I Bela Lugosi in Dracula

I Anatomy of a Debugger

* Understanding how a debugger works and
I how it is put together increases the
developer's efficiency in using tools
* Understanding debugger architecture allows
developers to choose the right tool for the job
* Today's Linux debuggers have room for
improvement

Agenda

» QOverview of debugger / program interaction
* Remote & cross-debugging: out of scope

* Fine-tunning the debug information

* Multi-threaded programs

* Limitations

* Advanced debugger usage

* Possible performance improvements

* Qand A

I Debugger / Program Interaction

| p .

Debugger Program to debug

. 7

ptrace()
waltpid()

~_

/proc
file-system

~

Kernel

I Program Interaction

* The debugger uses the ptrace() API to:
I — attach / detach to / from targets
- read / write to / from debugged program memory
- resume execution of program

* Debugger sends signals to program
— most notably SIGSTOP

* The /proc file-system allows reading / writing
of memory, and provides access to other
information (command line args, etc)

I Debug Events

* When signals occur in the program the
I debugger is notified (before signal is

delivered)

* The status of the debugged program is
collected with the walitpid() call

* The debugger is a big event loop

* Example of events: SIGTRAP (breakpoint hit,
or single-stepping), SIGSEGV, SIGSTOP

Main Event Loop

/
‘PTRACE_CONT

‘PTRACE_SYSCALL
‘PTRACE_SINGLESTEP

AV /

Y
waitpid()

stop all threads;
handle event

I Resuming the Program

» ptrace(PTRACE_CONT) resumes program
I - PTRACE SINGLESTEP: executes one
machine instruction
* PTRACE_SYSCALL: continue up until a
system call occurs (this is what strace uses)

I Handling Events

program to user

- call stack trace

- variables

- CPU registers

— current source code location

* Execute a user command
 Allow user to insert breakpoints
* Allow user to evaluate expressions

I * Most common case: display the state of the

I Symbolic Information

- the ELF symbol tables used by the linker
— debug info stored in a special ELF section

» Each shared object and executable has one
or two ELF symbol tables (static, dynamic)

* |t Is easy to do an address lookup to find the
current function

* The maps file under /proc may be consulted
to determine which symbol table to use

I * There are two sources of information:

/proc/<pid>/maps

[cristiv@orcas:~]$ cat
08048000-08061000 r-xp
08061000-08063000 rw-p
08063000-0808e000 rw-p
£7db7000-£7dc0000 r-xp
£7dc0000-£7dc2000 rw-p
£7dc2000-£7dc3000 rw-p
£7dc3000-£7eeal00 r-xp
f7eeal000-£f7eeb000 r--p
£f7eeb000-£7eed000 rw-p
£f7eed000-£7e£f0000 rw-p
£7£04d000-£7£0£000 rw-p
£f7£f0£000-£7£27000 r-xp
£7£27000-£7£28000 r--p
£7£28000-£7£29000 rw-p
ffce9000-ffcec000 rwxp
ffffe000-£f££££f000 r-xp
[cristiv@orcas:~]$

~

/proc/3454 /maps
00000000 08:01 568685
00019000 08:01 568685
08063000 00:00 O
00000000 08:01 90135
00008000 08:01 90135
£7dc2000 00:00 O
00000000 08:01 90121
00127000 08:01 90121
00128000 08:01 90121
£f7eed000 00:00 O
£7£0d000 00:00 O
00000000 08:01 90114
00017000 08:01 90114
00018000 08:01 90114
ffce9000 00:00 O
ffffe000 00:00 O

/usr/bin/vmnet-dhcpd
/usr/bin/vmnet-dhcpd
[heap]

/1ib/libnss files-2.4.so
/1ib/libnss files-2.4.so

/1lib/libc-2.4.s0
/lib/libc-2.4.s0
/lib/libc-2.4.s0

/1ib/1d-2.4.s0
/1lib/1d-2.4.s0
/1lib/1d-2.4.s0
[stack]

I Tracking Symbol Tables

* Symbol tables are read from ELF binary files
I (not from debugged program's memory, I.E.

no debugging APl is needed)

* The debugger needs to track the loading and
unloading of dynamic library

* The dynamic loader provides a special
location where the debugger needs to insert
a breakpoint (see /usr/include/link.h)

I Debug Information

» Source file and line number
I * Variables' names and data types

* Frame unwinding information

* The format is not specified by ELF

* The format is language-independent (kind of)

* Most common formats: DWARF, STAB

* The amount of debug info is proportional to
the complexity of your code

I Fine Tunning the Debug Info

* Prefer DWARF over STAB debug format
I STAB is linear by design, DWARF allows
“accelerated” lookups
* In DWARF, there is one “handle” per shared
object: modular programs are easier to
debug
* Lookups work faster with smaller modules

I Know Your Compiler

- Hints:
* -gstabs+ generates more info
» -gdwarf-2 is even better

* Eliminate unused info
— If you are not interested in casting when
evaluating expressions in the debugger, you
may instruct the compiler to omit some type info

I * Older GCC (2.95) used STAB by default

I C++ Language Specifics

when evaluating expressions

- example: std::string may actually be _STL::string
» Sometimes, forward declared types cause

the debugger to work harder when looking up

type information

I * Be aware of name-space aliases and macros

I Debugger Architectural Blocks

* Main Event Loop
I * Thread Management (detects and attaches
to new threads)
» Symbol Table Management
* Breakpoint Management
* Debug Info Readers
* Expression Evaluators (Interpreters)
 Scripting support, for automating tasks

I Design Lends Itself to C++

* Polymorphism. Examples: software and
I hardware breakpoints are handled uniformly,
ditto for live processes and core dumps
* The entire debugger system is designed
around an object model, expressed as pure
abstract classes.

