
Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 1

Herb SutterHerb Sutter

ArchitectArchitect
Microsoft Visual C++Microsoft Visual C++

The Future of C++ on .NETThe Future of C++ on .NET
A Tour of C++/CLIA Tour of C++/CLI

2

960x720 + software960x720 + software--rendered on 1.2GHz PIIIrendered on 1.2GHz PIII--M + M + FxFx 1.1.43221.1.4322

1.1. ItIt’’s easy to run existing C/C++ code on .NET: s easy to run existing C/C++ code on .NET:
100% 100% JITtedJITted (IL) code; still native data.(IL) code; still native data.
•• Just rebuild with /Just rebuild with /clrclr..

•• 1 day1 day to port the entire Quake 2 source base. (Nearly all of to port the entire Quake 2 source base. (Nearly all of
the effort was to translate from C to C++, and had nothing the effort was to translate from C to C++, and had nothing
to do with our compiler or the .NET platform.)to do with our compiler or the .NET platform.)

2.2. ItIt’’s not hard to extend existing code with CLR s not hard to extend existing code with CLR
types.types.
•• 2 days2 days to implement the radar extension using to implement the radar extension using FxFx (gradient (gradient

brushes, window transparency/opacity, brushes, window transparency/opacity, Matrix.RotateAtMatrix.RotateAt).).

3.3. It needs to be still easier, more natural, It needs to be still easier, more natural,
and and ““firstfirst--classclass”” to use C++ on the CLR.to use C++ on the CLR.

Quake II TakeawaysQuake II Takeaways

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 2

3

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

4

WinFX builds on the .NET Framework

Single cross-language framework for Windows

WinFX buildsWinFX builds on the .NET Frameworkon the .NET Framework

Single crossSingle cross--language frameworklanguage framework for Windowsfor Windows

(.NET)(.NET)

MicrosoftMicrosoft’’s Bet on .NETs Bet on .NET
Windows XP SP1 (and onward): .NET ships in the OS

Windows Longhorn: .NET is the OS API (WinFX)

Windows XP SP1 (and onward): .NET ships in the OSWindows XP SP1 (and onward): .NET ships in the OS

Windows Longhorn: .NET is the OS API (WinFX)Windows Longhorn: .NET is the OS API (WinFX)

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 3

5

Communication

Avalon WinFS IndigoWindows
Forms

ASP.NET

ObjectSpacesObjectSpaces

DataSetDataSet

SQL XMLSQL XML

ProvidersProviders

Fram
ew

ork

Services
Schemas

Data Model

ADO.NET

Connectivity

Synchronization
(WinFS, Win32..)
Synchronization
(WinFS, Win32..)

InfoAgent
(PreferenceRules..)
InfoAgent
(PreferenceRules..)

FileSystem Services
(MetaDataHandlers..)
FileSystem Services
(MetaDataHandlers..)

CalendarCalendar MediaMedia

DocumentDocument ……

ItemsItems

RelationshipsRelationships

ExtensionsExtensions
Communications Manager
(Port)
Communications Manager
(Port)

Messaging
Services

Transport Channels
(IPC, HTTP, TCP…)
Transport Channels
(IPC, HTTP, TCP…)

Channels
(Datagram, Reliable,
Peer, …)

Channels
(Datagram, Reliable,
Peer, …)

Policy
Engine
Policy
Engine

Message
Encoder
Message
Encoder

Channel
Security
Channel
Security

QueuingQueuing

EventingEventing

RoutingRouting

TransactionTransaction

Desktop
Services
Desktop
Services

Desktop Window
Manager
Desktop Window
Manager

Presentation
Object Manager
Presentation
Object Manager

Desktop
Composition Engine
Desktop
Composition Engine

Animation and
Composition
Animation and
Composition

Media Services

Hardware
Rendering
Hardware
Rendering

Media
Processing
Media
Processing

Capture and
Sourcing
Capture and
Sourcing

Software Rendering
and Sinks
Software Rendering
and Sinks

Adaptive UI
Engine
Adaptive UI
Engine

Page/Site
Composition
Page/Site
Composition

Personalization and
Profiling Services
Personalization and
Profiling Services

Membership and
Security Services
Membership and
Security Services

Designer
Services
Designer
Services

Controls Interop
Engine
Controls Interop
Engine

ControlsControls

Windows
Forms

Application
Services
Application
Services

PeoplePeople GroupGroup

Collaboration

People and
Groups
People and
Groups

Collaboration
History
Collaboration
History

Real-Time
Activities
Real-Time
Activities

SignalingSignaling
FederationFederation

System Services

Transactions Storage

Protocols

Network Services

K
ernel M

ode

Base Class LibrariesBase Class Libraries

Memory ManagerMemory Manager

Hosting LayerHosting Layer

Code ExecutionCode Execution LoaderLoader SecuritySecurity SerializationSerialization

Lightweight
Transactions
Lightweight
Transactions

Transaction
Coordinator
Transaction
Coordinator

Kernel
Transaction
Manager

Kernel
Transaction
Manager

Logging
Service
Logging
Service

KernelKernel

Hardware Abstraction LayerHardware Abstraction Layer

Process
Manager
Process
Manager

Security
Reference
Monitor

Security
Reference
Monitor

LPC
Facility
LPC
Facility

Memory
Manager
Memory
Manager

Power
Manager
Power
Manager

Config
Manager
Config
Manager

Plug and
Play
Plug and
Play

Transacted
NTFS
Transacted
NTFS

Cache
Manager
Cache

Manager
Universal
Data
Format

Universal
Data
Format

Filter
Engine
Filter
Engine

TCP, UDP
IPV4, IPV6
TCP, UDP
IPV4, IPV6 IPSECIPSEC QOSQOS HTTP

Listener
HTTP
Listener

Internet Connection FirewallInternet Connection Firewall

Demand Activation and Protocol HealthDemand Activation and Protocol Health

PNRPPNRP Native
WiFi
Native
WiFi SIPSIP TCP

Listener
TCP
Listener

UDP
Listener
UDP
Listener

IPC
Listener
IPC
Listener

Network Class LibraryNetwork Class Library

GDI/GDI+GDI/GDI+ Window
Manager
Window
Manager

Global
Audio
Engine

Global
Audio
Engine

Direct 3D
Graphics
Direct 3D
Graphics

Graphics driversGraphics drivers

DDIDDI Input
Manager
Input
Manager

Audio
Drivers
Audio
Drivers

DirectX
Graphics
Mini port

DirectX
Graphics
Mini port

RedirectorsRedirectors

SCSI/FCSCSI/FC 802.3802.3 802.11802.11

Device Drivers

Management
Services

(Event Logs,
Tracing,
Probes,

Auto Update,
Admin)

