
1

Lock-Free Programming

Andrei Alexandrescu
andrei@metalanguage.com

2

“Life is just one darn thing after another”

Elbert Hubbard

3

“Multithreading is just one darn thing after,
before, or simultaneously with another”

4

Agenda

 Architectural trends and how they affect
programming styles

 Lock-based vs. lock-free
 CAS-based code
 Retiring old data in lock-free programming
 Conclusions

5

Architectural Trends

 Yesterday: scarce processing power, wiring
relatively unimportant

 Today: lots of processing power, albeit hard to
access

 Tomorrow: tons of inaccessible processing
power

 Transistor count on the rise
 Connectivity becomes nightmarish
 Light won’t travel any more faster

 At 10 GHz: 3 cm/cycle!

6

Needs

 Need more parallelism
 ILP: ~2.5 instructions/cycle

 Need to put more on the chip
 2005: all ?P vendors will release logical MPs

 Need better on-chip data locality/retention
 Memory latency and bandwidth issues

 Power issues
 Speculative loading and execution = wasted

power (and bandwidth munching)

7

Multithreading

 MT is one of precious few software techniques
to increase processor utilization

 Serial code is hard to parallelize
 Parallel code is easy to parallelize

 Not all threads stall at the same time
 Do more work with less power

8

Lock-based vs. Lock-free

 Lock-based:
 Access to shared data protected by mutex

locking/unlocking
 Inside a locked region, arbitrary operations can

be perfrmed

 Lock-free:
 No need for locking (duh)
 Precious few ops allowed on shared data

9

Impossibility/universality

 1991: Herlihy paper “Wait-free synchronization”
 Some primitives cannot synchronize any shared

data structure for >2 threads
 e.g., atomic queues!

 Some other primitives are enough to implement
any shared data structure
 e.g., CAS

10

CAS

 Do this atomically:

template <class T>
bool CAS(T* addr, T expected, T fresh) {
 if (*addr != expected) return false;
 *addr = fresh;
 return true;
}
 Usually T = {int32, int64, ...}
 Implemented by all major processors

 This year: transactional memory

11

Defining terms

 Wait-free procedure: completes in a bounded
number of steps regardless of the relative
speeds of other threads

 Lock-free procedure: at any time, at least one
thread is guaranteed to make progress
 Probabilistically, all threads will finish timely

 Mutex-based procedures:
 Not wait-free
 Not lock-free

12

Advantages of lock-free

 Fast (~ 4 times faster than best locks)
 Deadlock immunity
 Livelock immunity
 Thread-killing immunity

 Killing a thread won’t affect others

 Asynchronous signal immunity
 Reentrancy is automatic

 Priority inversion immunity
 Easier design

13

Disadvantages

 Priorities uncontrollable
 Can increase contention gratuitously

 Hard to program
 Herlihy’s proofs assumed infinite memory
 GC is a big helper
 Hard even with GC

 Use locks for 98% of the code
 Use CAS for 2% of the code to increase

performance by 98%

14

Basic CAS-based idioms

 In your class, keep pointers to the shared data
(don’t embed it)

 When updating shared data:
 Do all the work on the side in another pointer
 CAS-in the new pointer
 Do that in a loop to make sure you update the

right data

 If garbage collection, then done!

15

Example

class Widget {
 Data * p_;
 ...
 void Use() { ... use p_ ... }
 void Update() {
 Data * pOld, * pNew = new Data;
 do {
 pOld = p_;
 ...
 } while (!CAS(&p_, pOld, pNew));
 }
};

16

Retiring Old Data

 Problem: when to delete the old p_?
 Reference counting?

 Can’t do, need DCAS
 Wait some, then delete?

 Fragile approach: how long is enough?
 (How large is a large enough buffer?)

 Keep the reference count next to p_
 Requires CAS2
 Writes are locked by reads

17

Hazard Pointers

 Idea: maintain a global singly-linked list of
“pointers in use” – the hazard pointers (hlist)
 The list is easy to manipulate with CAS only

 Whenever a thread replaces a pointer, it puts
the old one in a thread-local, private list (rlist)

 When rlist has grown up to a fixed size:
 Do the set difference rlist – hlist
 delete all pointers in the result set!

18

Example
void Widget::Use() {
 hlist->add(p_);
 ... use p_ ...
 hlist->remove(p_);
}
void Widget::Update() {
 ... replace p_ with pNew ...
 rlist->add(pOld);
 if (rlist->size() > R) {
 set<Data*> d = difference(rlist, hlist);
 ... delete all in d ...
 }
};

19

Optimizations

 A set difference can be computed in O(R) if one
of the lists is sorted (at cost O(R log R))

 Hashing would be an alternative
 O(R) expected complexity

 In any case, the algorithm is wait-free
 Scans the wait-free hlist and the thread-local

private rlist

20

Choosing parameters

 So, complexity of the scanning algo is O(R)
 Maximum number of retired pointers that haven’t

been deleted is N * R
 N is the number of writers
 A good choice:

 R = (1 + k) * H
 H is the max number of readers
 k > 1 small positive number
 Each scan deletes R – H = O(R) pointers

 So the amortized time to delete any unused
pointer is constant

21

Conclusions

 Efficient programs are hip again
 Threads are hipper than ever
 Lock-free offer high-efficiency for simple

structures
 Lock-based programming is easier for complex

structures
 CAS-based code is cool

22

Bibliography

 Maged Michael: Scalable lock-free dynamic
memory allocation, PLDI 2004

 Maged Michael: Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects, IEEE TPDS
1994

 Maurice Herlihy: Wait-Free Synchronization,
ACM Transactions on Programming Languages
and Systems, 13(1):124--149, January 1991

 Andrei Alexandrescu: Generic<Programming> in
CUJ, Oct and Dec 2004 (2nd with M. Michael)

