C++ In the Trenches

David Brownell
db@DavidBrownell.com

Northwest C++ Users Group
October 19th, 2005

" J
Background

m Founded Wise Riddles Software

(www.WiseRiddles.com) in December
2003

Wise Riddles focuses on custom software
development, services, mentoring, and
training

In June 2005 released Audiomatic
(www.WiseRiddles.com/Audiomatic), a voice-
activated macro application

" J
More Background

m Started programming in 1986 (BASIC on
Apple Il GS)

m Started programming with C++ in 1995

m Started programming professionally in
1996

" J
Even More Background

m Shipped 8 commercial applications in C++
m Designer/Architect on 5 of those
applications

m Development lead on 5 of those
applications

'__
Books to Read

m Code Complete, Second Edition CODE 2
Steve McConnell COMPLETE
ISBN: 0735619670

m Writing Secure Code, Second Edition
Michael Howard

ISBN: 0735617228 e
m C++ Coding Standards | Pt
Herb Sutter and Andrei Alexandrescu C++ Coding Standards [
ISBN 0321 1 1 3 586 101 Rules, Guidelines, and Best Practices
m Effective C++, Third Edition ONLECETe [ffective (1
Scott Meyers Third Editioa

55 Specifi¢ Ways to Improve
Your Programs and Designs

ISBN: 0321334876 ;\S{SC{GW%EECHVGC*
m More Effective C++ i o
Scott Meyers

ISBN: 020163371X

" A
Design/Coding Goals

m Write clear code

m Write concise code

m Write accurate code

m Write secure code

m Write code that is easy to change

m Write code that is difficult to use incorrectly
m Ease transfer of ownership

m Learn from my mistakes

" S
Magic Seven, Plus or Minus Two

m “For memory, a chunk or information is loosely defined
as, precisely, one of those items that the immediate
memory can hold up to seven of.”

George A. Miller, The Psychological Review, 1956

m Human brain is capable of simultaneously “juggling”
between 5 and 9 items

m When new information is encountered, an item must be
discarded or, with effort, committed to longer term
memory

m hitp://www.well.com/user/smalin/miller.nhtml

Magic Seven, Plus or Minus Two

m Code should minimize the number of items
occupied in short-term memory

m Guides every aspect of my coding process

m Motivation for many of the techniques |
describe In this presentation

m Unfortunately, hard to teach this to new
programmers

" A
Roadmap

m Partnering with the Compiler

m ASSERT, VERIFY, and ENFORCE
m Handling Errors without Error

m Final Design Tidbits

"
Partnering with the Compiler

m The Compiler:
Doesn’t get tired
Doesn’t feel pressure
Doesn’t understand stress
Produces predictable results
Makes less mistakes

m |[f the compiler can figure something out,
let it!

Partnering with the Compiler

m [nitial Design: m Change:
unsigned char buffer[1024]; unsigned char buffer[128];
// More code // More code
memcpy (buffer, ptr, 1024); memcpy(buffer, ptr, 1024);

m Modification:
#define ELEMENT _COUNT (array) sizeof(array) / sizeof(*array)

unsigned char buffer[128];
// More code

memcpy(buffer, ptr, ELEMENT_ COUNT (buffer));

Strive to make changes in only one place — let the compiler figure out what it can!

Partnering with the Compiler

m [nitial Design: m Change:
static unsigned long const \ static unsigned long const \
NUMBER = 100; NUMBER = 0;
// Some Code // Some Code
double d = static_cast<double>(100) \ double d = static_cast<double>(100) \
/ NUMBER; / NUMBER;

m Modification:

static unsigned long const NUMBER = 100;

// Some Code
BOOST_STATIC_ASSERT(NUMBER != 0);
double d = static_cast<double>(100) / NUMBER;

Strive to find errors at compile time rather than runtime!