Management
Services

(Event Logs,
Tracing,
Probes,

Auto Update,
Admin)

IO ManagerIO Manager

Application Deployment
Engine
(Click-Once)

Application Deployment
Engine
(Click-Once)

Identity &
Security
System

Identity &
Security
System

FAT 16/32FAT 16/32

Filter
Manager
Filter
Manager

Distributed
File System
Distributed
File System

Virtual Shadow
Copy Service
Virtual Shadow
Copy Service

File Replication
Service
File Replication
Service

Virtual Disk
Service
Virtual Disk
Service

M
odels

ServiceServiceObjectObject T/SQLT/SQL XMLXMLDocumentDocument UIUI MediaMedia

CLR

Presentation Data Communication

Base Operating
System Services

Avalon WinFS Indigo

MicrosoftMicrosoft’’s Bet on .NETs Bet on .NET
Windows Longhorn: .NET is the OS API (WinFX)Windows Longhorn: .NET is the OS API (WinFX)Windows Longhorn: .NET is the OS API (WinFX)

6

.NET (aka CLI) Cross.NET (aka CLI) Cross--PlatformPlatform
Microsoft .NET: WinFX, PocketPC, SPOT:Microsoft .NET: WinFX, PocketPC, SPOT:

•• Windows XP SP1 and onward: .NET ships in the OS.Windows XP SP1 and onward: .NET ships in the OS.

•• Windows Longhorn: .NET is the OS API (WinFX).Windows Longhorn: .NET is the OS API (WinFX).

•• PocketPC and SPOT devices (.NET Compact Framework).PocketPC and SPOT devices (.NET Compact Framework).

Microsoft Rotor:Microsoft Rotor:
•• SSCLI: SharedSSCLI: Shared--source implementation of ISO CLI. source implementation of ISO CLI.

For nonFor non--commercial use.commercial use.

•• Runs today on Runs today on Windows XPWindows XP, , Mac OS XMac OS X, and , and FreeBSDFreeBSD..

Novell (Ximian) Mono:Novell (Ximian) Mono:
•• First two commercial releases due Q2 2004 and Q4 2004.First two commercial releases due Q2 2004 and Q4 2004.

•• Runs on Runs on UnixUnix and and LinuxLinux. Targets x86 and PowerPC directly. . Targets x86 and PowerPC directly.
Targets Arm, Sparc, HPPA, and s390 via interpreter.Targets Arm, Sparc, HPPA, and s390 via interpreter.

•• Includes ISO CLI, ASP.NET, ADO.NET, and GNOMEIncludes ISO CLI, ASP.NET, ADO.NET, and GNOME-- and and
LinuxLinux--specific libraries.specific libraries.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 4

7

““v2v2””: Revised Syntax (aka C++/CLI): Revised Syntax (aka C++/CLI)““v1v1””: Managed Extensions: Managed Extensions

GarbageGarbage collection, collection,
finalizers.finalizers.

Generics.Generics.

Reference and valueReference and value types.types.

Interfaces.Interfaces.

Verifiability.Verifiability.

Security.Security.

Properties, delegates, Properties, delegates,
events.events.

DeterministicDeterministic cleanup, cleanup,
destructors.destructors.

Templates.Templates.

Native types.Native types.

Multiple inheritance.Multiple inheritance.

STL, generic algorithms, STL, generic algorithms,
lambda expressions.lambda expressions.

Pointer/pointee distinction.Pointer/pointee distinction.

Copy construction, Copy construction,
assignment.assignment.

C++ CLRC++ CLR

8

RationaleRationale
C++: FirstC++: First--class .NET development language.class .NET development language.

•• Remove Remove ““Why CanWhy Can’’t It I”” usability and migration barriers: usability and migration barriers:
Port and extend existing programs even more seamlessly.Port and extend existing programs even more seamlessly.

•• Key Q: Key Q: ““Why should a .NET developer use C++?Why should a .NET developer use C++?””
•• Deliver promise of Deliver promise of CCLR.LR.

"Managed C++" insufficient: Grafting vs. integration."Managed C++" insufficient: Grafting vs. integration.
•• Great for basic interop, migrating existing code to .NET.Great for basic interop, migrating existing code to .NET.
•• Poor exposure of CLR features (e.g., __property). Poor Poor exposure of CLR features (e.g., __property). Poor

integration of C++ and CLR features (e.g., no templates of integration of C++ and CLR features (e.g., no templates of
CLR types). Hard to write pure (verifiable, secure) .NET apps.CLR types). Hard to write pure (verifiable, secure) .NET apps.

•• Ugly and nonintuitive syntax, uneven and contorted Ugly and nonintuitive syntax, uneven and contorted
semantics. Failed to achieve a natural, organic, semantics. Failed to achieve a natural, organic,
““everything in its placeeverything in its place”” surfacing of features.surfacing of features.

•• Low adoption. And those who do adopt still need to handLow adoption. And those who do adopt still need to hand--
wire way too much.wire way too much.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 5

9

Feature coverage:Feature coverage:
•• Provide organic support for Provide organic support for CLRCLR features/idioms.features/idioms.

•• Make sure they have a firstMake sure they have a first--class feel.class feel.

–– Example: Verifiability at first try in this complete program:Example: Verifiability at first try in this complete program:

intint main() { main() { System::Console::WriteLineSystem::Console::WriteLine("Hello, world!"); }("Hello, world!"); }

•• Leave no room for a language lower than Leave no room for a language lower than C++.C++.

C++ C++ ×× CLR:CLR: Why a Why a .NET.NET programmer should use C++.programmer should use C++.
•• "Bring C++ to "Bring C++ to .NET":.NET": Support C++Support C++’’s powerful features also s powerful features also

for for CLRCLR types (e.g., deterministic cleanup, templates).types (e.g., deterministic cleanup, templates).

