
Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Last revised: 4/17/04

Double-Checked Locking,
Threads,

Compiler Optimizations,
and More

Scott Meyers, Ph.D.
Software Development Consultant

(Based on Work with Andrei Alexandrescu)

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/638-6614

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 2

Andrei’s Summary

Multithreading is just one damn thing after, before, or 
simultaneous with another.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 3

Agenda
� Lazy Initialization, the GOF Singleton Pattern, and Multithreading

� The Double-Checked Locking Pattern (DCLP)

� Compiler Optimizations and Instruction Reordering

� Sequence Points and Observable Behavior

� The impact of volatile

� Multiprocessors, Cache Coherency, and Memory Barriers

� Alternatives to DCLP 

� Recommended Reading

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 4

Not on the Agenda
� Atomicity considerations

➠ In this talk, I assume that pointer initializations/assignments are 
atomic.

➠ That’s not true for all platforms.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 5

Lazy Initialization
Deferring an object’s initialization until first use.

� Helps avoid initialization order problems.
➠ Initialize things as late as possible.

� An efficiency win if an object is never used.

Examples:

int x = computeInitValue(); // eager initialization

... // clients refer to x

int xValue() {
static int x = computeInitValue(); // lazy initialization
return x;

}

... // clients refer to xValue()

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 6

GOF Singleton
The classic GOF Singleton implementation is lazy:

// from the .h file
class Keyboard {
public:

static Keyboard* Instance();
...

private:
static Keyboard* pInstance; // ptr to sole Keyboard object
...

};

// from the .cpp file
Keyboard* Keyboard::pInstance = 0;

Keyboard* Keyboard::Instance() {
if (pInstance == 0) {

pInstance = new Keyboard; // lazy initialization here
}

return pInstance;
}

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 7

Classic Singleton Isn’t Thread Safe
Here’s the implementation again:

Keyboard* Keyboard::Instance() {
if (pInstance == 0) { // Line 1

pInstance = new Keyboard; // Line 2
}

return pInstance;
}

Consider two threads, A and B:

1. Thread A executes through Line 1, see pInstance as NULL, then is 
suspended.

2. Thread B executes Line 1, sees pInstance as NULL, then executes Line 2.
➠ At this point, the Singleton has been created.

3. Thread A starts running again and executes Line 2.
➠ This creates another Singleton!

Clearly, this implementation of Singleton isn’t thread safe.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 8

Adding a Lock
Making it thread safe is easy:

Keyboard* Keyboard::Instance() {
Lock L(args); // acquire mutex or other lock
if (pInstance == 0) {

pInstance = new Keyboard;
}

return pInstance;
} // release lock

But this looks expensive:

� Each call to Instance has to acquire a lock.
➠ This typically ain’t cheap!

� Only the first call needs it.

We’d like a less costly solution.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 9

The Double-Checked Locking Pattern (DCLP)
Usually, pInstance will be non-NULL, so let’s test that before grabbing a lock:

Keyboard* Keyboard::Instance() {
if (pInstance == 0) { // first check

Lock L(args); // acquire lock
if (pInstance == 0) { // second check

pInstance = new Keyboard;
}

}

return pInstance;
} // release lock

This is the Double-Checked Locking Pattern (DCLP).

� Its goal is efficient lazy initialization of a shared resource.

� It’s not reliable.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 10

DCLP and Instruction Ordering
Consider this part of the classic DCLP implementation:

pInstance = new Keyboard;

It does three things:

1. Allocate memory (via operator new) to hold a Keyboard object.

2. Construct the Keyboard object in the memory.

3. Assign to pInstance the address of the memory.

They need not be done in this order! For example:

pInstance = // 3
operator new(sizeof(Keyboard)); // 1

new (pInstance) Keyboard; // 2

If this code is generated, the order is 1, 3, 2.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 11

DCLP and Instruction Ordering
In context:

if (pInstance == 0) { // Line 1
Lock L(args);
if (pInstance == 0) {

pInstance =
operator new(sizeof(Keyboard)); // Line 2

new (pInstance) Keyboard;
}

}

Consider:

1. Thread A executes through Line 2 and is suspended.
➠ At this point, pInstance is non-NULL, but no singleton has been 

constructed.