Poor Man's COM

* Most interfaces derive from ZObject, which

provides add ref, release, and
query interface

* Unlike in MS COM, add ref and release are
not public
* Can throw exceptions between components

(if you carefully read the fine print...)

Example: The RefCounted Class

DECLARE INTERFACE (RefCounted, Unknown)

{
template<typename T> friend class RefPtr;
template<typename T> friend class WeakPtr;
public:
virtual long ref count() const volatile = 0;
virtual void self check() const volatile = 0;
protected:
virtual void inc _ref() = 0;
virtual bool dec ref and test() = 0;
/...

}i

DECLARE _INTERFACE?

#1f defined(GNUC_) && (_ _GNUC < 3) && !
defined(_INTEL COMPILER)

#define ZDK VTABLE __ attribute ((com_interface))
telse

// GCC 3.x and above generate COM-compatible vtables by
default

#define ZDK VTABLE

#endif

#define DECLARE INTERFACE(i) struct ZDK VTABLE i
#define DECLARE INTERFACE (i,b) struct i : public b

interface cast<>

template<typename T> T inline

interface cast(Unknown2& u)

{
typedef typename boost::remove_reference<T>:type V;
V* ptr = 0;

if (lu.query_interface(V::_uuid(), (void**)&ptr))
{

throw bad_interface_cast(V);

}

assert(ptr);
return *ptr;

interface_cast<> cont'd

template<typename T> T inline interface_cast(Unknown2* u)
{
typedef typename boost::remove_pointer<T>::type V;
T ptr = 0;
if (u)
{
if (u->query_interface(V::_uuid(), (void**)&ptr))
{
assert(ptr);
}
}

return ptr;

I Support for D Language

* Demangling (generously contributed by
I Thomas Kuhne)
» Associative arrays (we had to re-purpose
DW _containing_type as the key type)
* Dynamic arrays
* ... and hopefully more to come

Limitations and Challenges

» Stopping threads with SIGSTOP is kludgey

* In a multi-threaded debugger, only the thread
that has initially attached to the target with
ptrace(PTRACE_ATTACH) can
subsequently use ptrace and /proc on the
same target

» ptrace calls (other than PTRACE_ATTACH)
fail when invoked with the ID of a running
process

Multi-Threaded Programs

* The easiest way of handling debug events in
multi-threaded programs is to stop all threads
upon events

» Stopping all threads with SIGSTORP: kill the
group or use tkill() where available

* The thread ID as returned by pthread_create
IS NOT the same as the task ID

I Multi-Threaded, Part 2

space threads and kernel threads is 1-to-1
* Not necessarily true on other UNIX

derivatives
- Example: In FreeBSD the mapping is dynamic

* ptrace() operates on task ID, not thread ID
* libthread_db.so provides thread information

I * On Linux, the relationship between user-

I Affinity Workaround

* In ZeroBUGS, the Ul and the main debugger
I engine run on separate threads

* They each are a big event loop

* The Ul needs to be responsive

* The Ul thread cannot call ptrace()

* Calls need to be marshaled between threads

Debugging Memory

* Using custom breakpoints to track heap

* Break on malloc / calloc / realloc / free and
record the addresses and sizes of block

* Very slow, because of numerous context
switches

* Remember? Signals go through the kernel

* Valgrind works better for memory debugging

Advanced Usage

» Use the debugger to test a patch without
rebuilding your code.

* Example: you suspect that an uninitialized
variable is the cause of a bug

» Set a conditional breakpoint at the line where
you want to initialize the variable, and make
the condition something like ((x = -1) &&

false)

Advanced, Part 2

* Turn the debugger into a unit-test harness

1 import zero

2 #

3 # user-defined action, verifies that the value
4 # of 'x' is 42 when the breakpoint is hit

o#

6 def verify _post_cond(thread, breakpoint):

7 for sym in thread.eval('x'):

8 assert sym.value() == '42'
9 return True # don't discard the breakpoint
10

11 # the debugger calls this when attaching to a process

12 def on_process(process, thread):

13 for sym in process.symbols().lookup('some_fun'):

14 thread.set_breakpoint(sym.addr(), verify _post_cond)

Potential Improvements

» Store debug information into database (such
as SQLite http://www.sqlite.org/)

» Multi-threaded design (take advantage of
emerging multi-core architectures).

» Take advantage of the new UTRACE facility (
http://lwn.net/Articles/224772/)

http://www.sqlite.org/
http://lwn.net/Articles/224772/

I Q&A, Contact Info

* Www.zerobugs.org
I * WWW.zero-bugs.com/
» Cristian Vlasceanu cristian@zerobugs.org

http://www.zerobugs.org/
http://www.zero-bugs.com/
mailto:cristian@zerobugs.org