•• "Bring "Bring .NET.NET to C++":to C++": Support the Support the CLRCLR’’ss powerful features powerful features
also for native types (e.g., verifiability, garbage collection).also for native types (e.g., verifiability, garbage collection).

Major GoalsMajor Goals

10

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 6

11

adjective class C;

12

Type are declared Type are declared ““adjectiveadjective classclass””::
classclass NN{ /*{ /*……*/ };*/ }; // native// native

ref classref class RR { /*{ /*……*/ };*/ }; // CLR reference type// CLR reference type

value classvalue class VV { /*{ /*……*/ };*/ }; // CLR value type// CLR value type

interface classinterface class II { /*{ /*……*/ };*/ }; // CLR interface type// CLR interface type

enumenum classclass EE { /*{ /*……*/ };*/ }; // CLR enumeration type// CLR enumeration type

•• C++ & .NET fundamental types are mapped to each other C++ & .NET fundamental types are mapped to each other
(e.g., (e.g., intint and System::Int32 are the same type).and System::Int32 are the same type).

Examples:Examples:
ref class A ref class A abstractabstract { };{ }; // abstract even w/o pure virtuals// abstract even w/o pure virtuals

ref class B ref class B sealedsealed : A { };: A { }; // no further derivation is allowed// no further derivation is allowed

ref class C : B { };ref class C : B { }; // error, B is sealed// error, B is sealed

Basic Class Declaration SyntaxBasic Class Declaration Syntax

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 7

13

PropertiesProperties
Basic syntax:Basic syntax:

ref class R {ref class R {
int int mySizemySize;;

public:public:
property int Size {property int Size {
int int getget()() { return mySize; }{ return mySize; }
void void setset(int val)(int val) { mySize = val; }{ mySize = val; }

}}
};};

R r;R r;
r.Sizer.Size = 42;= 42; // use like a field; calls r.Size::set(42)// use like a field; calls r.Size::set(42)

Trivial properties:Trivial properties:
ref class R {ref class R {
public:public:
property int Size;property int Size; // compiler// compiler--generatedgenerated

};}; // get, set, and backing store// get, set, and backing store

14

Indexed PropertiesIndexed Properties
Indexed syntax:Indexed syntax:

ref class R { // ref class R { // ……
map<map<String^,intString^,int>* m;>* m;

public:public:
property int Lookup[String^ s] property int Lookup[String^ s] {{
int get()int get() { return (*{ return (*m)[sm)[s]; }]; }

protected:protected:
void set(int);void set(int); // defined out of line below// defined out of line below

}}
property String^ default[property String^ default[intint i]i] { /*{ /*……*/ }*/ }

};};
void R::Lookup[String^ s]::set(int v)void R::Lookup[String^ s]::set(int v) { (*{ (*m)[sm)[s] = v; }] = v; }

Call point:Call point:
R r;R r;
r.Lookup["Adams"]r.Lookup["Adams"] = 42;= 42; // r.Lookup[// r.Lookup[““AdamsAdams””].set(42)].set(42)
String^ s = String^ s = r[42]r[42];; // r.default[42].get()// r.default[42].get()

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 8

15

Contemplated Orcas ExtensionsContemplated Orcas Extensions
Overloaded and templated setters:Overloaded and templated setters:

ref class R {ref class R {
public:public:
property property FooFoo Bar {Bar {
FooFoo get();get();

void set(void set(FooFoo););

void set(int);void set(int); // overloaded function// overloaded function

template<class T>template<class T> // overloaded function template// overloaded function template
void set(T);void set(T);

}}
};};

16

Delegates and EventsDelegates and Events

A trivial event:A trivial event:
delegate void D(delegate void D(intint););

ref class R {ref class R {
public:public:
event D^ e;event D^ e; // trivial event; compiler// trivial event; compiler--generated membersgenerated members

void f() {void f() { e(42);e(42); }} // invoke it// invoke it
};};

R r;R r;
r.e += gcnew D(this, &SomeMethod);r.e += gcnew D(this, &SomeMethod);
r.e += gcnew D(SomeFreeFunction);r.e += gcnew D(SomeFreeFunction);
r.f();r.f();

Or you can write add/remove/raise yourself.Or you can write add/remove/raise yourself.
•• Contemplated for Orcas: Overloaded/templated raise.Contemplated for Orcas: Overloaded/templated raise.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 9

17

Virtual Functions and OverridingVirtual Functions and Overriding

Explicit, multiple, and renamed overriding:Explicit, multiple, and renamed overriding:
interface class I1 { interface class I1 { intint f();f(); intint h();h(); };};

interface class I2 { interface class I2 { intint f();f(); intint i();i(); };};

interface class I3 { interface class I3 { intint i();i(); intint j(); };j(); };

ref class R : I1, I2, I3 {ref class R : I1, I2, I3 {
public:public:
virtual virtual intint e() e() overrideoverride;; // error, there is no virtual e()// error, there is no virtual e()
virtual virtual intint f() f() newnew;; // new slot, doesn// new slot, doesn’’t override any ft override any f
virtual virtual intint f() f() sealedsealed;; // overrides & seals I1::f and I2::f// overrides & seals I1::f and I2::f
virtual virtual intint g() g() abstractabstract;; // same as // same as ““= 0= 0”” (for symmetry(for symmetry

with class declarations)with class declarations)

virtual virtual intint x() x() = I1::h= I1::h;; // overrides I1::h// overrides I1::h
virtual virtual intint y() y() = I2::i= I2::i;; // overrides I2::i// overrides I2::i
virtual virtual intint z() z() = j, I3::i= j, I3::i;; // overrides I3::i and I3::j// overrides I3::i and I3::j

};};

18

Delegating ConstructorsDelegating Constructors
Can delegate to one peer constructor. No cycle Can delegate to one peer constructor. No cycle

detection is required.detection is required.
ref class R {ref class R {
S s;S s;
T t;T t;
R(R(intint i, const U& u) : i, const U& u) : s(is(i),), t(ut(u) { /* init */ }) { /* init */ }

public:public:
R()R() : R(: R(42,42, 3.143.14)) { }{ }
R(R(intint i)i) : R(: R(i,i, 3.143.14)) { }{ }
R(U& u)R(U& u) : R(: R(53,53, uu)) { }{ }

};};

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 10

19

Three differences:Three differences:
•• Scoped.Scoped.