Partnering with the Compiler
m [ips:

When taking a break, type one or two
sentences that capture your current though
process

void AReallyHairyFunction(int i) {
// Some Code
| know that the input is valid, something must be wrong in
this function. Figure this out tomorrow.
// More Code

}

Generates an error that serves as a
mnemonic for what you were doing when you
left

" SN
ASSERT, VERIFY, and ENFORCE

m ASSERT is macro used to ensure that reality
matches the programmer’s original intent

m ASSERTSs:

Provide immediate feedback that logic is incorrect
Do not add overhead to Release builds

Clearly and concisely communicate developer’s
original intent

m ASSERTSs should become second-nature in your
coding process

" SN
ASSERT, VERIFY, and ENFORCE

m Example of ASSERT macro:

#if (defined DEBUG || defined _DEBUG)
#define ASSERT (stmt) \
if(stmt == false) \
{ LogError(“Assertion failed: “ #stmt); Exit(); }

#else
#define ASSERT (stmt)
#endif

ASSERT, VERIFY, and ENFORCE

m [nitial Design: m Change:
void MyFunction(char *szString, void MyFunction(char *szString,
int positive_int) int positive_int)
{ /* Do something */ } { /* Do something */ }
MyFunction(“foo”, 1); MyFunction(0, -3);

m Modification:

void MyFunction(char *szString, int positive_int) {
ASSERT(szString); ASSERT (*szString != 0); ASSERT(i >= 0);
/* Do something */ }

MyFunction(“foo”, -3);

Strive to ASSERT every assumption, even those that seem obvious. While it may

seem like overkill to you, the next developer will thank you for it.

ASSERT, VERIFY, and ENFORCE

m ASSERTSs are not a replacement for
handling errors

m ASSERTs aren’t all that valuable when
you are initially writing code, but...

Become valuable as you change code

Become even more valuable as ownership of
the code changes

" SN
ASSERT, VERIFY, and ENFORCE

m VERIFY is similar to ASSERT, but the
verified code remains in Release builds

m Useful for checking the return status of
functions or methods that never fall

" S
ASSERT, VERIFY, and ENFORCE

m Example of VERIFY macro:

#if (defined DEBUG || defined _DEBUG)
#define VERIFY (stmt) ASSERT (stmt)

#else
#define VERIFY (stmt) stmt
#endif

ASSERT, VERIFY, and ENFORCE

m [nitial Design: m Change:
bool ReturnsTrue(void) { bool ReturnsTrue(void) {
/* Do something */ if(OncelnABlueMoon())
return(true) } return(false);
ReturnsTrue(); } return(tigy
ReturnsTrue();

m Modification:

| VERIFY(ReturnsTrue()); |

Strive to use VERIFYs to ensure methods succeed, but...

ASSERT, VERIFY, and ENFORCE

m Use VERIFYs sparingly

If 2 method always returns a successful error
code, should it return an error code at all?

If a method returns a failure error code,

S

m EN
VE

nouldn’t it be handled?
~ORCE should be used in place of

RIFYs

" SN
ASSERT, VERIFY, and ENFORCE

m ENFORCE is a macro that is compiled in both
Debug and Release builds

m Throws exception when encountering a failure

m Should be used in situations where functions
should never fail, but occasionally do

This is the reality of our programming ecosystem

" S
ASSERT, VERIFY, and ENFORCE

m Example of ENFORCE macro:

#define ENFORCE(stmt) \
if(stmt == false) \
throw std::runtime_error(“ENFORCE failed”);

ASSERT, VERIFY, and ENFORCE

m [nitial Design: m Change:
bool ReturnsTrue(void) { bool ReturnsTrue(void) {
/* Do something */ if(OncelnABlueMoon())
return(true) return(false);
] return(true);
ReturnsTrue(); }
ReturnsTrue();

m Modification:
” ENFORCE(ReturnsTrue()); ”

Strive to use ENFORCEs for all methods that should always succeed

ASSERT, VERIFY, and ENFORCE

m [ips:
ASSERT all assumptions

m Incoming variables for private and protected
methods

m Unsigned integer operations
= Program flow

Use VERIFY sparingly, if at all

All functions return values should be checked
s ENFORCE the function if recovery is not possible