2. Thread B executes Line 1, sees pInstance as non-NULL, returns, and 
dereferences the pointer returned by Instance (i.e., pInstance).
➠ It attempts to reference an object that’s not there yet!

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 12

DCLP and Instruction Ordering
The fundamental problem:

� You need a way to specify that Step 3 must come after Steps 1 and 2.

� There is no way to specify this in C++.
➠ Or in C. (The rest of this talk is as true for C as it is for C++.)



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 13

Sequence Points and Observable Behavior
C++ defines sequence points:

� When a sequence point is reached, 

all side effects of previous evaluations shall be complete and no side 
effects of subsequent evaluations shall have taken place.

� There’s a sequence point at the end of each statement, i.e., “at the 
semicolon.”

This suggests that careful statement ordering should allow control over 
the order of generated instructions.

� It doesn’t.

� Compilers may reorder instructions as long as they preserve the 
observable behavior of the C++ abstract machine.

� Observable behavior consists only of
➠ Reads and writes of volatile data.
➠ Calls to library I/O functions.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 14

Sequence Points and Observable Behavior
Consider:

void Foo() {
int x =0, y =0; //Statement 1
x = 5; //Statement 2
y = 10; //Statement 3
printf("%d,%d", x, y); //Statement 4

}

� Statements 1-3 may be optimized away.
➠ They’re not observable behavior.

� If 1-3 are executed, 1 must precede 2-4 and 4 must follow 1-3.

� We know nothing about the relative execution order of 2 and 3.
➠ Either might come first.
➠ They might run simultaneously; multiple ALUs are common.

Sequence points thus offer no control over the execution of Statements 1-3.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 15

Aside: Motivations for Instruction Reordering
� Execute operations in parallel where the hardware allows it.

� To avoid spilling data from a register.

� To perform common subexpression elimination.

� To keep the instruction pipeline full.

� To reduce the size of the generated executable.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 16

Programmers vs. Optimizers
Some programmers try to seize control by rewriting the source code.

� E.g., they don’t assign pInstance until singleton construction is 
complete:

Keyboard* Keyboard::instance() {
if (pInstance == 0) {

Lock L(args);
if (pInstance == 0) {

Keyboard* temp = new Keyboard; //initialize to temp
pInstance = temp; //assign temp to pInstance

}
}
return pInstance;

}

� But compilers can deduce that temp is unnecessary and eliminate it, 
thus yielding the original code.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 17

Programmers vs. Optimizers
Analogous attempts to outfox optimizers are, in general, unreliable:

� Declaring temp extern and moving it to a new translation unit.
➠ Compilers with interprocedural optimization can still detect that 

temp is unnecessary and eliminate it.

� Declaring the singleton constructor in a different translation unit, 
thus prohibiting inlining and forcing the compiler to assume that the 
constructor might throw an exception.
➠ Build environments that support link-time inlining followed by 

additional optimizations can “see through” such obfuscation.

� They’re optimizing compilers (and linkers).
➠ They’re supposed to eliminate unnecessary code!

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 18

The Impact of volatile

volatile prevents some compiler optimizations.

� The order of reads/writes to volatile data must be preserved.

� volatile memory may change outside of program control, so 
“redundant” reads/writes in source code must be respected.
➠ Useful for e.g., memory-mapped IO

Important:

� I’m discussing the C++ meaning of volatile.

� The meaning in .NET and Java is different.
➠ They do (or will) add acquire/release semantics to volatile.
➠ We’ll discuss acquire/release soon.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 19

The Impact of volatile

The papers describing DCLP point out that pInstance must be volatile. 

class Keyboard {
private:

static Keyboard* volatile pInstance;
...

};

Otherwise the second test might be optimized away:

if (pInstance == 0) { // first check
Lock L(args);
if (pInstance == 0) { // "redundant" second check
...