•• No implicit conversion to underlying type.No implicit conversion to underlying type.

•• Can specify underlying type (defaults to Can specify underlying type (defaults to intint).).

enumenum classclass E1 { Red, Green, Blue };E1 { Red, Green, Blue };

enumenum classclass E2 E2 : long: long { Red, Skelton };{ Red, Skelton };

E1 E1 e1e1 = = E1::E1::Red;Red; // ok// ok

E2 E2 e2e2 = = E2::E2::Red;Red; // ok// ok

e1 = e2;e1 = e2; // error// error

intint i1 = (i1 = (int)Redint)Red;; // error// error
intint i2 = E1::Red;i2 = E1::Red; // error, no implicit conversion// error, no implicit conversion
intint i3 = i3 = (int)E1::(int)E1::Red;Red; // ok// ok

CLRCLR EnumsEnums

20

Other FeaturesOther Features

ParamParam arrays:arrays:
•• Created when needed, preferred over varargsCreated when needed, preferred over varargs

void f(String^ str, void f(String^ str, ... array<Object^>^ arr... array<Object^>^ arr););

f(f(““HelloHello””, , ““worldworld””, 42);, 42);

Unified CLR and C++ operators:Unified CLR and C++ operators:
•• Operators can now be static. Most work on handles.Operators can now be static. Most work on handles.

ref class R { public: // ...ref class R { public: // ...
static R^ operator+(R^ lhs, R^ rhs);static R^ operator+(R^ lhs, R^ rhs);

};};

•• Equality tests reference identity. Can be overridden by user.Equality tests reference identity. Can be overridden by user.

XML doc comments.XML doc comments.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 11

21

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

22

% is to ^
as

& is to *

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 12

23

Semantically, a C++ program can create object of Semantically, a C++ program can create object of
any type any type TT in any storage location:in any storage location:
•• On the native heap:On the native heap: T* t1 = new T;T* t1 = new T;

–– As usual, pointers (As usual, pointers (**) are stable, even during GC.) are stable, even during GC.

–– As usual, failure to explicitly call As usual, failure to explicitly call deletedelete will leak.will leak.

•• On the On the gcgc heap:heap: T^ t2 = gcnew T;T^ t2 = gcnew T;

–– Handles (Handles (^̂) are object references (to whole objects).) are object references (to whole objects).

–– Calling Calling deletedelete is optional: "Destroy now, or finalize later."is optional: "Destroy now, or finalize later."

•• On the stack, or as a class member:On the stack, or as a class member: T t3;T t3;

–– Q: Why would you? A: Next section: Deterministic Q: Why would you? A: Next section: Deterministic
destruction/dispose is automatic and implicit, hooked to destruction/dispose is automatic and implicit, hooked to
stack unwinding or to the enclosing objectstack unwinding or to the enclosing object’’s lifetime.s lifetime.

Physically, an object may exist elsewherePhysically, an object may exist elsewhere..

Unified Storage/Pointer ModelUnified Storage/Pointer Model

24

Pointers and HandlesPointers and Handles
Native pointers (Native pointers (**) and handles () and handles (^̂):):

•• ^̂ is like is like **. Differences: . Differences: ^̂ points to a whole object on the points to a whole object on the gcgc
heap, canheap, can’’t be ordered, and cant be ordered, and can’’t be cast to/from void* or t be cast to/from void* or
an integral type. There is no void^.an integral type. There is no void^.

WidgetWidget** s1 = new Widget;s1 = new Widget; // point to native heap// point to native heap
WidgetWidget^̂ s2 = s2 = gcnewgcnew Widget;Widget; // point to // point to gcgc heapheap

s1s1-->>Length();Length(); // use // use -->> for member accessfor member access
s2s2-->>Length();Length();

((**s1).Length();s1).Length(); // use // use ** to dereferenceto dereference
((**s2).Length();s2).Length();

Use RAII Use RAII pin_ptrpin_ptr to get a to get a ** into the into the gcgc heap:heap:
R^ r = R^ r = gcnewgcnew R;R;
intint* p1 = &r* p1 = &r-->v; >v; // error, v is a // error, v is a gcgc--lvaluelvalue
pin_ptrpin_ptr<<intint> p2 = &r> p2 = &r-->v;>v; // ok// ok
CallSomeAPICallSomeAPI((p2p2);); // safe call, // safe call, CallSomeAPICallSomeAPI((intint*)*)

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 13

25

References and Unary &/%References and Unary &/%

Native (Native (&&) and tracking () and tracking (%%) references:) references:
•• %% is like is like &&. Differences: . Differences: %% can refer into any memory area can refer into any memory area

incl. the incl. the gcgc heap. For now, a heap. For now, a %% can only exist on the stack.can only exist on the stack.

StringString&& s3 = *s1;s3 = *s1; // bind// bind
StringString%% s4 = *s2;s4 = *s2; // bind & track// bind & track

s3s3..Length();Length(); // reference syntax with .// reference syntax with .
s4s4..Length();Length();

void swap(void swap(Object^%Object^% o1, o1, Object^%Object^% o2)o2) // C# // C# ““refref””
{ Object^ tmp = o1; o1 = o2; o2 = { Object^ tmp = o1; o1 = o2; o2 = tmptmp; }; }

Unary Unary && and and %% for for ““address ofaddress of””::
•• &&myobjmyobj MyTypeMyType* (or * (or interior_ptrinterior_ptr<<MyTypeMyType>, when >, when myobjmyobj

is physically on the is physically on the gcgc heap).heap).

•• %%myobjmyobj MyTypeMyType^.^.

26

Native on the GC HeapNative on the GC Heap
Create a proxy for native object on gc heap.Create a proxy for native object on gc heap.

•• The proxyThe proxy’’s finalizer will call the destructor if needed.s finalizer will call the destructor if needed.

N^ N^ hnhn = gcnew N;= gcnew N; // native object on gc heap// native object on gc heap

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

N^ hn;
Variable

N N_proxy

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 14

27

Ref Class on Native HeapRef Class on Native Heap
Already implemented as gcroot template.Already implemented as gcroot template.