Handling Errors without Error

m Two primary error handling strategies
Error Codes
Exception Handling

m Choose one strategy up front

Error handling is one of the most important (and
influential) design decisions you will make

m Stick with your strategy
Mental models are difficult with multiple strategies

Handling Errors without Error

m Consider:

” unsigned char * ptr = new unsigned char; // throw std::bad_alloc “

m Options:

unsigned char * pir;
try { ptr = new unsigned char; }
catch(std::bad_alloc const &) { return(0); }

unsigned char * pir;
ptr = new (nothrow) unsigned char;
if(ptr ==) return(0);

m Requires rigid coding standard that is easy to

get wrong

m |f you are using C++, your error handling
strategy has been chosen for you

"
Handling Errors without Error

m Contractual basis for exception handling:

The basic guarantee:

m The invariants of the component are preserved and no
resources are leaked

The strong guarantee:

= The operation has either completed successfully or thrown an
exception, leaving the program state exactly as it was before
the operation started

The no-throw guarantee:
= The operation will not throw an exception

http://www.boost.org/more/generic exception safety.html

" A
Handling Errors without Error

m Basic guarantee is just good programming

m No-throw guarantee is good for edge
cases
Destructors
Main thread loops
Etc

m Strong guarantee is the most significant,
and requires the most work

"
Handling Errors without Error
m [nitial Design: [Voq smrvo |

InitinternalState();
InitCommunications();
HandshakeWithPeer();

}

void Stop(void) {
DisconnectPeer();
TerminateCommunications();
DestroylnternalState();

}

O Change: void InitCommunications(void) {
// Some Code
throw \
std::runtime_error \
(“Unable to InitCommunications”);
// More code

"
Handling Errors without Error
m Modification:

typedef enum StartState { DEFAULT_STATE = 0, INIT_INTERNAL_STATE,
INIT_COMMUNICATIONS, HANDSHAKE };

void Start(void) {

StartState state _completed = DEFAULT STATE;

try {
InitInteranlState();
state_completed = INIT_INTERNAL_STATE;
InitCommunications();
state_completed = INIT_COMMUNICATIONS;
HandshakePeer();
state_completed = HANDSHAKE;

catch(...) {
if(state >= HANDSHAKE) DisconnectPeer();
if(state >= INIT_COMMUNICATIONS) TerminateCommunications();
if(state >= INIT_INTERNAL_STATE) DestroylnternalState();

// Gommunicate error to parent

"
Handling Errors without Error

m ScopeGuard makes this process much cleaner
m ScopeGuard:

Creates function calls that are executed at the end of
the current scope

Function arguments are bound to function

|s perfect for non-object clean up duties
m http://www.cuj.com/documents/s=8000/cujcexp1812alexandr/alexandr.htm

"
Handling Errors without Error

m Modification:

void Start(void) {
InitinternalState();
ScopeGuard destroy_internal =\
MakeGuard(&DestroylnternalState, this);
InitCommunications();
ScopeGuard terminate_communications =\
MakeGuard(&TerminateCommunications, this);

HandshakePeer();

ScopeGuard disconnect_peer =\
MakeGuard(&DisconnectPeer, this);

/[More code Strive to make every method

support the strong exception
/I If here, things worked as expected PP J P

disconnect_peer.release();
terminate_communications.release();

guarantee. This requires a
change in thought, but soon
destroy_internal.release(); becomes second nature.