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 20

The Impact of volatile

This would seem to make the temp-introducing strategy viable:

class Keyboard {
public:

static Keyboard* instance();
...

private:
static Keyboard* volatile pInstance;
int x;
Keyboard() : x(5) {} // Note inlined ctor

};

Keyboard* Keyboard::instance() {
if (pInstance == 0) {

Lock L(args);
if (pInstance == 0) {

Keyboard* volatile temp = new Keyboard; // these lines can’t
pInstance = temp; // be reordered

}
}
return pInstance;

}



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 21

The Impact of volatile

It doesn’t. Here’s instance after inlining the constructor:

Keyboard* Keyboard::instance() {
if (pInstance == 0) {

Lock L(args);
if (pInstance == 0) {

Keyboard* volatile temp =
static_cast<Keyboard*>(operator new(sizeof(Keyboard)));

temp->x = 5; // inlined constructor
pInstance = temp;

}
}
return pInstance;

}

Though temp is volatile, *temp isn’t, so instructions can be reordered:

...
pInstance = temp;
temp->x = 5;
...

If they are, pInstance again points to uninitialized memory.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 22

The Impact of volatile

Casts can be added to the singleton constructor to prevent such 
reorderings, but it still isn’t guaranteed to yield thread-safe code:

� Constraints on observable behavior apply only to C++’s abstract 
machine.
➠ This abstract machine is implicitly single-threaded.
➠ Use of threads puts one in the territory of undefined behavior.

� In practice, compiler vendors often choose to generate thread-unsafe 
code, even when volatile is used.
➠ Otherwise, lost optimization opportunities lead to too big an 

efficiency hit.

Bottom line: the road to thread-safe code isn’t paved with volatile.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 23

Multiprocessors and Cache Coherency
Conceptually, many multiprocessor systems look like this:

But each processor typically has a cache, so this is more accurate:

Processor 1

Processor 2

Processor n

Memory

Processor 1

Processor 2

Processor n

Memory

Cache 1

Cache 2

Cache n

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 24

Multiprocessors and Cache Coherency
This gives rise to the specter of the cache coherency problem:

� The value of a shared memory location may have different values in 
different caches.

Hardware generally takes care of this problem, but there’s a catch:

� Cache contents may be flushed in an order other than that in which 
they were written.
➠ This can improve efficiency.

Consider:

� Processor n modifies shared variable x, then shared variable y.

� When the cache is flushed, y is flushed before x.

� Other processors may thus see y’s value change before x’s.
➠ This is never a problem for processor n, only for other processors.
➠ It’s an issue only for multiprocessor systems.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 25

Memory Visibility
The cache coherency problem is an aspect of a more general issue:

� Memory visibility: what guarantees do we have about how different 
threads see the contents of shared memory?

A platform’s memory model describes its guarantees.

� C++ offers no guarantees at all.
➠ Libraries callable from C++ (e.g., Posix) do offer some guarantees.

� Some other languages (e.g., Java) offer guarantees out of the box.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 26

DCLP and Multiprocessors
Out-of-order write visibility can cause DCLP to fail. Recall that 

pInstance = new Keyboard;

does three things:

1. Allocate memory (via operator new) to hold a Keyboard object.

2. Construct the Keyboard object in the memory.

3. Assign to pInstance the address of the memory.

Consider this scenario:

� Processor n does these steps in order.

� Processor m sees the results of step 3 before the results of step 2.
➠ It thus thinks pInstance points to an initialized object before it 

does.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 27

Memory Barriers
Such visibility problems can be prevented via the use of memory barriers 
(aka fences):

� Special instructions that constrain “out of order” reads and writes.

Barriers allow readers and writers to perform a handshake that gives them 
a consistent view of memory values:

� Readers use an acquire barrier to prevent subsequent source code 
memory accesses from moving “up in time” to before the barrier. 

� Writers use a release barrier to prevent prior source code memory 
accesses from moving “down in time” to after the barrier.

The handshake is the release/acquire pair:

� The release changes the state of shared memory, and the acquire 
guarantees that the reader see the new state.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 28

Memory Barriers
Note that memory barriers have both static and dynamic implications:

� Compilers may not reorder reads or writes in a way that violates 
memory barriers semantics.
➠ This is a static constraint.

� Runtime systems (including hardware) may not do anything that 
violates memory barrier semantics.
➠ This is a dynamic constraint.