•• No No finalizerfinalizer will ever run. Example:will ever run. Example:

R* pr = new R;R* pr = new R; // ref object on native heap// ref object on native heap

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

R* pr;
Variable

R
R_proxy

28

Ref Class on the StackRef Class on the Stack
The type of The type of ““%R%R”” is R^.is R^.

R r;R r; // ref object on stack// ref object on stack
f(%r);f(%r); // call f(Object^)// call f(Object^)

G
C

H
an

dl
e

Ta
bl

e

Native Unmanaged Heap CLR Managed Heap

R r;
Variable

R

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 15

29

Boxing is implicit and strongly typed:Boxing is implicit and strongly typed:
int^ i = 42;int^ i = 42; // strongly typed boxed value// strongly typed boxed value
Object^ o = i;Object^ o = i; // usual derived// usual derived--toto--base conversions okbase conversions ok

Console::WriteLine("Two numbers: {0} {1}", Console::WriteLine("Two numbers: {0} {1}", i, 101i, 101););

•• i is emitted with type Object + attribute marking it as int.i is emitted with type Object + attribute marking it as int.
WriteLineWriteLine chooses the Object overload as expected.chooses the Object overload as expected.

•• Boxing invokes the copy constructor.Boxing invokes the copy constructor.

Unboxing is explicit:Unboxing is explicit:
•• Dereferencing a V^ indicates the value inside the box, and Dereferencing a V^ indicates the value inside the box, and

this syntax is also used for this syntax is also used for unboxingunboxing::

int k = int k = *i*i;; // unboxing to take a copy// unboxing to take a copy

intint% i2 = % i2 = *i*i;; // refer into the box (no copy)// refer into the box (no copy)

swap(swap(*i*i, k);, k); // swap contents of box with stack variable// swap contents of box with stack variable
// (no copy, modifies the contents of box)// (no copy, modifies the contents of box)

Boxing (Value Types)Boxing (Value Types)

30

To demonstrate the unification, consider agnostic To demonstrate the unification, consider agnostic
templates.templates.

Example 1: Usual swap, with % instead of &.Example 1: Usual swap, with % instead of &.
template<class T>template<class T>
void swap(void swap(T%T% t1, t1, T%T% t2)t2)
{ T { T tmptmp(t1); t1 = t2; t2 = (t1); t1 = t2; t2 = tmptmp; }; }

•• Works for any copyable T:Works for any copyable T:

Object ^o1, ^o2;Object ^o1, ^o2; swap(o1, o2);swap(o1, o2); // swap handles// swap handles
int ^i1, ^i2;int ^i1, ^i2; swap(i1, i2);swap(i1, i2); // swap handles// swap handles

swap(*i1, *i2);swap(*i1, *i2); // swap values// swap values
MessageQueue *q1, *q2;MessageQueue *q1, *q2; swap(q1, q2);swap(q1, q2); // swap pointers// swap pointers

swap(*q1, *q2);swap(*q1, *q2); // swap values// swap values
ref class R { } r1, r2;ref class R { } r1, r2; swap(r1, r2);swap(r1, r2); // swap values*// swap values*
value class V { } v1, v2;value class V { } v1, v2; swap(v1, v2);swap(v1, v2); // swap values// swap values
class Native { } n1, n2;class Native { } n1, n2; swap(n1, n2);swap(n1, n2); // swap values*// swap values*

* assuming copy construction/assignment are defined* assuming copy construction/assignment are defined

Aside: Agnostic templatesAside: Agnostic templates

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 16

31

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

32

T:: ~T()
and

T:: !T()

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 17

33

The CLR state of the art is great for memory.The CLR state of the art is great for memory.
ItIt’’s not great for other resource types:s not great for other resource types:

•• Finalizers usually run too late (e.g., files, database Finalizers usually run too late (e.g., files, database
connections, locks). Having lots of finalizers doesnconnections, locks). Having lots of finalizers doesn’’t scale.t scale.

•• TheThe Dispose pattern (tryDispose pattern (try--finally, or C# finally, or C# ““usingusing””) tries to) tries to
address this, but is fragile, erroraddress this, but is fragile, error--prone, and requires the prone, and requires the
user to write more code.user to write more code.

Instead of writing tryInstead of writing try--finally or using blocks:finally or using blocks:
•• Users can leverage a destructor. The C++ compiler Users can leverage a destructor. The C++ compiler

generates all the Dispose code automatically, including generates all the Dispose code automatically, including
chaining calls to Dispose. (There is no Dispose pattern.)chaining calls to Dispose. (There is no Dispose pattern.)

•• Types authored in C++ are naturally usable in other Types authored in C++ are naturally usable in other
languages, and vice versa.languages, and vice versa.

•• C++:C++: Correctness by default, potential speedup by choice. Correctness by default, potential speedup by choice.
(Other:(Other: Potential speedup by default, correctness by choice.)Potential speedup by default, correctness by choice.)

Cleanup in C++: Less Code, More ControlCleanup in C++: Less Code, More Control

34

Every type can have a destructor, Every type can have a destructor, ~T()~T()::
•• NonNon--trivial destructor == trivial destructor == IDisposeIDispose. Implicitly run when:. Implicitly run when:

–– A stack based object goes out of scope.A stack based object goes out of scope.
–– A class memberA class member’’s enclosing object is destroyed.s enclosing object is destroyed.
–– A A deletedelete is performed on a pointer or handle. Example:is performed on a pointer or handle. Example:

Object^ o = f();Object^ o = f();
delete o;delete o; // run destructor now, collect memory later// run destructor now, collect memory later

Every type can have a finalizer, Every type can have a finalizer, !T()!T()::
•• The finalizer is executed at the usual times and subject to The finalizer is executed at the usual times and subject to

the usual guarantees, if the destructor has the usual guarantees, if the destructor has notnot already run.already run.
•• Programs should (and do by default) use deterministic Programs should (and do by default) use deterministic

cleanup. This promotes a style that reduces finalization cleanup. This promotes a style that reduces finalization
pressure.pressure.

•• ““FinalizersFinalizers as a debugging techniqueas a debugging technique””: Placing assertions or : Placing assertions or
log messages in log messages in finalizersfinalizers to detect objects not destroyed.to detect objects not destroyed.

