rights reserved.

Page 25

See the notes on the next page for how the use of auto_ptr can be eliminated

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Copyrighted material, all rights reserved.
Page 25

Red Code / Green Code: Generalizing const

createCalleeObject

The created object inherits from:
® All types in the callee’s MyConstraints object.
= CalleeBase.
The object must outlive the function call, hence the heap allocation:

template<typename Constraints>
std::auto_ptr<CalleeBase> createCalleeObject()

typedef
typename mpl::inherit_linearly <Constraints,
mpl:inherit<_1, 2>,
CalleeBase
>:type
ConstraintsPlusBase;

return std::auto_ptr<CalleeBase>(new ConstraintsPlusBase);

}

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 26

Per Eric Niebler’s suggestion during the talk, the auto_ptr return type can be
eliminated by returning an object by value and requiring that the caller bind it to a
reference to const. That would result in a function that could be defined like this:

template<typename Constraints>

typename mpl::inherit_linearly<Constraints, mpl::inherit<_1, 2>, CalleeBase>::type
createCalleeObiject()

{
typedef typename mpl::inherit_linearly<Constraints,
mpl::inherit<_1, 2>,
CalleeBase
>::type
ConstraintsPlusBase;
return ConstraintsPlusBase();
}

Callers would then be expected to use it like this:
const CalleeBaseé& calleeConstraintObject = createCalleeObject<MyConstraints>();

if (IcallerConstraints.arelncludedBy(calleeConstraintObject)) {
there’s been a constraint violation

}

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 26

Red Code / Green Code

: Generalizing const

Virtual Function Summary

Two choices:
= NVI

® RTTI:
» Virtuals declare an extra CallerBase parameter.
» Callers use CallerConstraintsObject<MyConstraints>() as that
parameter.
» Callees:
+ Call createCalleeObject<MyConstraints>() and
¢ Pass the result to the caller’s arelncludedBy function.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 27

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 27

Red Code / Green Code

: Generalizing const

Remaining Problem

How deal with operators?
® Can’t pass additional runtime parameters.

® Explicitly passing template parameters destroys the syntax.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 28

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 28

Red Code / Green Code: Generalizing const

Reflections on TMP with the MPL

® Compilers accept different languages, produce different results.
» Comeau’s linktime instantiation can mislead.
» Bonus: VC8 ICE

® MPL header granularity a major pain.
® So is manually matching up < and > symbols.

® Debugging is primitive:
» No TMP/MPL debugger.
» Debugging a TMP/runtime mix unpleasant.
* You see only half of what you want to see.

® Current MPL release has bugs.

® “Limited” documentation and community.
» But very helpful community members.

= “Please work!”

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 29

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 29

Red Code / Green Code: Generalizing const

TMP: Current Impression

® Imagine if we could easily parse C++....

® Imagine if C++ had something like .NET attributes or Java
annotations...

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 30

The image is motivated by Alan Cooper’s notion of “Dancing Bearware” in
The Inmates are Running the Asylum (Sams, 1999).

At the time I put this slide together, I was under the impression that
attributes in .NET could be used to execute user code during compilation,
and that could be used to achieve the same goal I described in this talk. One
person came up to me after the talk and told me that .NET attributes were
not that powerful. If that is the case, perhaps dancing bearware is all we
have for attacking this problem.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 30

Red Code / Green Code: Generalizing const

Further Reading

Many cited print publications are also available online.

® “Using namespaces to partition code,” Scott Meyers, Usenet
newsgroup comp.lang.c++.moderated, February 13, 2004,
http://tinyurl.com/357n6w.

® “Dimensional Analysis,” John J. Barton and Lee R. Nackman, C++
Report, January 1995.

® “Function Overloading Based on Arbitrary Properties of Types,”
Jaakko Jarvi et al., C/C++ Users Journal, June 2003.

» Describes enable_if.

® “An Introduction to C++ Traits,” Thaddaeus Frogley,
http://thad.notagoth.org/cpptraits_intro/.

® “Virtuality,” Herb Sutter, C/C++ Users Journal, September 2001.
» Defines NVI (the Nonvirtual Interface idiom).

® “Acyclic Visitor,” Robert Martin, in Pattern Languages of Program
Design 3 (PLoP 3), Addison-Wesley, 1998, ISBN 0-201- 31011-2,

pp- 93-103.
Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 31

Having createCalleeObject return a temporary is practical, because of the
C++ rule that extends the life of a temporary when it is bound to a reference-
to-const. My inspiration for use of this idea was:

“Change the Way You Write Exception-Safe Code — Forever,” Andrei
Alexandrescu and Petru Marginean, C/C++ Users Journal, December 2000.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 31

Red Code / Green Code

: Generalizing const

Further Reading

® Ct++ Template Metaprogramming, David Abrahams and Aleksey
Gurtovoy, Addison-Wesley, 2004, ISBN 0-321-22725-5.

® The Boost MPL Library, http://www.boost.org/libs/mpl/doc/index.html.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 32

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 32

Red Code / Green Code

: Generalizing const

Credits

Movie clips:

® Psycho, Universal Studios, 1960.

® The Miracle Worker, MGM, 1962.

® Star Trek III: The Search for Spock, Paramount, 1984.
Dancing bears image:

® Robert F. Rockwell, http://research.amnh.org/~rfr/north/dance.htm.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://lwww.aristeia.com/ Page 33

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

Copyrighted material, all rights reserved.

Page 33