The details of available memory barrier instructions can vary from 
architecture to architecture.

� E.g., on Sparc, it is possible to create barriers only for reads or for 
writes.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 29

DCLP With Memory Barriers
Here’s a thread-safe version of DCLP for processors supporting memory 
barriers:

Keyboard* Keyboard::instance() {
Keyboard* temp = pInstance; // read pInstance
Perform acquire; // prevent visibility of later mem. ops.

// from preceding pInstance’s read
if (temp == 0) {

Lock L(args);
if (pInstance == 0) {

temp = new Keyboard;
Perform release; // prevent visibility of earlier mem. ops

// from succeeding pInstance’s write
pInstance = temp; // write pInstance

}
}
return pInstance;

}

Unfortunately, memory barrier instructions tend to be architecture-
specific, so code like this is not portable.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 30

A Rule for Avoiding Memory Visibility Problems
Shared data should be accessed only if one of the following is true:

� The access is inside a critical section.

� For communication via message passing, these protocols are 
followed:
➠ Read “ready” flag; perform acquire; read message
➠ Write message; perform release; write “ready” flag

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 31

A Rule for Avoiding Memory Visibility Problems
DCLP effectively uses message passing:

� pInstance is the “ready” flag (non-null => ready)

� *pInstance is the message

But DCLP fails to follow the protocol:

Keyboard* Keyboard::Instance() {
if (pInstance == 0) { // read flag

Lock L(args);
if (pInstance == 0) {

pInstance = new Keyboard;
}

}

return pInstance; // allow caller to read message
} // (note lack of intervening acquire

// when pInstance is non-null)

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 32

A Rule for Avoiding Memory Visibility Problems
The pseudocode using memory barriers does follow the protocol:

Keyboard* Keyboard::instance() {
Keyboard* temp = pInstance; // read flag
Perform acquire; // acquire
if (temp == 0) {

Lock L(args);
if (pInstance == 0) {

temp = new Keyboard; // write message
Perform release; // release
pInstance = temp; // write flag

}
}
return pInstance; // allow caller to

} // read message

Note that the protocol is followed regardless of whether temp is null.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 33

A Closer Look at Locks
Look again at the code between the memory barriers:

if (temp == 0) {
Lock L(args);
if (pInstance == 0) {

temp = new Keyboard;

It’s critical that L be initialized before testing pInstance!

� Otherwise we have our original problem: another thread could be 
modifying pInstance while we’re testing it.

But what keeps optimizers from rewriting the code like this?

if (temp == 0) {
if (pInstance == 0) { 

Lock L(args); 
temp = new Keyboard;

Locks in threading libraries work, so something must prevent this.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 34

A Closer Look at Locks
Threading libraries ensure that

� Lock acquisition includes the moral equivalent of an acquire

� Lock release includes the moral equivalent of a release

So the pseudocode with memory barriers is equivalent to this:

Keyboard* Keyboard::instance() {
Keyboard* temp = pInstance;
Perform acquire;
if (temp == 0) {

Lock L(args);
Perform acquire; // visibility of mem. ops. in L’s ctor must
if (pInstance == 0) { // precede all mem ops. that follow

temp = new Keyboard;
Perform release;
pInstance = temp;

}
Perform release; // visibility of mem. ops. in L’s dtor must

} // follow all mem. ops. that precede
return pInstance;

}

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 35

A Closer Look at Locks
Locks thus provide a “portable” way to insert memory barriers.

� They’re as portable as the threading library.
➠ E.g. Posix is pretty portable.

We can thus rewrite the previous page using locks:

Keyboard* Keyboard::instance() {
Keyboard* temp = pInstance;
Lock L1(args); // acquire
if (temp == 0) {

Lock L2(args); // acquire
if (pInstance == 0) {

{
Lock L3(args); // acquire
temp = new Keyboard;

} // release (L3)
pInstance = temp;

} // release (L2)
}
return pInstance;

} // release (L1)

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 36

Back Where We Started
This grabs a lock each time instance is called.

� Just like the original “easy” (and potentially inefficient) code.

We might as well eliminate the extra locks and use the obvious design!

