
Code Complete 2: 
A Decade of Advances in 
Software Construction

www.construx.com

© 2004 Construx Software Builders, Inc.
All Rights Reserved.

Construx
Delivering Software Project Success™

®

Introduction



consulting training software projects construx.com
3

History of Code Complete

Published in 1993
Comprehensive survey of construction 
practices in 1993
Revised in 2003-04
Comprehensive survey of construction 
practices in 2004
What have we learned in 10 years?

consulting training software projects construx.com
4

Underlying Distinction

“Technology” knowledge (accidental)
Short lived
Readily acquired

“Principles” knowledge (essential) 
Longer lived
Not-so-readily acquired



consulting training software projects construx.com
5

Where Does Code Complete 2 
(CC2) Fit into this?

Attempt in 1993 was to capture lasting 
knowledge of software construction 
(principles knowledge)
I’ve asserted for many years that 95% of 
the content of CC1 is still relevant
Is this true?

consulting training software projects construx.com
6

Overview

Worst Ideas of 1993 and 2004
A Decade of Advances in Construction
Construction Realities as of 2004



Worst Ideas of 1993 
and 2004

consulting training software projects construx.com
8

Some of the Worst Ideas of 
1993

Hacking
“Optimize as you go” programming
“All design up front” programming
“Design ahead” programming
Flow charts
Automatic programming
Formal methods as a cure all
Calling everything “object oriented”



consulting training software projects construx.com
9

Some of the Worst Ideas of 
2004

Hacking
“Optimize as you go” programming
No design up front
Planning ahead to refactor later
Automatic programming
Extreme Programming as a cure all
Calling everything “agile”

consulting training software projects construx.com
10

Worst Ideas, 1993 vs. 2004

1993
Hacking
“Optimize as you go” 
programming
“All design up front” 
programming
“Design ahead” 
programming
Flow charts
Automatic programming
Formal methods as a cure 
all
Calling everything “object 
oriented”

2004
Hacking
“Optimize as you go” 
programming
No design up front

Planning ahead to refactor 
later
-
Automatic programming
Extreme Programming as 
a cure all
Calling everything “agile”



A Decade of Advances 
in Software 

Construction

consulting training software projects construx.com
12

How Far Have We Come In 10 
Years?

???



consulting training software projects construx.com
13

1. Daily Build and Smoke Test

Institutionalizes incremental integration

consulting training software projects construx.com
14

2. Code Libraries

Good programmers have always done this
Now supported by languages (C++, Java, 
VB)



consulting training software projects construx.com
15

3. Visual Basic

Visual programming innovation
The first language to make widespread 
use of COTS components 
Only language to learn syntax lessons 
from Ada (case statements, control 
statements, etc.)

consulting training software projects construx.com
16

4. The Web, for Research

FAQs
Discussion groups
Searchability in general



consulting training software projects construx.com
17

5. Open Source Software

Great aid to programmers
Beware of legal issues

consulting training software projects construx.com
18

6. The Web, for Code Libraries 
(including Open Source)

Combination of searchability + Open 
Source + vast resources = genuine 
innovation



consulting training software projects construx.com
19

7. Test-First Development

Shortens time to defect detection
Increases personal discipline
Nice complement to daily build & smoke 
test

consulting training software projects construx.com
20

8. Refactoring as a Discipline 
for Modifications

Provides a discipline for making changes



consulting training software projects construx.com
21

9. Widespread Use of Incre-
mental Development Practices

Concepts were well known in 1993
Practice is well known in 2004

consulting training software projects construx.com
22

10. Faster Computers

Compare CC1 performance benchmarks to 
CC2 benchmarks
Implications for optimization 



Construction Realities 
as of 2004

consulting training software projects construx.com
24

Overview of 2004’s 
Construction Realities

Construction as a Topic
Individual variation
Personal discipline
Simplicity
Defect cost increase
Importance of design
Technology waves
Incremental development
Toolbox metaphor