Uniform Destruction/FinalizationUniform Destruction/Finalization

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 18

35

Deterministic Cleanup in C++Deterministic Cleanup in C++
C++ example:C++ example:

void Transfer() {void Transfer() {
MessageQueueMessageQueue sourcesource("server("server\\\\sourceQueue");sourceQueue");
String^ String^ qnameqname = (= (String^)source.Receive().BodyString^)source.Receive().Body;;
MessageQueueMessageQueue dest1dest1("server("server\\\\" + " + qnameqname),),

dest2dest2("backup("backup\\\\" + " + qnameqname););
Message^ message = source.Receive();Message^ message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
•• On exit (return or exception) from Transfer, destructible/ On exit (return or exception) from Transfer, destructible/

disposable objects have Dispose implicitly called in disposable objects have Dispose implicitly called in
reverse order of construction. Here: dest2, dest1, and reverse order of construction. Here: dest2, dest1, and
source.source.

•• No finalization.No finalization.

36

Deterministic Cleanup in C#Deterministic Cleanup in C#
Minimal C# equivalent:Minimal C# equivalent:

void Transfer() {void Transfer() {
using(using(MessageQueueMessageQueue source source

= new MessageQueue= new MessageQueue("server("server\\\\sourceQueue") sourceQueue")) {) {
String String qnameqname = (String)source.Receive().Body;= (String)source.Receive().Body;
using(using(MessageQueueMessageQueue

dest1 dest1 = new MessageQueue= new MessageQueue("server("server\\\\" + " + qnameqname),),
dest2 dest2 = new MessageQueue= new MessageQueue("backup("backup\\\\" + " + qnameqname))) {) {

Message message = source.Receive();Message message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
}}

}}

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 19

37

Deterministic Cleanup in VB/JavaDeterministic Cleanup in VB/Java
Alternative equivalent (in C# syntax):Alternative equivalent (in C# syntax):

void Transfer() {void Transfer() {
MessageQueueMessageQueue source = null, dest1 = null, dest2 = null;source = null, dest1 = null, dest2 = null;
try {try {
source source = new = new MessageQueue("serverMessageQueue("server\\\\sourceQueue");sourceQueue");
String String qnameqname = (String)source.Receive().Body;= (String)source.Receive().Body;
dest1 dest1 = new = new MessageQueue("serverMessageQueue("server\\\\" + " + qnameqname););
dest2 dest2 = new = new MessageQueue("backupMessageQueue("backup\\\\" + " + qnameqname););
Message message = source.Receive();Message message = source.Receive();
dest1.Send(message);dest1.Send(message);
dest2.Send(message);dest2.Send(message);

}}
finally {finally {
if(dest2 != null) { dest2.Dispose(); }if(dest2 != null) { dest2.Dispose(); }
if(dest1 != null) { dest1.Dispose(); }if(dest1 != null) { dest1.Dispose(); }
if(source != null) { if(source != null) { source.Disposesource.Dispose(); }(); }

}}
}}

38

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 20

39

generic<typename T>

40

Generics Generics ×× TemplatesTemplates

Both are supported, and can be used together.Both are supported, and can be used together.
Generics:Generics:

•• RunRun--time, crosstime, cross--language, and crosslanguage, and cross--assembly.assembly.
•• Constraint based, less flexible than templates.Constraint based, less flexible than templates.
•• Will eventually support many template features.Will eventually support many template features.

Templates:Templates:
•• CompileCompile--time, C++, and generally intratime, C++, and generally intra--assembly assembly

(a template and its specializations in one assembly (a template and its specializations in one assembly
will also be available to friend assemblies).will also be available to friend assemblies).

•• IntraIntra--assembly is not a high burden because you can assembly is not a high burden because you can
expose templates through generic interfaces (e.g., expose expose templates through generic interfaces (e.g., expose
a_containera_container<T> via <T> via IListIList<T>).<T>).

•• Supports specialization, unique power programming idioms Supports specialization, unique power programming idioms
(e.g., template metaprogramming, policy(e.g., template metaprogramming, policy--based design, based design,
STLSTL--style generic programming).style generic programming).

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 21

41

GenericsGenerics

Generics are declared much like templates:Generics are declared much like templates:
generic<generic<typenametypename T>T>
where T : where T : IDisposableIDisposable, , IFooIFoo
ref class GR { ref class GR { /*/* …… */ };*/ };

•• ConstraintsConstraints are inheritanceare inheritance--based.based.

Using generics and templates together works.Using generics and templates together works.
•• Example: Generics can match template Example: Generics can match template templatetemplate paramsparams..

template< template< templatetemplate<class> <class> classclass VV >> // a TTP// a TTP
void f() { V<void f() { V<intint> v; /*...use v...*/ }> v; /*...use v...*/ }

f<GR>();f<GR>(); // ok, matches TTP// ok, matches TTP

42

STL on the CLRSTL on the CLR

C++ enables STL on CLR:C++ enables STL on CLR:
•• Verifiable.Verifiable.

•• Separation of collections and algorithms.Separation of collections and algorithms.

Interoperates with Frameworks library.Interoperates with Frameworks library.

C++ C++ ““for_eachfor_each”” and C# and C# ““for eachfor each”” both work:both work:
stdcli::vectorstdcli::vector<String^> v;<String^> v;

for_eachfor_each(v.begin(), v.end(), functor);(v.begin(), v.end(), functor);
for_eachfor_each(v.begin(), v.end(), (v.begin(), v.end(), _1 += _1 += ““suffixsuffix””);); // C++// C++
for_eachfor_each(v.begin(), v.end(), (v.begin(), v.end(), cout << _1cout << _1);); // lambdas// lambdas

g(%v);g(%v); // call g(// call g(IListIList<String^>^)<String^>^)

forfor(String(String^ s ^ s inin v)v) Console::WriteLineConsole::WriteLine(s);(s);

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 22

43

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

44

ref class R : Native { };
class Native : R { };

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 23

45

CLR Types in the Native WorldCLR Types in the Native World

Basic interop example:Basic interop example:
class Data {class Data {
XmlDocument*XmlDocument* xmlDoc;xmlDoc;

public:public:
void Load(void Load(std::string std::string fileName) {fileName) {
XmlTextReader^ reader = gcnew XmlTextReader(XmlTextReader^ reader = gcnew XmlTextReader(

marshal_as<String^>marshal_as<String^>(fileName));(fileName));
xmlDoc = xmlDoc = new XmlDocumentnew XmlDocument(reader);(reader);