Keyboard* Keyboard::Instance() { // from page 8
Lock L(args);
if (pInstance == 0) {

pInstance = new Keyboard;
}

return pInstance;
}

Note that this code also satisfies our earlier rule:

� Access to shared data is now inside a critical section.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 37

Conclusion
There is no portable way to implement DCLP in C++.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 38

Alternatives to DCLP
Move initialization actions into the single-threaded program startup code.

� Often an easy way to ensure both efficiency and thread safety.

� It replaces lazy evaluation with eager evaluation.

Replace global singletons with per-thread singletons:

� Each can use thread-local storage.
➠ Threading concerns during initialization thus vanish.

� But now there are multiple “singletons.”

Stop worrying. 

� Grab a lock each time Instance is called.
➠ Maybe it won’t be the bottleneck you fear.
➠ If it is, advise users to cache the returned pointer.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 39

Many Many Thanks To

Doug Lea

Kevlin Henney

Petru Marginean

Arch Robison

James Kanze

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 40

Recommended Reading
The article on which this talk is based:

� “C++ and the Perils of Double-Checked Locking,” Scott Meyers and 
Andrei Alexandrescu, Dr. Dobbs Journal, June (Part 1) and
July (Part 2), 2004.



Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 41

Recommended Reading
The Singleton Pattern:

� Design Patterns: Elements of Reusable Object-Oriented Software, Erich 
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Addison-
Wesley, 1995, ISBN 0-201-63361-2. Also available as Design Patterns 
CD, Addison-Wesley, 1998, ISBN 0-201-63498-8.

Variations:

� Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs 
and Designs, Scott Meyers, Addison-Wesley, 1998, ISBN 0-201-92488-9, 
pp. 219-223.

� More Effective C++: 35 New Ways to Improve Your Programs and Designs, 
Scott Meyers, Addison-Wesley, 1996, ISBN 0-201-63371-X, pp. 130-138.

� Modern C++ Design: Generic Programming and Design Patterns Applied, 
Andrei Alexandrescu, Addison-Wesley, 2001, ISBN 0-201-70431-5, pp. 
129-156.

� Pattern Hatching: Design Patterns Applied, John Vlissides, Addison-
Wesley, 1998, ISBN 0-201-43293-5, pp. 61-72.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 42

Recommended Reading
The Double-Checked Locking Pattern:

� “Double-Checked Locking,” Douglas Schmidt and Tim Harrison, in 
Pattern Languages of Program Design 3, Addison-Wesley, 1998. 
Available at http://www.cs.wustl.edu/~schmidt/PDF/DC-Locking.pdf.
➠ A slightly-revised version appears in Pattern-Oriented Software 

Architecture, Volume 2 (POSA2), Wiley, 2000. Tutorial notes for the 
book’s patterns are available at http://cs.wustl.edu/~schmidt/
posa2.ppt.

� The “Double-Checked Locking is Broken” Declaration, available at
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

� Synchronization and the Java Memory Model, Doug Lea, available at 
http://gee.cs.oswego.edu/dl/cpj/jmm.html.

� “Warning! Threading in a Multiprocessor World”, Allen Holub, 
JavaWorld, February 2001, available at http://www.javaworld.com/
javaworld/jw-02-2001/jw-0209-toolbox_p.html.

� “Multiprocessor Safety and Java”, Paul Jakubik, Visual Developer 
Magazine, March/April 2000. 

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 43

Recommended Reading
Memory Barriers/Fences and Memory Visibility:

� “Memory Consistency & .NET,” Arch Robison, Dr. Dobb’s Journal, 
April 2003.

� Programming with POSIX Threads, David R. Butenhof, Addison-
Wesley, 1997, ISBN 0-201-63392-2, pp. 88-95.

Scott Meyers, Software Development Consultant Copyrighted material, all rights reserved.
http://www.aristeia.com/ Page 44

Please Note
Scott Meyers offers consulting services in all aspects of the design and 
implementation of C++ software systems. For details, visit his web site:

http://www.aristeia.com/

Scott also offers a mailing list to keep you up to date on his professional 
publications and activities. Read about the mailing list at:

http://www.aristeia.com/MailingList/