“Construction” is a 
Legitimate Topic

consulting training software projects construx.com
26

Software “Construction” –
Used to Look Like This

Software
Concept

System
Testing

Architectural
Design

Requirements
Analysis

Detailed
Design

Coding and
Debugging



consulting training software projects construx.com
27

Software “Construction” –
Now Looks Like This

Detailed
Design

Integration

Unit
Testing

Integration
Testing

Requirements
Development

Problem
Definition

Software
Architecture

System
Testing

Corrective
Maintenance

Construction
Planning

Coding and
Debugging

consulting training software projects construx.com
28

Distinction Between Activities 
and Phases

Activity != Phase (<> for VB programmers)
Talking about “Construction” as an 
activity does not imply a distinct phase
Differentiating between kinds of activities 
is extremely helpful



Individual Variation Is 
Significant

consulting training software projects construx.com
30

Where do Variations Exist?

Researchers have found 10:1 variations in:
Coding speed
Debugging speed
Defect-finding speed
Percentage of defects found
Bad-fix injection rate
Design quality
Amount of code generated from a design
Teamwork
Etc.



consulting training software projects construx.com
31

Significance of Individual 
Variability

According to Cocomo II calibrations, 
worst personnel will require 1,380% as 
much effort to produce software as best 
personnel

Source: Software Cost Estimation with Cocomo II, Barry W. Boehm, et al, Prentice Hall, 2000

1.29x

1.40x

1.43x

1.51x

3.53x

Team Cohesion

Staff’s Platform Experience

Staff’s Language and Tools Experience

Staff’s Applications Experience

Personnel/Team Capability

consulting training software projects construx.com
32

Key Skills of an Expert 
Programmer

Designing
Flushing out errors and ambiguities in 
requirements
Coding (naming, formatting, commenting, 
compiling)
Integration
Debugging
Unit testing
Using tools for all of the above



Personal Discipline 
Matters

consulting training software projects construx.com
34

Programmers Have Not Gotten 
Better at Predicting the Future

Optimizing “As you go”
“Design ahead”
Guessing end-user needs
Etc….



consulting training software projects construx.com
35

Why Personal Discipline 
Matters

Being realistic about predicting the future
Areas where discipline matters

Refactoring
Prototyping
Optimization
Managing Complexity

Endpoints
Watts’ Humphrey’s PSP
Kent Beck’s Extreme Programming

A Focus on Simplicity 
Works Better than a 
Focus on Complexity



consulting training software projects construx.com
37

Simplicity vs. Complexity

Why do projects fail?
Focus on write-time vs. read-time 
convenience
YAGNI and “design ahead”

Defect-Cost Increase 
is Alive and Well



consulting training software projects construx.com
39

Defect Cost Increase

Requirements

Architecture

Construction

System testRequirements Architecture Construction Post-Release

Cost to
Correct

Activity in Which a
Defect Is
Introduced

Activity in Which a Defect Is Detected

consulting training software projects construx.com
40

Decades of Research Support 
Defect-Cost Increase

Fagan, Michael E. 1976. “Design and Code Inspections to Reduce Errors in Program 
Development.” IBM Systems Journal 15, no. 3: 182–211.
Humphrey, Watts S., Terry R. Snyder, and Ronald R. Willis. 1991. “Software Process 
Improvement at Hughes Aircraft.” IEEE Software 8, no. 4 (July): 11–23.
Leffingwell, Dean, 1997. “Calculating the Return on Investment from More Effective 
Requirements Management,” American Programmer, 10(4):13-16. 
Willis, Ron R., et al, 1998. “Hughes Aircraft’s Widespread Deployment of a Continuously 
Improving Software Process,” Software Engineering Institute/Carnegie Mellon University, 
CMU/SEI-98-TR-006, May 1998.
Grady, Robert B. 1999. “An Economic Release Decision Model: Insights into Software 
Project Management.” In Proceedings of the Applications of Software Measurement 
Conference, 227-239. Orange Park, FL: Software Quality Engineering. 
Shull, et al, 2002. “What We Have Learned About Fighting Defects,” Proceedings, Metrics 
2002. IEEE; pp. 249-258.
Boehm, Barry and Richard Turner, 2004. Balancing Agility and Discipline: A Guide for the 
Perplexed, Boston, Mass.: Addison Wesley, 2004. 



consulting training software projects construx.com
41

Living With Defect-Cost Increase

Activity in Which a
Defect Is
Introduced

Requirements

Architecture

Construction

System testRequirements Architecture Construction Post-Release

Activity in Which a Defect Is Detected

Cost to
Correct

Fix Here Don’t Wait 
to Fix Here

Importance of Design



consulting training software projects construx.com
43

Design Advice—What has 
Changed in 10 Years?