}}
};};

46

CLR Types in the Native World (2)CLR Types in the Native World (2)

Template<Ref> example:Template<Ref> example:
template<class T>template<class T>
void AFunctionTemplate(T) { /*void AFunctionTemplate(T) { /*……*/ };*/ };

ref class Ref { /*ref class Ref { /*……*/ };*/ };

Ref ref;Ref ref;
AFunctionTemplate(ref);AFunctionTemplate(ref); // ok// ok

Of course, any type can be templated:Of course, any type can be templated:
template<class T>template<class T>
ref class ref class ARefTemplate { /*ARefTemplate { /*……*/ };*/ }; // ok// ok

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 24

47

Native Types in the CLR WorldNative Types in the CLR World

Basic interop example:Basic interop example:
ref class MyControl : UserControl { //ref class MyControl : UserControl { //…… // reference type// reference type
std::vector<std::vector<std::stringstd::string>*>* words;words; // use native type// use native type

public:public:
void Add(void Add(String^ sString^ s) { Add() { Add(marshal_as<std::string>marshal_as<std::string>(s)); }(s)); }

void Add(std::string s) { wordsvoid Add(std::string s) { words-->>push_back(spush_back(s); }); }
};};

Segueing to Segueing to ““futuresfutures””: Generic<Native> example.: Generic<Native> example.
generic<class T>generic<class T>
where T : I1where T : I1
ref class SomeGeneric { /*ref class SomeGeneric { /*……*/ };*/ };

class Native : I1 { /*class Native : I1 { /*……*/ };*/ };

SomeGeneric<Native> g;SomeGeneric<Native> g; // ok// ok

48

What Customers Are DoingWhat Customers Are Doing

Example 1: Quake 2 extension example Example 1: Quake 2 extension example
(using v1 syntax):(using v1 syntax):

private __private __gcgc class class RadarFormRadarForm
: public : public System::Windows::Forms::FormSystem::Windows::Forms::Form

{{
std::vectorstd::vector<<RadarItemRadarItem>>** m_itemsm_items;;

public:public:
RadarFormRadarForm() : () : m_itemsm_items(new (new std::vectorstd::vector<<RadarItemRadarItem>)>)
{ /*{ /*……*/ };*/ };

~~RadarFormRadarForm() { () { delete items;delete items; }} // v1 // v1 finalizerfinalizer syntaxsyntax

// // …… etc.etc.
};};

•• Their first attempt was without the * (i.e., they naturally Their first attempt was without the * (i.e., they naturally
tried make the vector a member), but that wasntried make the vector a member), but that wasn’’t allowed.t allowed.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 25

49

What Customers Are Doing (2)What Customers Are Doing (2)

Example 2: Faking up base classes Example 2: Faking up base classes
(e.g., expose native types to a CLR world).(e.g., expose native types to a CLR world).

private __private __gcgc class C {class C { // can// can’’t inherit from Native, sot inherit from Native, so……
NativeNative* n;* n;

public:public:
C() : C() : n(new Native)n(new Native) { /*{ /*……*/ };*/ };
~C() { ~C() { delete n;delete n; }}
void void FooFoo(/*(/*…… a a paramparam list list ……*/)*/) { n{ n-->>FooFoo(/*(/*……*/); }*/); }
void Bar(/*void Bar(/*…… a a paramparam list list ……*/)*/) { n{ n-->Bar(/*>Bar(/*……*/); }*/); }
// etc.// etc.

};};

50

Future: Unified Type System, Object ModelFuture: Unified Type System, Object Model

Arbitrary combinations of members and bases:Arbitrary combinations of members and bases:
•• Any type can contain members and/or base classes of any Any type can contain members and/or base classes of any

other type. Virtual dispatch etc. work as expected.other type. Virtual dispatch etc. work as expected.
–– At most one base class may be of ref/value/mixed type.At most one base class may be of ref/value/mixed type.

•• Overhead (regardless of mixing complexity, including deep Overhead (regardless of mixing complexity, including deep
inheritance with mixing and virtual overriding at each level):inheritance with mixing and virtual overriding at each level):
–– For each object: At most one additional object.For each object: At most one additional object.
–– For each virtual function call: At most one additional For each virtual function call: At most one additional

virtual function call.virtual function call.

Pure type:Pure type:
•• The declared type category, members, and bases are The declared type category, members, and bases are

either all CLR, or all native.either all CLR, or all native.

Mixed type:Mixed type:
•• Everything else. Examples:Everything else. Examples:

ref class Ref : R, public N1, N2 { string s; };ref class Ref : R, public N1, N2 { string s; };
class Native : I1, I2 { MessageQueue m; };class Native : I1, I2 { MessageQueue m; };

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 26

51

Future: Implementing Mixed TypesFuture: Implementing Mixed Types
1 mixed = 1 pure + 1 pure.1 mixed = 1 pure + 1 pure.

ref class M : I1, I2, N1, N2 {ref class M : I1, I2, N1, N2 {
System::StringSystem::String ^S1, ^S2;^S1, ^S2; M* pm = new M;M* pm = new M;
std::string s1, s2;std::string s1, s2; M^ hm = gcnew M;M^ hm = gcnew M;

};};

52

V2 Syntax:V2 Syntax:
ref class ref class RadarFormRadarForm : Form: Form, , publicpublic Native Native {{
std::vectorstd::vector<<RadarItemRadarItem> items;> items;

};};

•• One safe automated allocation, vs. One safe automated allocation, vs.
NN fragile handwritten allocations.fragile handwritten allocations.

•• This class is also better because it This class is also better because it
also has a destructor (implements also has a destructor (implements
IDisposableIDisposable). That makes it work). That makes it work
well by default with C++ well by default with C++
automatic stack semantics (and C# automatic stack semantics (and C#
using blocks, and VB/J# dispose using blocks, and VB/J# dispose
patterns).patterns).