" A
Handling Errors without Error

m [nitial Design:

class MyModule {
void Method1(void) { throw MyException(); }
void Method2(void) { throw MyException(); }
void Method3(void) { throw MyException(); }
}

MyModule m;

try {
m.Method1();

m.Method2();
m.Method3();

}
catch(MyException const &ex) { /* Some Code */ }

Handling Errors without Error

m Change:

class MyModule {

}
MyModule m;

try {
m.Method1();

m.Method2();
m.Method3();

}

catch(MyException const &ex) {
std::cerr << “MyException at “ << ex.file <<
}

void Method1(void) { throw MyException(FILE , LINE);
void Method2(void) { throw MyException(FILE , LINE);
void Method3(void) { throw MyException(FILE ., LINE);

, “ << ex.line;

}
)
}

" A
Handling Errors without Error

m Modification:

class MyModule {
void Method1(void) { THROW_ EXCEPTION(MyException()); }
void Method2(void) { THROW_ EXCEPTION(MyException()); }
void Method3(void) { THROW_ EXCEPTION(MyException()); }

}
MyModule m;

try {
m.Method1();

m.Method2();

m.Method3();
}
catch(MyException const &ex) {

std::cerr << “MyException at “ << ex.file << “, “ << ex.line;

}

Strive to include contextual information with exceptions that communicate what,

where, and when an error happened.

Handling Errors without Error

struct FileLineException {
char * pszFile;
int iLine;
b
#define THROW_EXCEPTION(ex) ThrowException(ex, FILE_, LINE)

template <typename ExceptionT>

void ThrowException(ExceptionT ex, char *pszFile, int iLine) {
ex.pszFile = pszFile;
ex.iLine = iLine;
throw static_cast<ExceptionT &>(ex);

"
Handling Errors without Error

m |nitial Design:

MyModule m;

try { m.Method1(); } catch(MyException const &ex) { std::cerr << ... } catch(...) {}
try { m.Method2(); } catch(MyException const &ex) { std::cerr << ... } catch(...) {}
try { m.Method3(); } catch(MyException const &ex) { std::cerr << ... } catch(...) {}

m Change:

void HandleMyException(MyException const &ex) { std::cerr << ... }
MyModule m;

try { m.Method1(); } catch(MyException const &ex) { HandleMyException(ex); } catch(...) {}
try { m.Method2(); } catch(MyException const &ex) { HandleMyException(ex); } catch(...) {}
try { m.Method3(); } catch(MyException const &ex) { HandleMyException(ex); } catch(...) {}

Handling Errors without Error

m Modification

void HandleException(void) {

try {
throw; // rethrow existing exception

} catch(MyException const &ex) {
std::.cerr <<

} catch(MyOtherException const &ex) {
std::.cerr << ...

} cateh(...) {
std::cerr <<

}
}

MyModule m;

try { m.Method1(); } catch(...) { HandleException(); }
try { m.Method?2(); } catch(...) { HandleException(); }
try { m.Method3(); } catch(...) { HandleException(); }

Strive to place

error handling
in one place

" A
Handling Errors without Error

m All exceptions should ultimately be children of
std::exception

m All library exceptions should ultimately be
children of a common parent
m Always catch everything on thread boundaries

m Include enough information with an exception to

reliably infer “why” given “where”, “what”, and
“when”

"
Final Design Tidbits

m Prefer C++ constructs over platform specific techniques
C++ is the common denominator for developers working on your project
Makes the code easier to port
Cleans up design
m Prefer quality public libraries over home-grown solutions
More developers will be familiar with the code/terminology
Makes the code easier to port
m Beware of GUI, COM, Database, <your framework here> in design
Paradigms get mixed
Frameworks have a nasty habit of creeping into other areas of the code
m Embrace an easy unit test framework
Easy to learn
Easy to use
Easy to compile
Easy to run

"
Final Design Tidbits

m Embrace smart pointers / RAll Techniques

Resource Acquisition Is Initialization (RAIl) is one of
the greatest strengths of C++

m Use boost::noncopyable

m Use documentation macros

Doxygen is a great source code documentation tool
= www.doxygen.org

m Maintain public/protected/private ordering Iin
class declarations

m Learn from your mistakes!

'_
Questions / Comments?

David Brownell
db@DavidBrownell.com