In 1993, design pundits wanted to dot 
every i and cross every t before writing 
any code
In 2004, design pundits say BDUF! YAGNI!
There are lots of valid points on the “no 
design” “all design” continuum
The only 2 points guaranteed to be wrong 
are the two being advocated!

consulting training software projects construx.com
44

General Point: Extremes are 
Usually Not Productive

All design up front vs. no design up front
Entirely sequential vs. entirely improvised
All discipline vs. all art
Document everything vs. document 
nothing
Formal methods vs. hacking



Your Location on the 
Technology Wave 

Affects Your 
Construction 

Practices

consulting training software projects construx.com
46

Effect of Technology Waves on 
Construction

Definition of “technology wave”
Early wave characteristics
Late wave characteristics
Construction is affected by technology—
more than I thought (duh!) but still at the 
“principles” level



Incremental 
Approaches Work Best

consulting training software projects construx.com
48

CC1’s View of Incrementalism

“Evolution during development is an issue that hasn’t 
received much attention in its own right. With the rise of 
code-centered approaches such as prototyping and 
evolutionary delivery, it’s likely to receive an increasing 
amount of attention.”
“The word “incremental” has never achieved the designer 
status of “structured” or “object-oriented,” so no one has 
ever written a book on “incremental software engineering.” 
That’s too bad because the collection of techniques in 
such a book would be exceptionally potent.”



consulting training software projects construx.com
49

Examples of Iteration & 
Incrementalism

Iterative Approaches
UI Prototyping
Evolutionary 
prototyping
Proof-of-concept 
prototyping
Requirements reviews
Design reviews
Project estimates
Project Planning

Incremental Approaches
Staged delivery
Design to schedule
Incremental 
integration
Daily builds
Project planning

consulting training software projects construx.com
50

Iteration & Incrementalism

The pure waterfall model is neither incremental 
nor iterative—which is why it hasn’t worked very 
well
Evolutionary prototyping is both incremental and 
iterative 
Staged delivery is incremental but not iterative
Some practices derive their power from iteration, 
some from incrementalism, and some from both



The Toolbox Metaphor 
Continues to be 

Illuminating

consulting training software projects construx.com
52

Toolbox Metaphor

Toolbox explains there’s no one right tool 
for every job
What’s in the Software Engineering 
Toolbox? 

Best practices
Lifecycle models
Individuals’ skills
Reusable materials (templates, checklists, 
standards, guides, patterns, samples, 
references)



Summary

consulting training software projects construx.com
54

Software’s Essential Tensions

Software’s essential tensions have remained unchanged for 
years:

Rigid plans vs. Improvisation
Planning vs. Fortune Telling
Creativity vs. Structure
Discipline vs. Flexibility
Optimizing vs. Satisficing
Quantitative vs. Qualitative
Writeability vs. Readability
Process vs. Product
Theory vs. Practice

Balance wavers, but basic tensions are constants
In the end, these tensions are what keeps software 
development interesting!



consulting training software projects construx.com
55

Software Projects
Coaching & Consulting 
Training

info@construx.com
www.construx.com

Construx
Delivering Software Project Success

consulting training software projects construx.com
56

Major Updates to CC2

All programming examples (~500) updated to 
modern languages (Java, VB, C++)
New chapters on Design, Classes, Defensive 
Programming, Collaborative Construction, 
Refactoring
OO integrated throughout
Web integrated throughout
Numerous complementary resources on 
companion website cc2e.com
Further Reading updated throughout