V1 Syntax:V1 Syntax:
private __private __gcgc class class RadarFormRadarForm : public Form {: public Form {
std::vectorstd::vector<<RadarItemRadarItem>>** items;items;
NativeNative* n* n;;

public:public:
RadarFormRadarForm() :() :
: n(new Native): n(new Native)
, items(new , items(new std::vectorstd::vector<<RadarItemRadarItem>)>)
{ /*{ /*……*/ };*/ };

~~RadarFormRadarForm() { () { delete items; delete n;delete items; delete n; }}
void Foo(/*void Foo(/*…… params params ……*/)*/)
{ n{ n-->Foo(/*>Foo(/*……*/); }*/); }

void Bar(/*void Bar(/*…… params params ……*/)*/)
{ n{ n-->Bar(/*>Bar(/*……*/); }*/); }

// etc.// etc.
};};

Future: Result for Customer CodeFuture: Result for Customer Code

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 27

53

Pure Extensions to ISO C++Pure Extensions to ISO C++

Only three reserved words:Only three reserved words:
gcnewgcnew generic generic nullptrnullptr

The rest are contextual keywords:The rest are contextual keywords:
abstract delegate abstract delegate eventevent finally in finally in initonlyinitonly

interface literal override property ref sealedinterface literal override property ref sealed

value wherevalue where

54

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 28

55

Why Standardize C++/CLI?Why Standardize C++/CLI?

Primary motivators for C++/CLI standard:Primary motivators for C++/CLI standard:
•• Stability of language.Stability of language.

•• C++ community understands and demands standards.C++ community understands and demands standards.

•• Openness promotes adoption. Openness promotes adoption.

•• Independent implementations should interoperate.Independent implementations should interoperate.

Same TC39, new TG5: C++/CLI.Same TC39, new TG5: C++/CLI.
•• C++/CLI is a binding between ISO C++ and ISO CLI only.C++/CLI is a binding between ISO C++ and ISO CLI only.

•• Most of TG5Most of TG5’’s seven planned meetings are cos seven planned meetings are co--located with located with
TG3 (CLI), and both standards are currently on the same TG3 (CLI), and both standards are currently on the same
schedule.schedule.

56

C++/CLI Participants and TimelineC++/CLI Participants and Timeline

Participants:Participants:
•• Convener: Convener: Tom PlumTom Plum
•• Project Editor: Project Editor: Rex Rex JaeschkeJaeschke
•• Subject Matter Experts:Subject Matter Experts: BjarneBjarne StroustrupStroustrup, Herb Sutter, Herb Sutter
•• Participants: Participants: DinkumwareDinkumware, EDG, , EDG, IBM, IBM,

Microsoft, PlumMicrosoft, Plum HallHall……
•• IndependentIndependent conformance test suite: Plum Hallconformance test suite: Plum Hall

EcmaEcma + ISO process, estimated timeline:+ ISO process, estimated timeline:
•• Oct 1, 2003: Oct 1, 2003: EcmaEcma TC39 plenary. TC39 plenary. KickedKicked off TG5.off TG5.
•• Nov Nov 21,21, 2003:2003: SubmittedSubmitted base document to base document to Ecma.Ecma.
•• Dec 2003 Dec 2003 –– Sep 2004: TG5 meetings (7).Sep 2004: TG5 meetings (7).
•• Dec 2004: Adopt Dec 2004: Adopt EcmaEcma standard.standard.
•• Dec 2004: Kick off ISO fastDec 2004: Kick off ISO fast--track process.track process.
•• Dec 2005: Adopt ISO standard.Dec 2005: Adopt ISO standard.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 29

57

1. Rationale and Goals1. Rationale and Goals

2. Language Tour2. Language Tour

3. Design and Implementation Highlights3. Design and Implementation Highlights
•• Unified pointer and storage system (stack, native Unified pointer and storage system (stack, native

heap, gc heap).heap, gc heap).

•• Deterministic cleanup: Destruction/Dispose, Deterministic cleanup: Destruction/Dispose,
finalization.finalization.

•• Generics Generics ×× templates, STL on CLR.templates, STL on CLR.

•• Mixing native/CLR, other features.Mixing native/CLR, other features.

4. C++/CLI Standardization4. C++/CLI Standardization
•• Venue, players, timelines, how to participate.Venue, players, timelines, how to participate.

OverviewOverview

58

Summary: C++ Summary: C++ ×× CLRCLR

C++ features:C++ features:
•• Deterministic cleanup, Deterministic cleanup,

destructors.destructors.

•• Templates.Templates.

•• Native types.Native types.

•• Multiple inheritance.Multiple inheritance.

•• STL, generic algorithms, STL, generic algorithms,
lambda expressions.lambda expressions.

•• Pointer/pointee Pointer/pointee
distinction.distinction.

•• Copy construction, Copy construction,
assignment.assignment.

CLR features:CLR features:
•• Garbage collection, Garbage collection,

finalizers.finalizers.

•• Generics.Generics.

•• Reference and valueReference and value
types.types.

•• Interfaces.Interfaces.

•• Verifiability.Verifiability.

•• Security.Security.

•• Properties, delegates, Properties, delegates,
events.events.

Herb Sutter The Future of C++ on .NET:
A Tour of C++/CLI

Presented to NWCPP
December 10, 2003 30

59

Conclusion: The Two FAQsConclusion: The Two FAQs

Q: Is C++ relevant on modern VM / GC platforms?Q: Is C++ relevant on modern VM / GC platforms?
•• Heck, yeah.Heck, yeah.

Q: Why should a Q: Why should a .NET.NET programmer use C++?programmer use C++?
•• Preserves code base investment. Easiest migration for Preserves code base investment. Easiest migration for

existing code base: "Just use /clr."existing code base: "Just use /clr."

•• Easiest and most efficient native Easiest and most efficient native interopinterop, incl. mixed types., incl. mixed types.

•• Deterministic (and automatic) cleanup as usual in C++, Deterministic (and automatic) cleanup as usual in C++,
no coding patterns. Correctness by default.no coding patterns. Correctness by default.

•• Leverage C++Leverage C++’’s unique strengths (e.g., templates, generic s unique strengths (e.g., templates, generic
programming, multiple inheritance, deterministic resource programming, multiple inheritance, deterministic resource
management and cleanup).management and cleanup).

•• Now not significantly harder or uglier than other languages.Now not significantly harder or uglier than other languages.

